
Improved Algorithms for the Automata-Based
Approach to Model-Checking

Laurent Doyen1 and Jean-François Raskin2

1 I&C, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 CS, Université Libre de Bruxelles (ULB), Belgium

Abstract. We propose and evaluate new algorithms to support the automata-
based approach to model-checking: algorithms to solve the universality and lan-
guage inclusion problems for nondeterministic Büchi automata. To obtain those
new algorithms, we establish the existence of pre-orders that can be exploited to
efficiently evaluate fixed points on the automata defined during the complemen-
tation step (that we keep implicit in our approach). We evaluate the performance
of our new algorithm to check for universality of Büchi automata experimentally
using the random automaton model recently proposed by Tabakov and Vardi.
We show that on the difficult instances of this probabilisticmodel, our algorithm
outperforms the standard ones by several orders of magnitude. This work is an
extension to the infinite words case of new algorithms for thefinite words case
that we and co-authors have presented in a recent paper [DDHR06].

1 Introduction

In the automata-based approach to model-checking [VW86,VW94], programs and prop-
erties are modeled by finite automata. LetA be a finite automaton that models a program
and letB be a finite automaton that models a specification that the program should sat-
isfy: all the traces of the program (executions) should be traces of the specification,
that isL(A) ⊆ L(B). To solve the inclusion problem, the classical automata-theoretic
solution consists in complementing the language of the automatonB and then to check
thatL(A) ∩ Lc(B) is empty (the later intersection being computed as a product).

In the finite case, the program and the specification are finiteautomata over finite
words (NFA) and the construction for the complementation isconceptually simple: it
is achieved by a classical subset construction. In the case of infinite words, the pro-
gram and (or at least) the specification are nondeterministic Büchi automata (NBW).
The NBW are also complementable; this was first proved by Büchi in the late six-
ties [BL69]. However, the result is much harder to obtain than in the case of NFA. The
orginal construction of Büchi has aO(22n

) worst case complexity (wheren is the size of
the automaton to complement) which is not optimal. In the late eighties Safra in [Saf88],
and later Kupferman and Vardi in [KV97], have given optimal complementation pro-
cedures that haveO(2n log n) complexity (see [Mic88] for the lower bound). While for
finite words, the classical algorithm has been implemented and shown practically us-
able, for infinite words, the theoretically optimal solution is difficult to implement and
very poor results are known about their practical behavior.The actual attemps to imple-
ment them have shown very limited in the size of the specifications that can be handled:

automata with more than around ten states are intractable [Tab06,GKSV03]. Such sizes
are clearly not sufficient in pratcice. As a consequence, tools like SPIN [RH04] that im-
plement the automata-theoretic approach to model-checking ask either that the comple-
ment of the specification is explicitly given or they limit the specification to properties
that are expressible in LTL.

In this paper, we propose a new approach to checkL(A) ⊆ L(B) that can handle
much larger Büchi automata. In a recent paper, we have shownthat the classical subset
construction can be avoided and kept implicit for checking language inclusion and lan-
guage universality for NFA and their alternating extensions [DDHR06]. Here, we adapt
and extend that technique to the more intricate automata on infinite words.

To present the intuition behind our new techniques, let us consider a simpler setting
of the problem. Assume that we are given a NBWB and we want to check ifΣω ⊆
L(B), that is to check ifL(B) is universal. First, remember thatL(B) is universal
whenLc(B) is empty. The classical algorithm first complementsB and then checks
for emptiness. The language of a NBW is nonempty if there exists an infinite run of
the automaton that visits accepting locations infinitely often. The existence of such
a run can be established in polynomial time by computing the following fixed point
F ≡ νy · µx · (Pre(x) ∪ (Pre(y) ∩ α)) wherePre is the predecessor operator of the
automaton (given a setL of locations it returns the set of locations that can reachL in
one step) andα is the set of accepting locations of the automaton. The automaton is
non-empty if and only if its initial location is a member of the fixed pointF . This well-
known algorithm is quadratic in the size of the automaton. Unfortunately, the automaton
that accepts the languageLc(B) is usally huge and the evaluation of the fixed point is
unfeasable for all but the smallest specificationsB. To overcome this difficulty, we
make the following observation: if� is asimulationpre-order on the locations ofBc

(ℓ1 � ℓ2 meansℓ1 can simulateℓ2) which is compatible with the accepting condition (if
ℓ1 � ℓ2 andℓ2 ∈ α thenℓ1 ∈ α), then the sets that are computed during the evaluation
of F are all�-closed(if an elementℓ is in the set then allℓ′ � ℓ are also in the set).
Then�-closed sets can be represented by their�-maximal elements and if operations
on such sets can be computed directly on their representation, we have the ingredients
to evaluate the fixed point in a more efficient way. For an automatonB over finite words,
set inclusion would be a typical example of a simulation relation forBc [DDHR06].

We show that the classical constructions for Büchi automata that are used in the
automata-theoretic approach to model-checking are all equipped with a simulation pre-
order that exists by construction and does not need to be computed. On that basis we
propose new algorithms to check universality of NBW, language inclusion for NBW,
and emptiness of alternating Büchi automata (ABW).

We evaluate an implementation of our new algorithm for the universality problem
of NBW and on a randomized model recently proposed by Tabakovand Vardi. We
show that the performance of the new algorithm on this randomized model outperforms
by several order of magnitude the existing implementationsof the Kupferman-Vardi
algorithm [Tab06,GKSV03]. When the classical solution is limited to automata of size
8 for some parameter values of the randomized model, we are able to handle automata
with more than one hundred locations for the same parameter values. We have identified
the hardest instances of the randomized model for our algorithms and show that we can
still handle problems with several dozens of locations for those instances.

Structure of the paperIn Section 2, we recall the Vardi-Kupferman and Miyano-
Hayashi constructions that are used for complementation ofNBW. In Section 3, we
recall the notion of simulation pre-order for a Büchi automaton and prove that the fixed
point needed to establish emptiness of nondeterministic B¨uchi automata handles only
closed sets for such pre-orders. We use this observation in Section 4 to define a new
algorithm to decide emptiness of ABW. In Section 5, we adapt the technique for the
universality problem of NBW. In Section 6, we report on the performances of the new
algorithm for universality. In Section 7, we extend those ideas to obtain a new algorithm
for language inclusion of NBW. Section 8 concludes the paper.

2 Büchi Automata and Classical Algorithms

An alternating B̈uchi automaton(ABW) is a tupleA = 〈Loc, ι, Σ, δ, α〉 where:

– Loc is a finite set of states (or locations). Thesizeof A is |A| = |Loc|;
– ι ∈ Loc is theinitial state;
– Σ is a finitealphabet;
– δ : Loc × Σ → B+(Loc) is the transition functionwhereB+(Loc) is the set of

positive boolean formulas overLoc, i.e. formulas built from elements inLoc ∪
{true, false} using the boolean connectives∧ and∨;

– α ⊆ Loc is the acceptance condition.

We say that a setX ⊆ Loc satisfiesa formulaϕ ∈ B+(Loc) (notedX |= ϕ) iff
the truth assignment that assignstrue to the members ofX and assignsfalse to the
members ofLoc\X satisfiesϕ.

A run of A on an infinite wordw = σ0 · σ1 . . . is aDAG Tw = 〈V, vι,→〉 where:

– V = Loc×N is the set of nodes. A node(ℓ, i) represents the stateℓ after the firsti
letters of the wordw have been read byA. Nodes of the form(ℓ, i) with ℓ ∈ α are
calledα-nodes;

– vι = (ι, 0) is the root of theDAG;
– and→⊆ V ×V is such that (i) if (ℓ, i) → (ℓ′, i′) theni′ = i+1 and (ii) for every

(ℓ, i) ∈ V , the set{ℓ′ | (ℓ, i) → (ℓ′, i + 1)} satisfies the formulaδ(ℓ, σi).
We say that(ℓ′, i + 1) is asuccessorof (ℓ, i) if (ℓ, i) → (ℓ′, i + 1), and we say that
(ℓ′, i′) is reachablefrom (ℓ, i) if (ℓ, i) →∗ (ℓ′, i′).

A run Tw = 〈V, vι,→〉 of A on an infinite wordw is acceptingiff all its infinite paths
π rooted atvι (thusπ ∈ Loc

ω) visit α-nodes infinitely often. An infinite wordw ∈ Σω

is acceptedby A iff there exists an accepting run on it. We denote byL(A) the set
of infinite words accepted byA, and byLc(A) the set of infinite words that are not
accepted byA.

A nondeterministic B̈uchi automaton(NBW) is an ABW whose transition func-
tion is restricted to disjunctions overLoc. Runs of NBW reduce to (linear) traces. The
transition function of NBW is often seen as a function[Q × Σ → 2Q] and we write
δ(ℓ, σ) = {ℓ1, . . . , ℓn} instead ofδ(ℓ, σ) = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn. We note byPre

A
σ (L) the

set of predecessors byσ of the setL: Pre
A
σ (L) = {ℓ ∈ Loc | ∃ℓ′ ∈ L : ℓ′ ∈ δ(ℓ, σ)}.

Let Pre
A(L) = {ℓ ∈ Loc | ∃σ ∈ Σ : ℓ ∈ Pre

A
σ (L)}.

Problems The emptiness problemfor NBW is to decide, given an NBWA, whether
L(A) = ∅. This problem is solvable in polynomial time. The symbolic approach
through fixed point computation is quadratic in the size ofA.

Theuniversality problemfor NBW is to decide, given an NBWA over the alphabet
Σ whetherL(A) = Σω whereΣω is the set of all infinite words onΣ. This problem
is PSPACE-complete [SVW87]. The classical algorithm to decide universality is to first
complement the NBW and then to check emptiness of the complement. The difficult
step is the complementation as it may cause an exponential blow-up in the size of the
automaton. There exists two types of construction, one is based on a determinization
of the automaton [Saf88] and the other uses ABW as an intermediate step [KV97]. We
review the second construction below.

The language inclusion problemfor NBW is to decide, given two NBWA andB,
whetherL(A) ⊆ L(B). This problem is central in model-checking and it is PSPACE-
complete. The classical solution consists in checking the emptiness ofL(A) ∩ Lc(B),
which again requires the expensive complementation ofB.

Theemptiness problemfor ABW is to decide, given an ABWA, whetherL(A) = ∅.
This problem is also PSPACE-complete and it can be solved using a translation from
ABW to NBW that preserves the language of the automaton [MH84]. Again, this con-
struction involves an exponential blow-up that makes straight implementations feasi-
ble only for automata limited to around ten states. However,the emptiness problem for
ABW is very important in practice for LTL model-checking as there exist efficient poly-
nomial translations from LTL formulas to ABW [GO01]. The classical construction is
presented below.

Kupferman-Vardi construction Complementation of ABW is straightforward by du-
alizing the transition function (by swapping∧ and∨, and swappingtrue andfalse in
each formulas) and interpreting the accepting conditionα as a co-Büchi condition,i.e.
a runTw is accepted if all its infinite paths have a suffix that contains noα-nodes.

The result is an alternating co-Büchi automaton (ACW). Theaccepting runs of
ACW have a layered structure that has been studied in [KV97],where the notion of
ranksis defined. The rank is a positive number associated to each node of a runTw of
an ACW on a wordw. Let G0 = Tw. Nodes of rank0 are those nodes from which only
finitely many nodes are reachable inG0. Let G1 be the runTw from which all nodes of
rank0 have been removed. Then, nodes of rank1 are those nodes ofG1 from which no
α-node is reachable inG1. For i ≥ 1, let Gi be the the runTw from which all nodes
of rank0, . . . , i − 1 have been removed. Then, nodes of rank2i are those nodes ofG2i

from which only finitely many nodes are reachable inG2i, and nodes of rank2i + 1
are those nodes ofG2i+1 from which noα-node is reachable inG2i+1. Intuitively, the
rank of a node(ℓ, i) hints how difficult it is to prove that all the paths ofTw that start in
(ℓ, i) visit α-nodes only finitely many times. It can be shown that every node has a rank
between0 and2(|Loc| − |α|), and allα-nodes have an even rank [GKSV03].

The layered structure of the runs of ACW induces a construction to complement
ABW [KV97]. We present this construction directly for NBW. Given a NBWA =
〈Loc, ι, Σ, δ, α〉 and an even numberk ∈ N, let KV(A, k) = 〈Loc

′, ι′, Σ, δ′, α′〉 be an
ABW such that:

– Loc
′ = Loc× [k] where[k] = {0, 1, . . . , k}. Intuitively, the automatonKV(A, k) is

in state(ℓ, n) after the firsti letters of the input wordw have been read if it guesses
that the rank of the node(ℓ, i) in a run ofA onw is at mostn;

– ι′ = (ι, k);
– δ′((ℓ, i), σ) = false if ℓ ∈ α andi is odd, and otherwiseδ′((ℓ, i), σ) =

∨

i′≤i(ℓ1, i
′)∧

∨

i′≤i(ℓ2, i
′) ∧ · · · ∧

∨

i′≤i(ℓn, i′) if δ(ℓ, σ) = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn; For example, if
δ(ℓ, σ) = ℓ1∨ℓ2 thenδ′((ℓ, 2), σ) = ((ℓ1, 2)∨(ℓ1, 1)∨(ℓ1, 0))∧((ℓ2, 2)∨(ℓ2, 1)∨
(ℓ2, 0)).

– α′ = Loc × [k]odd where[k]odd is the set of odd numbers in[k].

The ABW that the Kupferman-Vardi construction specifies accepts the complement
language and its size is quadratic in the size of the originalautomaton.

Theorem 1 ([KV97]) For all NBWA = 〈Loc, ι, Σ, δ, α〉, for all 0 ≤ k′ ≤ k, we have
L(KV(A, k′)) ⊆ L(KV(A, k)) and fork = 2(|Loc| − |α|), we haveL(KV(A, k)) =
Lc(A).

Miyano-Hayashi construction Classically, to check emptiness of ABW, a variant of
the subset construction is applied that transforms the ABW into a NBW that accepts the
same language [MH84]. Intuitively, the NBW maintains a sets of states of the ABW
that corresponds to a whole level of a guessed runDAG of the ABW. In addition, the
NBW maintains a seto of states that “owe” a visit to an accepting state. Whenever the
seto gets empty, meaning that every path of the guessed run has visited at least one
accepting state, the seto is initiated with the current level of the guessed run. It is asked
thato gets empty infinitely often in order to ensure that every pathof the runDAG visits
accepting states infinitely often. The construction is as follows.

Given an ABWA = 〈Loc, ι, Σ, δ, α〉, letMH(A) = 〈2Loc×2Loc, ({ι}, ∅), Σ, δ′, α′〉
be a NBW whereα′ = 2Loc × {∅} andδ′ is defined, for all〈s, o〉 ∈ 2Loc × 2Loc and
σ ∈ Σ, as follows:

– If o 6= ∅, thenδ′(〈s, o〉, σ) = {〈s′, o′ \ α〉 | o′ ⊆ s′, s′ |=
∧

ℓ∈s δ(ℓ, σ) and
o′ |=

∧

ℓ∈o δ(ℓ, σ)};

– If o = ∅, thenδ′(〈s, o〉, σ) = {〈s′, s′ \ α〉 | s′ |=
∧

ℓ∈s δ(ℓ, σ)}.

The size of the Miyano-Hayashi construction is exponentialin the size of the origi-
nal automaton.

Theorem 2 ([MH84]) For all ABWA, we haveL(MH(A)) = L(A).

The size of the automaton obtained after the Kupferman-Vardi and the Miyano-
Hayashi construction is an obstacle to the straight implementation of the method. In
Section 3, we propose a new approach that circumvents this problem.

Direct complementation In our solution, we implicitly use the two constructions to
complement Büchi automata but, as we will see, we do not construct the automata. For
the sake of clarity, we give below the specification of the automaton that would result
from the composition of the two constructions. In the definition of the state space, we
omit the states(ℓ, i) for ℓ ∈ α and i odd, as those states have no successor in the
Kupferman-Vardi construction.

Definition 3 Given a NBWA = 〈Loc, ι, Σ, δ, α〉 and an even numberk ∈ N, let
KVMH(A, k) = 〈Qk × Qk, qι, Σ, δ′, α′〉 be a NBW such that:

– Qk = 2(Loc×[k])\(α×N
odd) whereNodd is the set of odd natural numbers;

– qι = ({(ι, k)}, ∅);
– Let odd = Loc × [k]odd; δ′ is defined for alls, o ∈ Qk andσ ∈ Σ, as follows:

• If o 6= ∅, thenδ′(〈s, o〉, σ) is the set of pairs〈s′, o′ \ odd〉 such that:
(i) o′ ⊆ s′;

(ii) ∀(ℓ, n) ∈ s · ∀ℓ′ ∈ δ(ℓ, σ) · ∃(ℓ′, n′) ∈ s′ : n′ ≤ n;
(iii) ∀(ℓ, n) ∈ o · ∀ℓ′ ∈ δ(ℓ, σ) · ∃(ℓ′, n′) ∈ o′ : n′ ≤ n.
• If o = ∅, thenδ′(〈s, o〉, σ) is the set of pairs〈s′, s′ \ odd〉 such that:
∀(ℓ, n) ∈ s · ∀ℓ′ ∈ δ(ℓ, σ) · ∃(ℓ′, n′) ∈ s′ : n′ ≤ n.

– α′ = 2Loc×[k] × {∅};

We write〈s, o〉
σ
−→δ′ 〈s′, o′〉 to denote〈s′, o′〉 ∈ δ′(〈s, o〉, σ).

Theorem 4 ([KV97,MH84]) For all NBWA = 〈Loc, ι, Σ, δ, α〉, for all 0 ≤ k′ ≤ k,
we haveL(KVMH(A, k′)) ⊆ L(KVMH(A, k)) and fork = 2(|Loc| − |α|), we have
L(KVMH(A, k)) = Lc(A).

3 Simulation Pre-Orders and Fixed Points

Let A = 〈Loc, ι, Σ, δ, α〉 be a NBW. Let〈2Loc,⊆,∪,∩, ∅, Loc〉 be the powerset lattice
of locations. The fixed pointFA ≡ νy ·µx · (Pre

A(x)∪ (Pre
A(y)∩α)) can be used to

check emptiness ofA as we haveL(A) 6= ∅ iff ι ∈ FA.
Let�⊆ Loc × Loc be a pre-order and letℓ1 ≺ ℓ2 iff ℓ1 � ℓ2 andℓ2 6� ℓ1.

Definition 5 A pre-order� is asimulation3 for A iff the following properties hold:

– for all ℓ1, ℓ2, ℓ3 ∈ Loc, for all σ ∈ Σ, if ℓ3 � ℓ1 andℓ2 ∈ δ(ℓ1, σ) then there exists
ℓ4 ∈ Loc such thatℓ4 � ℓ2 andℓ4 ∈ δ(ℓ3, σ);

– for all ℓ ∈ α, for all ℓ′ ∈ Loc, if ℓ′ � ℓ thenℓ′ ∈ α.

A set L ⊆ Loc is �-closediff for all ℓ1, ℓ2 ∈ Loc, if ℓ1 � ℓ2 andℓ2 ∈ L then
ℓ1 ∈ L. The�-closureof L, is the set↓L = {ℓ ∈ Loc | ∃ℓ′ ∈ L : ℓ � ℓ′}. We
denote byMax(L) the set of�-maximal elements ofL: Max(L) = {ℓ ∈ L | ∄ℓ′ ∈ L :
ℓ ≺ ℓ′}. When the context is ambiguous, we sometimes write↓� andMax� with the
intended pre-order in subscript. For any�-closed setL ⊆ Loc, we haveL =↓Max(L).
Furthermore, if� is a partial order, thenMax(L) is an antichain of elements and it is
a canonical representation ofL. The following lemma states interesting properties of
�-closed sets of locations.

Lemma 6 For all NBWA = 〈Loc, ι, Σ, δ, α〉, for all simulations� for A, the follow-
ing properties hold:

1. for all �-closed setL ⊆ Loc, for all σ ∈ Σ, Pre
A
σ (L) is�-closed;

3 Several notions of simulation pre-orders have been defined for Büchi automata, see [EWS05]
for a survey.

2. for all �-closed setsL1, L2 ⊆ Loc, L1 ∪ L2 andL1 ∩ L2 are�-closed;
3. the setα is�-closed.

We can take advantage of Lemma 6 to compute the fixed pointFA more efficiently
in terms of space consumption and execution time. First, we represent�-closed sets by
their maximal elements. This way, the size of the sets is usually drastically reduced. As
we will see later, this can potentially save an exponential factor. Second, the union of�-
closed sets can be computed efficiently using this representation as we haveMax(L1 ∪
L2) = Max(Max(L1) ∪ Max(L2)). Third, we will see that the NBW that we have
to analyze in the automata-based approach to model-checking are all equipped with a
simulation pre-order that can be exploited to compute efficiently the intersection and
the predecessors of�-closed sets of locations.

Intuitively, when computing the sequence of approximations forFA, we can con-
centrate on maximal elements for a simulation pre-order as those locations are such
that if they have an accepting run inA, then all the locations that are smaller for the
pre-order also have an accepting run inA.

4 Emptiness of ABW

We now show how to apply Lemma 6 to check more efficiently the emptiness of ABW.
Let A1 = 〈Loc1, ι1, Σ, δ1, α1〉 be an ABW for which we want to decide whether
L(A1) = ∅. We know that the (exponential) Miyano-Hayashi construction gives a
NBW A2 = MH(A1) such thatL(A2) = L(A1). We show that the emptiness ofA1

(or equivalently ofA2) can be decided more efficiently by computing the fixed point
FA2

and without constructing explicitlyA2. To do so, we show that there exists a sim-
ulation forA2 for which we can compute∪, ∩ andPre by manipulating only maximal
elements of closed sets of locations.

Let MH(A1) = 〈Loc2, ι2, Σ, δ2, α2〉. Remember thatLoc2 = 2Loc1 × 2Loc1 . De-
fine the pre-order�alt⊆ Loc2 × Loc2 such that for all〈s, o〉, 〈s′, o′〉 ∈ Loc2, we
have〈s, o〉 �alt 〈s′, o′〉 iff (i) s ⊆ s′, (ii) o ⊆ o′, and (iii) o = ∅ iff o′ = ∅.
Note that this pre-order is a partial order. As a consequence, given a set of pairsL =
{〈s1, o1〉, 〈s2, o2〉, . . . , 〈sn, on〉}, the setMax(L) is an antichain and identifiesL.

Lemma 7 For all ABWA1, the partial order�alt is a simulation forMH(A1).

Proof. Let A1 = 〈Loc1, ι1, Σ, δ1, α1〉 andMH(A1) = 〈Loc2, ι2, Σ, δ2, α2〉. First, let
σ ∈ Σ and〈s1, o1〉, 〈s2, o2〉, 〈s3, o3〉 ∈ Loc2 be such that〈s3, o3〉 �alt 〈s1, o1〉 and
〈s1, o1〉

σ
−→δ2

〈s2, o2〉. We show that there exists〈s4, o4〉 ∈ Loc2 such that〈s3, o3〉
σ
−→δ2

〈s4, o4〉 and〈s4, o4〉 �alt 〈s3, o3〉. First, let us consider the case whereo1 = ∅. In this
case, we haveo3 = ∅ by definition of�alt andδ2(〈s1, o1〉, σ) = {〈s′, s′ \ α1〉 | s′ |=
∧

l∈s1
δ1(l, σ)}, this set being contained inδ2(〈s3, o3〉, σ) = {〈s′, s′ \ α1〉 | s′ |=

∧

l∈s3
δ1(l, σ)} ass3 puts less constraints thans1 sinces3 ⊆ s1. A similar reasoning

holds ifo1 6= ∅. Second, let〈s1, o1〉 ∈ α2 and let〈s2, o2〉 �alt 〈s1, o1〉. By definition of
α2, we know thato2 = ∅, and by definition of�alt we haveo2 = ∅ and so〈s2, o2〉 ∈ α2.

�

Algorithm 1: Algorithm for Prealt(·).

Data : An ABW A1 = 〈Loc1, ι1, Σ, δ1, α1〉, σ ∈ Σ and〈s′, o′〉 ∈ 2Loc1 × 2Loc1

such thato′ ⊆ s′.

Result : The�alt-antichainPre
alt

σ
(〈s′, o′〉).

begin
1 LPre ← ∅;
2 o← {ℓ ∈ Loc1 | o

′ ∪ (s′ ∩ α1) |= δ1(ℓ, σ)} ;
3 if o′ 6⊆ α1 ∨ o′ = ∅ then
4 LPre ← {〈o, ∅〉} ;

5 if o 6= ∅ then
6 s← {ℓ ∈ Loc1 | s

′ |= δ1(ℓ, σ)} ;
7 LPre ← LPre ∪ {〈s, o〉} ;

8 return LPre;
end

So, we know according to Lemma 6 that all the sets that we compute to evaluateFA2

are�alt-closed. So, we explain now how to compute intersections andpre-operations by
manipulating maximal elements only. Given〈s1, o1〉, 〈s2, o2〉, we can compute〈s, o〉
such that↓ 〈s, o〉 =↓ 〈s1, o1〉∩ ↓ 〈s2, o2〉 as follows. If o1 ∩ o2 6= ∅ then 〈s, o〉 =
〈s1 ∩ s2, o1 ∩ o2〉, and if o1 = o2 = ∅ then 〈s, o〉 = 〈s1 ∩ s2, ∅〉; otherwise the
intersection is empty. Algorithm 1 computes the predecessors of a�alt-closed set by
just manipulating its maximal elements. It runs in timeO(|Loc1| · ‖δ1‖) where‖δ1‖ is
the size of the transition relation, defined as the maximal number of boolean connectives
in a formulaδ1(ℓ, σ).

Theorem 8 Given an ABWA1 = 〈Loc1, ι1, Σ, δ1, α1〉, σ ∈ Σ and〈s′, o′〉 ∈ 2Loc1 ×
2Loc1 such thato′ ⊆ s′, the setLPre = Pre

alt

σ (〈s, o〉) computed by Algorithm 1 is an
�alt-antichain such that↓LPre = Pre

A2

σ (↓{〈s′, o′〉}) whereA2 = MH(A1).

Proof. Let A2 = MH(A1) = 〈Loc2, ι2, Σ, δ2, α2〉. We show that(1) LPre ⊆ Pre
A2

σ (↓
{〈s′, o′〉}) and(2) for all 〈s1, o1〉 ∈ Pre

A2

σ (↓{〈s′, o′〉}), there exists〈s, o〉 ∈ LPre such
that〈s1, o1〉 �alt 〈s, o〉. This entails that↓LPre = Pre

A2

σ (↓{〈s′, o′〉}).
To prove(1), we first show that〈s, o〉

σ
−→δ2

〈s′, o′〉 where〈s, o〉 is added toLPre at
line 7 of Algorithm 1. By the test of line 5, we haveo 6= ∅. According to the definition
of MH(·) (see Section 2), we have to check that there exists a seto′′ ⊆ s′ such that
o′ = o′′ \ α1 (we takeo′′ = o′ ∪ (s′ ∩ α1)), and the following conditions hold:

(i) s′ |=
∧

ℓ∈s δ1(ℓ, σ) since we haves′ |= δ1(ℓ, σ) for all ℓ ∈ s by line 6 of Alg. 1.

(ii) o′′ |=
∧

ℓ∈o δ1(ℓ, σ) since we haveo′′ |= δ1(ℓ, σ) for all ℓ ∈ o by line 2 of Alg. 1.

Second, we show that〈o, ∅〉
σ
−→δ2

〈s′′, o′′〉 for some〈s′′, o′′〉 �alt 〈s′, o′〉 where
〈o, ∅〉 is added toLPre at line 4 of Algorithm 1.

We takes′′ = o′ ∪ (s′ ∩ α1) ando′′ = s′′ \ α1. Sinceo′ ⊆ s′, we have(a) s′′ ⊆ s′,
and we have(b) o′′ = o′ \ α1 ⊆ o′. Let us establish that(c) o′ = ∅ iff o′′ = ∅. If
o′ = ∅ theno′′ = ∅ sinceo′′ ⊆ o′. If o′ 6= ∅ then by the test of line 3, we have

o′ 6⊆ α1 and thuso′′ 6= ∅. Hence we have〈s′′, o′′〉 �alt 〈s′, o′〉, and by line 2 of the
algorithm, we haves′′ |= δ1(ℓ, σ) for all ℓ ∈ o, and thuss′′ |=

∧

ℓ∈o δ1(ℓ, σ). Therefore

〈o, ∅〉
σ
−→δ2

〈s′′, o′′〉.
To prove(2), assume that there exist〈s1, o1〉 and〈s′1, o

′
1〉 such that〈s1, o1〉

σ
−→δ2

〈s′1, o
′
1〉 and〈s′1, o

′
1〉 �alt 〈s′, o′〉. We have to show that there exists〈s, o〉 ∈ LPre such

that〈s1, o1〉 �alt 〈s, o〉.
First, assume thato1 6= ∅. Since〈s1, o1〉

σ
−→δ2

〈s′1, o
′
1〉, we have:

(i) for all ℓ ∈ s1, s′1 |= δ1(ℓ, σ) and sinces′1 ⊆ s′ alsos′ |= δ1(ℓ, σ). Let s be the
set defined at line 6 of Algorithm 1. For allℓ ∈ Loc, if s′ |= δ1(ℓ, σ) thenℓ ∈ s.
Hence,s1 ⊆ s.

(ii) for all ℓ ∈ o1, o′′1 |= δ1(ℓ, σ) for someo′′1 ⊆ s′1 such thato′1 = o′′1 \ α1. Hence
necessarilyo′′1 ⊆ o′1 ∪ (s′1 ∩α1) ⊆ o′ ∪ (s′ ∩α1) and thus for allℓ ∈ o1, o′ ∪ (s′ ∩
α1) |= δ1(ℓ, σ). Leto be the set defined at line 2 of Algorithm 1. For allℓ ∈ Loc, if
o′ ∪ (s′ ∩ α1) |= δ1(ℓ, σ) thenℓ ∈ o. Hence,o1 ⊆ o ando 6= ∅.

Hemce,〈s, o〉 which is added toLPre by Alg. 1 at line 7 satisfies〈s1, o1〉 �alt 〈s, o〉.
Second, assume thato1 = ∅. Since〈s1, o1〉

σ
−→δ′ 〈s′1, o

′
1〉 ando1 = ∅, we know that

for all ℓ ∈ s1, s′1 |= δ1(ℓ, σ) ando′1 = s′1 \ α1. Let s′′ = o′ ∪ (s′ ∩ α1) so we have
(a) s′1 ∩ α1 ⊆ s′ ∩ α1 ⊆ s′′ and(b) s′1 \ α1 = o′1 ⊆ o′ ⊆ s′′. Hence,s′1 ⊆ s′′ and
thus for allℓ ∈ s1, s′′ |= δ1(ℓ, σ). Let o be the set defined at line 2 of Algorithm 1. For
all ℓ ∈ Loc, if s′′ |= δ1(ℓ, σ) thenℓ ∈ o. Hence,s1 ⊆ o and〈s1, ∅〉 �alt 〈o, ∅〉 where
〈o, ∅〉 is added toLPre by Algorithm 1 at line 4. Notice that the test at line 3 is satisfied
becauseo′1 = s′1 \α1 implies thato′1 6⊆ α1 ∨ o′1 = ∅ and since〈s′1, o

′
1〉 �alt 〈s′, o′〉, we

haveo′ 6⊆ α1 ∨ o′ = ∅. �

5 Universality of NBW

Given the NBWA = 〈Loc, ι, Σ, δ, α〉, we define the pre-order�univ⊆ (2Loc×N ×
2Loc×N)×(2Loc×N×2Loc×N) as follows: fors, s′, o, o′ ⊆ Loc×N, let〈s, o〉 �univ 〈s′, o′〉
iff the following conditions hold:

– for all (ℓ, n) ∈ s, there exists(ℓ, n′) ∈ s′ such thatn′ ≤ n;
– for all (ℓ, n) ∈ o, there exists(ℓ, n′) ∈ o′ such thatn′ ≤ n;
– o = ∅ iff o′ = ∅.

This relation formalizes the intuition that it is easier to accept a word inKVMH(A, k)
from a given location with a high rank than with a low rank. This is because the rank
is always decreasing along every path of the runs ofKV(A, k), and so a rank is always
simulated by a greater rank. Hence essentially the minimal rank ofs ando is relevant
to define the pre-order�univ. The third condition requires that accepting states are sim-
ulated by accepting states.

The relation�univ is a simulation for the NBWKVMH(A, k) (with state space
Qk × Qk) defined in Section 2.

Lemma 9 For all NBW A, for all even numbersk ∈ N, the restriction of�univ to
(Qk × Qk) × (Qk × Qk) is a simulation for the NBWKVMH(A, k) of Definition 3.

The proof of Lemma 9 is given in the appendix.
According to Lemma 6, all the intermediate sets that are computed by the fixed

pointFAc to check emptiness ofAc = KVMH(A, k) for k = 2(|Loc| − |α|) (and thus
universality ofA) are�univ-closed.

Before computing∪, ∩ andPre for �univ-closed sets, we make the following useful
observation. Given a sets ∈ Qk, define itscharacteristic functionfs : Loc → N∪{∞}
such thatfs(ℓ) = inf{n | (ℓ, n) ∈ s} with the usual convention thatinf ∅ = ∞.

Lemma 10 For all setss, s′, o, o′ ∈ Qk, if fs = fs′ andfo = fo′ , then〈s, o〉 �univ

〈s′, o′〉 and〈s′, o′〉 �univ 〈s, o〉.

Let f, g, f ′, g′ be characteristic functions. We writef ≤ f ′ iff for all ℓ ∈ Loc,
f(ℓ) ≤ f ′(ℓ) and we write〈f, g〉 ≤ 〈f ′, g′〉 iff f ≤ f ′ andg ≤ g′. Let max(f, f ′) be
the functionf ′′ such thatf ′′(ℓ) = max{f(ℓ), f ′(ℓ)} for all ℓ ∈ Loc. We writef∅ for the
function such thatf∅(ℓ) = ∞ for all ℓ ∈ Loc. Given an even numberk ∈ N, define the
set[[f]]k= {s ∈ Qk | fs = f} and the set[[〈f, g〉]]k= {〈s, o〉 | s ∈ [[f]]k∧o ∈ [[g]]k∧o ⊆
s}. Observe thatf ≤ f ′ iff [[f ′]]k⊆[[f]]k. We extend the operator[[·]]k to sets of pairs
of characteristic functions as expected. According to Lemma 10, the set[[〈f, g〉]]k is an
equivalence class for the equivalence relation induced by�univ, and a�univ-closed set
(as well as its�univ-maximal elements) is a union of equivalence classes, so it can be
equivalently seen as a union of pairs of characteristic functions.

Now, we show how to compute efficiently∪, ∩ andPre for �univ-closed sets that
are represented by characteristic functions. LetL1, L2 be two sets of pairs of char-
acteristic functions, letL∪ be the set of≤-minimal elements ofL1 ∪ L2, and let
L∩ = {〈max(fs, fs′), max(fo, fo′)〉 | 〈fs, fo〉 ∈ L1∧〈fs′ , fo′〉 ∈ L2∧max(fo, fo′) 6=
f∅} ∪ {〈max(fs, fs′), f∅〉 | 〈fs, f∅〉 ∈ L1 ∧ 〈fs′ , f∅〉 ∈ L2}. Then, we have[[L∪]]k=
Max(↓[[L1]]k ∪ ↓[[L2]]k) and[[L∩]]k= Max(↓[[L1]]k ∩ ↓[[L2]]k).

To computePreσ(·) of a single pair of characteristic functions, we propose Algo-
rithm 2 whose correctness is established by Theorem 11. Computing the predecessors
of a set of characteristic functions is then straightforward using the algorithm for union
of sets of pairs of characteristic functions since

Pre
KVMH(A,k)(L) =

⋃

σ∈Σ

⋃

ℓ∈L

Pre
KVMH(A,k)
σ (ℓ)

.

Theorem 11 Given a NBWA = 〈Loc, ι, Σ, δ, α〉, σ ∈ Σ, an even numberk, and a pair
of characteristic functions〈fs′ , fo′〉 such thatfs′ ≤ fo′ , the setLPre = Pre

univ

σ (〈fs′ , fo′〉)

computed by Algorithm 2 is such that↓ [[LPre]]k= Pre
KVMH(A,k)
σ (↓ [[〈fs′ , fo′〉]]k) and

∀〈fs, fo〉 ∈ LPre : fs ≤ fo.

The proof of Theorem 11 is given in the appendix. In Algorithm2, we represent
∞ by any number strictly greater thank, and we adapt the definition of≤ as follows:
f ≤ f ′ iff for all ℓ ∈ Loc, eitherf(ℓ) ≤ f ′(ℓ) or f ′(ℓ) > k. In the algorithm, we use
the notations⌈n⌉odd for the least odd numbern′ such thatn′ ≥ n, and⌈n⌉even for the
least even numbern′ such thatn′ ≥ n.

Algorithm 2: Algorithm for Pre
univ

σ (·).
Data : A NBW A = 〈Loc, ι, Σ, δ, α〉, σ ∈ Σ, an even numberk and a pair

〈f
s
′ , f

o
′〉 of characteristic functions.

Result : The setPre
univ

σ
(〈f

s
′ , f

o
′〉).

begin
1 foreach ℓ ∈ Loc do
2 fo(ℓ)← 0 ;
3 foreach ℓ′ ∈ δ(ℓ, σ) do
4 if ℓ′ ∈ α then fo(ℓ)← max{fo(ℓ), fo

′(ℓ′)} ;
5 elsefo(ℓ)← max{fo(ℓ), min{f

o
′(ℓ′), ⌈f

s
′ (ℓ′)⌉odd}} ;

6 if ℓ ∈ α then fo(ℓ)← ⌈fo(ℓ)⌉
even ;

7 LPre ← {〈fo, f∅〉} ;
8 if ∃ℓ : fo(ℓ) ≤ k (i.e.o 6= ∅) then
9 foreach ℓ ∈ Loc do

10 fs(ℓ)← max{f
s
′ (ℓ′) | ℓ′ ∈ δ(ℓ, σ)} ;

11 if ℓ ∈ α then fs(ℓ)← ⌈fs(ℓ)⌉
even ;

12 LPre ← LPre ∪ {〈fs, fo〉} ;

13 return LPre;
end

The structure of Algorithm 2 is similar to Algorithm 1, but the computations are
expressed in terms of characteristic functions, thus in terms of ranks. For example,
lines 4-5 compute the equivalent of line 2 in Algorithm 1, where α1 corresponds here
to the set of odd-ranked locations, and thus contains noα-nodes. Details are given
in the proof of Theorem 11. Algorithm 2 runs in timeO(|Loc|2), which is no more
computationally expensive than the classicalPre. However, there is often an exponential
factor between the number of elements in the argument ofPre in the two approaches.
For example, the setα′ = 2Loc×[k] × {∅} with an exponential number of elements is
represented by the unique pair〈fs, f∅〉 wherefs(ℓ) = 0 for all ℓ ∈ Loc, which makes
the new approach much more efficient in practice.

6 Implementation and Practical Evaluation

The randomized model To evaluate our new algorithm for universality of NBW
and compare with the existing implementations of the Kupferman-Vardi and Miyano-
Hayashi constructions, we use a random model to generate NBW. This model was
first proposed by Tabakov and Vardi to compare the efficiency of some algorithms
for automata in the context of finite words automata [TV05] and more recently in
the context of infinite words automata [Tab06]. In the model,the input alphabet is
fixed toΣ = {0, 1}, and for each letterσ ∈ Σ, a numberkσ of different state pairs
(ℓ, ℓ′) ∈ Loc × Loc are chosen uniformly at random before the corresponding transi-
tions(ℓ, σ, ℓ′) are added to the automaton. The ratiorσ = kσ

|Loc| is called thetransition
densityfor σ. This ratio represents the average outdegree of each state for σ. In all

Table 1. Automata size for which the median execution time for checking universality is less
than 20 seconds. The symbol∝ meansmore than 1500.

f
r 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.1 ∝ ∝ ∝ 550 200 120 60 40 30 40 50 50 70 90 100
0.3 ∝ ∝ ∝ 500 200 100 40 30 40 70 100 120 160 180 200
0.5 ∝ ∝ ∝ 500 200 120 60 60 90 120 120 120 140 260 500
0.7 ∝ ∝ ∝ 500 200 120 70 80 100 200 440 1000 ∝ ∝ ∝
0.9 ∝ ∝ ∝ 500 180 100 80 200 600 ∝ ∝ ∝ ∝ ∝ ∝

experiments, we chooser0 = r1, and denote the transition density byr. The model
contains a second parameter: thedensityf of accepting states. There is only one initial
state, and the numberm of accepting states is linear in the total number of states, as
determined byf = m

|Loc| . The accepting states themselves are chosen uniformly at ran-
dom. Observe that since the transition relation is not always total, automata withf = 1
are not necessarily universal.

Tabakov and Vardi have studied the space of parameter valuesfor this model and
argue that “interesting” automata are generated by the model as the two parametersr
andf vary. They also study the density of universal automata in [Tab06].

Performance comparisonWe have implemented our algorithm to check the universal-
ity of randomly generated NBW. The code is written inCwith an explicit representation
for characteristic functions, as arrays of integers. All the experiments are conducted on
a biprocessor Linux station (two3.06Ghz Intel Xeons with4GB of RAM).

Fig. 1 shows as a function ofr (transition density) andf (density of accepting
states) the median execution times for testing universality of 100 random automata
with |Loc| = 30. It shows that the universality test was the most difficult for r = 1.8
andf = 0.1 with a median time of11 seconds. The times forr ≤ 1 andr ≥ 2.8 are
not plotted because they were always less than250ms. A similar shape and maximal
median time is reported by Tabakov for automata of size6, that is for automata that are
five times smaller [Tab06]. Another previous work reports prohibitive execution times
for complementing NBW of size6, showing that explicitly constructing the complement
is not a reasonable approach [GKSV03].

To evaluate the scalability of our algorithm, we have ran thefollowing experiment.
For a set of parameter values, we have evaluated the maximal size of automata (mea-
sured in term of number of locations) for which our algorithmcould analyze50 over
100 instances in less than 20 seconds. We have tried automata sizes from10 to 1500,
with a fine granularity for small sizes (from10 to 100 with an increment of10, from
100 to 200 with an increment of20, and from200 to 500 with an increment of30) and
a rougher granularity for large sizes (from500 to 1000 with an increment of50, and
from 1000 to 1500 with an increment of100).

The results are shown in Fig. 2, and the corresponding valuesare given in Table 1.
The vertical scale is logarithmic. For example, forr = 2 andf = 0.5, our algorithm
was able to handle at least50 automata of size120 in less than 20 seconds and was not

Median Time (s)

12

8

4

0

f - acc
eptin

g densit
y

0.1

0.3

0.5

0.7

0.9
r - transition density

1.4
1.8

2.2
2.6

Median execution time

Fig. 1.Median time to check universality
of 100 automata of size30 for each
sample point.

Number of locations

100

1000

10000

f - accepting
density 0.1

0.3

0.5

0.7

0.9

r - transition density
0.2 0.6 1 1.4 1.8 2.2 2.6 3

∝

1200

800

400

0

Fig. 2. Automata size for which the
median execution time to check
universality is less than 20 sec-
onds (log scale).

able to do so for automata of size140. In comparison, Tabakov and Vardi have studied
the behavior of Kupferman-Vardi and Miyano-Hayashi constructions for different im-
plementation schemes. We compare with the performances of their symbolic approach
which is the most efficient. For the same parameter values (r = 2 andf = 0.5), they
report that their implementation can handle NBW with at most8 states in less than20
seconds [Tab06].

In Fig. 3, we show the median execution time to check universality for relatively
difficult instances (r = 2 andf vary from0.3 to 0.7). The vertical scale is logarithmic,
so the behavior is roughly exponential in the size of the automata. Similar analyzes are
reported in [Tab06] but for sizes below10.

Finally, we give in Fig. 4 the distribution of execution times for 100 automata of
size50 with r = 2.2 andf = 0.5, so that roughly half of the instances are universal.
Each point represents one automaton, and one point lies outside the figure with an exe-
cution time of675s for a non universal automaton. The existence of very few instances
that are very hard was often encountered in the experiments,and this is why we use the
median for the execution times. If we except this hard instance, Fig. 4 shows that uni-
versal automata (average time350ms) are slightly easier to analyze than non-universal
automata (average time490ms). This probably comes from the fact that we stop the
computation of the (greatest) fixed point whenever the initial state is no more�univ-less
than the successive approximations. Indeed, in such case, since the approximations are
�univ-decreasing, we know that the initial state would also not lie in the fixed point. Of
course, this optimization applies only for non-universal automata.

7 Language Inclusion for Büchi automata

LetA1 = 〈Loc1, ι1, Σ, δ1, α1〉 andA2 be two NBW defined on the same alphabetΣ for
which we want to check language inclusion:L(A1) ⊆? L(A2). To solve this problem,
we check emptiness ofL(A1)∩Lc(A2). As we have seen, we can use the Kupferman-
Vardi and Miyano-Hayashi construction to specify a NBWAc

2 = 〈Loc2, ι2, Σ, δ2, α2〉
that accepts the complement of the language ofA2.

r=2, f=0.7
r=2, f=0.5
r=2, f=0.3

Scalability analysis

Automata size

M
ed

ia
n

ex
ec

ut
io

n
tim

e
(s

)

1701601501401301201101009080706050403020100

100

10

1

0.1

0.01

Fig. 3. Median time to check univer-
sality (of100 automata for each
sample point).

Not Universal
Universal

f=2.2, r=0.5

Execution time (s)

10.10.01

Fig. 4. Execution time to check univer-
sality of 100 automata, 57 of
which were universal.

Using the classical product construction, letB be a finite automaton with set of
locationsLocB = Loc1 × Loc2, initial stateιB = (ι1, ι2), and tranition functionδB
such thatδB((ℓ1, ℓ2), σ) = δ1(ℓ1, σ) × δ2(ℓ2, σ). We equipB with the generalized
Büchi condition{β1, β2} = {α1 × Loc2, Loc1 × α2}, thus asking for a run ofB to
be accepting that it visitsβ1 andβ2 infinitely often. It is routine to show that we have
L(B) = L(A1) ∩ L(Ac

2). The following fixed point

F ′
B ≡ νy ·

(

µx1 ·
[

Pre
B(x1)∪ (Pre

B(y)∩ β1)
]

∩ µx2 ·
[

Pre
B(x2)∪ (Pre

B(y)∩ β2)
]

)

can be used to check emptiness ofB as we haveL(B) 6= ∅ iff ιB ∈ F ′
B. We now

define the pre-order�inc over the locations ofB: for all (ℓ1, ℓ2), (ℓ
′
1, ℓ

′
2) ∈ LocB, let

(ℓ1, ℓ2) �inc (ℓ′1, ℓ
′
2) iff ℓ1 = ℓ′1 andℓ2 �univ ℓ′2.

Lemma 12 The relation�inc is a simulation forB.

As a consequence of the last lemma, we know that all the sets that we have to
manipulate to solve the language inclusion problem using the fixed pointF ′

B are�inc-
closed. The operators∪, ∩ andPre can be thus computed efficiently, using the same
algorithms and data structures as for universality. In particular, let Pre

inc

σ (ℓ′1, ℓ
′
2) =

Pre
A1

σ (ℓ′1) × Pre
univ

σ (ℓ′2) wherePre
univ

σ is computed by Algorithm 2 (with inputA2). It
is easy to show as a corollary of Theorem 11 that↓Pre

inc

σ (ℓ′1, ℓ
′
2) = Pre

B
σ (↓{(ℓ′1, ℓ

′
2)}).

8 Conclusion

We have shown that the expensive complementation constructions for nondeterministic
Büchi automata can be avoided for solving classical problems like universality and lan-
guage inclusion. Our approach is based on fixed points computation and the existence
of simulation relations for the (exponential) constructions used in complementation of
Büchi automata. Those simulations are used to dramatically reduce the amount of com-
putations needed to decide classical problems. Their definition relies on the structure of
the original automaton and do not require explicit complementation.

The resulting algorithms evaluate a fixed point formula and avoid redundant compu-
tations by maintaining sets of maximal elements according to the simulation relation. In
practice, the computation of the predecessor operator, which is the key of the approach,
is efficient because it is done on antichain of elements only.Eventhough the classical
approaches (as well as ours) have the same worst case complexity, our prototype imple-
mentation outperforms those approaches where complementation is explicit. The huge
gap of performances holds over the entire parameter space ofthe randomized model
proposed by Tabakov and Vardi.

Applications of this paper go beyond universality and language inclusion for NBW,
as we have shown that the methodology applies to alternatingBüchi automata for which
efficient translations from LTL formula are known [GO01]. The hope rises then that
significant improvements can be brought to the model-checking problem of LTL.

References

[BL69] J. Richard Büchi and Lawrence H. Landweber. Definability in the monadic second-
order theory of successor.J. Symb. Log., 34(2):166–170, 1969.

[DDHR06] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new al-
gorithm for checking universality of finite automata. InProceedings of CAV 2006,
LNCS4144, pp. 17–30. Springer.

[EWS05] K. Etessami, T. Wilke, and R. A. Schuller. Fair simulation relations, parity games,
and state space reduction for bu”chi automata.SIAM J. Comput., 34(5):1159–1175,
2005.

[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing
nondeterministic büchi automata. InProc. of CHARME 2003, LNCS2860, pp. 96–
110. Springer.

[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. InProc. of CAV
2001, LNCS2102, pp. 53–65. Springer.

[KV97] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. In
Proceedings of ISTCS’97, pp. 147–158. IEEE Computer Society Press.

[MH84] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words.
In CAAP, pages 195–210, 1984.

[Mic88] Max Michel. Complementation is more difficult with automata on infinite words.
CNET, Paris, 1988.

[RH04] Theo C. Ruys and Gerard J. Holzmann. Advanced spin tutorial. In SPIN, LNCS
2989, pp. 304–305. Springer, 2004.

[Saf88] Shmuel Safra. On the complexity ofω-automata. InProc. of FOCS: Foundations of
Computer Science, pages 319–327. IEEE, 1988.

[SVW87] A. P. Sistla, M. Y. Vardi and P. Wolper. The Complementation Problem for Büchi
Automata with Applications to Temporal Logic.Th. Comp. Sci., 49:217–237, 1987.

[Tab06] D. Tabakov. Experimental evaluation of explicit and symbolic approaches to comple-
mentation of non-deterministic buechi automata.Talk at “Games and Verification”
workshop, Newton Institute for Math. Sciences. July 2006.

[TV05] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata con-
structions. InLPAR2005,LNCS3835, pp. 396–411. Springer.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (prelim. report). InLICS1986, pp. 332–344. IEEE.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf.
Comput., 115(1):1–37, 1994.

9 Appendix

Proof of Lemma 9.LetA = 〈Loc, ι, Σ, δ, α〉 andKVMH(A, k) = 〈Qk×Qk, qι, Σ, δ′, α′〉.
First, we show that for all〈s1, o1〉, 〈s2, o2〉, 〈s3, o3〉 ∈ Qk × Qk, for all σ ∈ Σ, if
〈s1, o1〉

σ
−→δ′ 〈s2, o2〉 and〈s3, o3〉 � 〈s1, o1〉 then〈s3, o3〉

σ
−→δ′ 〈s2, o2〉. Notice that

we have trivially〈s2, o2〉 �univ 〈s2, o2〉. We give the proof foro1 6= ∅. The caseo1 = ∅

is proven similarly. According to Definition 3, since〈s1, o1〉
σ
−→δ′ 〈s2, o2〉 we have(i)

∀(ℓ, n1) ∈ s1 · ∀ℓ′ ∈ δ(ℓ, σ) · ∃(ℓ′, n2) ∈ s2 : n2 ≤ n1 and(ii) ∀(ℓ, n1) ∈ o1 · ∀ℓ′ ∈
δ(ℓ, σ) · ∃(ℓ′, n2) ∈ o2 : n2 ≤ n1. Since〈s3, o3〉 � 〈s1, o1〉, we haveo3 6= ∅ and(i′)
∀(ℓ, n3) ∈ s3·∃(ℓ, n1) ∈ s1 : n1 ≤ n3 and(ii′) ∀(ℓ, n3) ∈ o3·∃(ℓ, n1) ∈ o1 : n1 ≤ n3.

Combining(i) and(i′) yields∀(ℓ, n3) ∈ s3 · ∀ℓ′ ∈ δ(ℓ, σ) · ∃(ℓ′, n2) ∈ s2 : n2 ≤
n1 ≤ n3, and combining(ii) and(ii′) yields∀(ℓ, n3) ∈ o3 · ∀ℓ′ ∈ δ(ℓ, σ) · ∃(ℓ′, n2) ∈

o2 : n2 ≤ n1 ≤ n3. Sinceo3 6= ∅, this implies that〈s3, o3〉
σ
−→δ′ 〈s2, o2〉.

Second, for all〈s, o〉 ∈ α′ we haveo = ∅, and thus for all〈s′, o′〉 ⊆ Loc × [k], if
〈s′, o′〉 � 〈s, o〉 theno′ = ∅ so that〈s′, o′〉 ∈ α′.

Hence�univ is a simulation forKVMH(A, k). �

Proof of Theorem 11.LetAc = KVMH(A, k) = 〈Qk × Qk, qι, Σ, δ′, α′〉.
We show that(1) [[LPre]]k⊆ Pre

Ac

σ (↓[[〈fs′ , fo′〉]]k) and(2) for all 〈s1, o1〉 ∈ Pre
Ac

σ (↓
[[〈fs′ , fo′〉]]k), there exists〈s, o〉 ∈[[LPre]]k such that〈s1, o1〉 �univ 〈s, o〉. This entails
that↓[[LPre]]k= Pre

Ac

σ (↓[[〈fs′ , fo′〉]]k).
We make the following preliminary remarks: if〈s, o〉

σ
−→δ′ 〈s′, o′〉, then for all

〈s1, o1〉 ∈[[〈fs, fo〉]]k, there exists〈s′1, o
′
1〉 ∈[[〈fs′ , fo′〉]]k such that〈s1, o1〉

σ
−→δ′ 〈s′1, o

′
1〉,

which we write 〈fs, fo〉
σ
−→δ′ 〈fs′ , fo′〉. Similarly, if 〈s, o〉 �univ 〈s′, o′〉, then for

all 〈s′1, o
′
1〉 ∈[[〈fs′ , fo′〉]]k we have〈s, o〉 �univ 〈s′1, o

′
1〉, which we write〈s, o〉 �univ

〈fs′ , fo′〉.
To prove(1), we first show that〈fs, fo〉

σ
−→δ′ 〈fs′ , fo′〉 for every pair〈fs, fo〉 added

to LPre at line 12. Moreover, we show thatfs ≤ fo. By the test of line 8, we have
[[fo]]k 6= {∅}. Let 〈s′, o′〉 ∈[[〈fs′ , fo′〉]]k (〈s′, o′〉 exists becausefs′ ≤ fo′). According to
the definition ofKVMH(A, k) (see Section 2), we have to check that there exists a set
o′′ ⊆ s′ such thato′ = o′′ \ odd (we takeo′′ = o′ ∪ (s′ ∩ odd)), and the following
conditions hold for all〈s, o〉 ∈[[〈fs, fo〉]]k:

(i) ∀(ℓ, n) ∈ s · ∀ℓ′ ∈ δ(ℓ, σ) · ∃n′ ≤ n : (ℓ′, n′) ∈ s′.
Observe that for allℓ ∈ Loc, for all ℓ′ ∈ δ(ℓ, σ), we havefs′(ℓ′) ≤ fs(ℓ)
(lines 10,11 of Algorithm 2). Sincefs(ℓ) ≤ n, we taken′ = fs′(ℓ′) and we have
n′ ≤ fs(ℓ) ≤ n with (ℓ′, n′) ∈ s′.

(ii) ∀(ℓ, n) ∈ o · ∀ℓ′ ∈ δ(ℓ, σ) · ∃n′ ≤ n : (ℓ′, n′) ∈ o′′.
Sinceo′′ = o′ ∪ (s′ ∩ odd), we havefo′′(ℓ′) = fo(ℓ

′) for ℓ′ ∈ α andfo′′(ℓ′) =
min{fo′(ℓ′), ⌈fs′(ℓ′)⌉odd} for ℓ′ 6∈ α. Now, for all ℓ ∈ Loc, for all ℓ′ ∈ δ(ℓ, σ),
we have eitherℓ′ ∈ α and thenfo(ℓ) ≥ n′ for n′ = fo′(ℓ′), or ℓ′ 6∈ α and then
fo(ℓ) ≥ n′ for n′ = min{fo′(ℓ′), ⌈fs′(ℓ′)⌉odd} (lines 4-6 of Algorithm 2). In both
cases, for(ℓ, n) ∈ o we havefo′′(ℓ′) ≤ n′ ≤ fo(ℓ) ≤ n and(ℓ′, n′) ∈ o′′.

Moreover, we prove that:

(iii) fs ≤ fo.
Sincefs′ ≤ fo′ , we have for allℓ ∈ Loc eitherfo′(ℓ) > k or fo′(ℓ) ≥ fs′(ℓ).
By lines 4-6 of Algorithm 2, we have for allℓ ∈ Loc, for all ℓ′ ∈ δ(ℓ, σ) either
fo(ℓ) ≥ fo′(ℓ′) or fo(ℓ) ≥ ⌈fs′(ℓ′)⌉odd, and thus eitherfo(ℓ) > k or fo(ℓ) ≥
fs′(ℓ′). Hence, we have for allℓ ∈ Loc eitherfo(ℓ) > k or fo(ℓ) ≥ max{fs′(ℓ′) |
ℓ′ ∈ δ(ℓ, σ)}. Therefore, by lines 10-11 of Algorithm 2, ifℓ 6∈ α, thenfo(ℓ) > k

or fo(ℓ) ≥ fs(ℓ), and ifℓ ∈ α, thenfo(ℓ) is even (line 6) and thus eitherfo(ℓ) > k

or fo(ℓ) ≥ ⌈max{fs′(ℓ′) | ℓ′ ∈ δ(ℓ, σ)}⌉even = fs(ℓ). In all cases,fs ≤ fo.
(iv) ∀ℓ ∈ α : fs(ℓ) andfo(ℓ) are even.

This is enforced by line 11 and line 6 of the algorithm.

Second, we show that for every pair〈fo, ∅〉 added toLPre at line 7, we have〈fo, ∅〉
σ
−→δ′

〈s′′, o′′〉 for some〈s′′, o′′〉 �univ 〈s′, o′〉 with 〈s′, o′〉 ∈[[〈fs′ , fo′〉]]k (〈s′, o′〉 exists be-
causefs′ ≤ fo′). We takes′′ = o′ ∪ (s′ ∩ odd) ando′′ = s′′ \ odd. Sinceo′ ⊆ s′,
we have(a) s′′ ⊆ s′, and we have(b) o′′ = o′ \ odd ⊆ o′. Moreover, ifo′ 6= ∅, then
(ℓ, k) ∈ o′ for someℓ ∈ Loc, and sincek is even,(ℓ, k) ∈ o′′ and thuso′′ 6= ∅. Since
o′′ ⊆ o′, we have(c) o′ 6= ∅ iff o′′ 6= ∅. Hence〈s′′, o′′〉 �univ 〈s′, o′〉. The fact that
〈fo, ∅〉

σ
−→δ′ 〈s′′, o′′〉 is proven similarly to(ii).

To prove(2), assume that there exist〈s1, o1〉 and〈s′1, o
′
1〉 such that〈s1, o1〉

σ
−→δ′

〈s′1, o
′
1〉 and〈s′1, o

′
1〉 ∈↓[[〈fs′ , fo′〉]]k. We have to show that there exists〈fs, fo〉 ∈ LPre

such that〈s1, o1〉 �univ 〈fs, fo〉.
First, assume thato1 6= ∅. Notice that since〈s′1, o

′
1〉 �univ 〈fs′ , fo′〉, we have for all

ℓ ∈ Loc eitherfs′

1
(ℓ) > k or fs′

1
(ℓ) ≥ fs′(ℓ), and eitherfo′

1
(ℓ) > k or fo′

1
(ℓ) ≥ fo′(ℓ).

Since〈s1, o1〉
σ
−→δ′ 〈s′1, o

′
1〉, we have:

(i) for all (ℓ, n1) ∈ s1, for all ℓ′ ∈ δ(ℓ, σ), n1 ≥ fs1
(ℓ) ≥ fs′

1
(ℓ′) and thus ei-

ther n1 ≥ k or n1 ≥ fs′(ℓ′). Hence, for allℓ ∈ Loc either fs1
(ℓ) > k or

fs1
(ℓ) ≥ max{fs′(ℓ′) | ℓ′ ∈ δ(ℓ, σ)} = fs(ℓ) (wherefs is computed by line 10 of

Algorithm 2). Thus,fs ≤ fs1
.

(ii) for all (ℓ, n2) ∈ o1, for all ℓ′ ∈ δ(ℓ, σ), n2 ≥≥ fo1
(ℓ) ≥ fo′′

1
(ℓ′) for some set

o′′1 such thato′′1 ⊆ s′1 ando′′1 \ odd = o′1. Hence necessarilyo′′1 ⊆ o′1 ∪ (s′1 ∩
odd) ⊆ o′ ∪ (s′ ∩ odd) and thusfo′′

1
≥ fo′∪(s′∩odd). Hence, for allℓ ∈ Loc either

fo1
(ℓ) > k or fo1

(ℓ) ≥ fo(ℓ) (wherefo is computed at lines 1-6 of Algorithm 2).
Thus,fo ≤ fo1

.

Hence,〈fs, fo〉 added toLPre by Algorithm 2 at line 12 satisfies〈s1, o1〉 �univ

〈fs, fo〉.
Second, assume thato1 = ∅. Let s′′ = o′ ∪ (s′ ∩ odd). Since〈s1, o1〉

σ
−→δ′ 〈s′1, o

′
1〉

ando1 = ∅, we haveo′1 = s′1 \ odd. Since〈s′1, o
′
1〉 �univ 〈fs′ , fo′〉, we have(a) s′1 ⊆ s′

and thuss′1 ∩ odd ⊆ s′ ∩ odd ⊆ s′′ and(b) o′1 = s′1 \ odd ⊆ o′ ⊆ s′′. Hences′1 ⊆ s′′

which is equivalent to say that for allℓ ∈ Loc eitherfs′

1
(ℓ) > k or fs′

1
(ℓ) ≥ fs′′(ℓ).

Now, by the fact that〈s1, o1〉
σ
−→δ′ 〈s′1, o

′
1〉, we know that for all(ℓ, n1) ∈ s1, for

all ℓ′ ∈ δ(ℓ, σ), n1 ≥ fs′

1
(ℓ′) and thus eithern1 ≥ k or n1 ≥ fs′′(ℓ′). Notice that

fo(ℓ) = max{fs′′(ℓ′) | ℓ′ ∈ δ(ℓ, σ)} wherefo is computed at lines 1-6 of Algorithm 2.
Thus, eithern1 ≥ k or n1 ≥ fo(ℓ) for all ℓ ∈ Loc and thereforefo ≤ fs1

so that
〈s1, ∅〉 �univ 〈fo, ∅〉 where〈fo, ∅〉 is added toLPre by Algorithm 2 at line 12. �

