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Abstract. We propose and evaluate new algorithms to support the atdema
based approach to model-checking: algorithms to solve tiversality and lan-
guage inclusion problems for nondeterministic Biichi endta. To obtain those
new algorithms, we establish the existence of pre-ordetsctiin be exploited to
efficiently evaluate fixed points on the automata definedndutihe complemen-
tation step (that we keep implicit in our approach). We eatduhe performance
of our new algorithm to check for universality of Buichi aotata experimentally
using the random automaton model recently proposed by oabakd Vardi.
We show that on the difficult instances of this probabilistiedel, our algorithm
outperforms the standard ones by several orders of magnifittds work is an
extension to the infinite words case of new algorithms forfthige words case
that we and co-authors have presented in a recent paper [DBHR

1 Introduction

In the automata-based approach to model-checking [VW8@&¥)\rograms and prop-
erties are modeled by finite automata. Udbe a finite automaton that models a program
and letB be a finite automaton that models a specification that theranoghould sat-
isfy: all the traces of the program (executions) should beds of the specification,
thatis£(A) C L(B). To solve the inclusion problem, the classical automag¢aithtic
solution consists in complementing the language of themaaton3 and then to check
thatL(A) N £¢(B) is empty (the later intersection being computed as a pryduct

In the finite case, the program and the specification are fanitemata over finite
words (NFA) and the construction for the complementatiocasceptually simple: it
is achieved by a classical subset construction. In the chs#inite words, the pro-
gram and (or at least) the specification are nondeterngriggichi automata (NBW).
The NBW are also complementable; this was first proved byhBirc the late six-
ties [BL69]. However, the result is much harder to obtaimthmathe case of NFA. The
orginal construction of Biichi has@(22" ) worst case complexity (whereis the size of
the automaton to complement) which is not optimal. In the éaghties Safra in [Saf88],
and later Kupferman and Vardi in [KV97], have given optimahgplementation pro-
cedures that hav@ (2" '°¢ ™) complexity (see [Mic88] for the lower bound). While for
finite words, the classical algorithm has been implementetishown practically us-
able, for infinite words, the theoretically optimal solutiis difficult to implement and
very poor results are known about their practical behaVioe actual attemps to imple-
ment them have shown very limited in the size of the speciinatthat can be handled:



automata with more than around ten states are intractabt®pGKSV03]. Such sizes
are clearly not sufficient in pratcice. As a consequencdstde SpiN [RHO4] that im-
plement the automata-theoretic approach to model-chgelsk either that the comple-
ment of the specification is explicitly given or they limitetlspecification to properties
that are expressible in LTL.

In this paper, we propose a new approach to ch&ck) C £(B) that can handle
much larger Biichi automata. In a recent paper, we have stimatithe classical subset
construction can be avoided and kept implicit for checkarggluage inclusion and lan-
guage universality for NFA and their alternating extensifidDHRO6]. Here, we adapt
and extend that technique to the more intricate automatafanite words.

To present the intuition behind our new techniques, let nsicter a simpler setting
of the problem. Assume that we are given a NB¥\and we want to check i~ C
L(B), that is to check if£(B) is universal. First, remember that B) is universal
when £¢(B) is empty. The classical algorithm first complemeBt@nd then checks
for emptiness. The language of a NBW is nonempty if theretexa infinite run of
the automaton that visits accepting locations infinitelteof The existence of such
a run can be established in polynomial time by computing tllewing fixed point
F = vy - px - (Pre(z) U (Pre(y) N «)) wherePre is the predecessor operator of the
automaton (given a sdt of locations it returns the set of locations that can reacéh
one step) andv is the set of accepting locations of the automaton. The aatimmis
non-empty if and only if its initial location is a member oktfixed pointF. This well-
known algorithm is quadratic in the size of the automatorfodnnately, the automaton
that accepts the languagé(B) is usally huge and the evaluation of the fixed point is
unfeasable for all but the smallest specificatidghsTo overcome this difficulty, we
make the following observation: ik is a simulationpre-order on the locations @3
(¢1 = £2 meand; can simulatés) which is compatible with the accepting condition (if
{1 =< fy andl; € athent; € ), then the sets that are computed during the evaluation
of F are all<-closed(if an element is in the set then alt’ < ¢ are also in the set).
Then=-closed sets can be represented by themaximal elements and if operations
on such sets can be computed directly on their representat® have the ingredients
to evaluate the fixed point in a more efficient way. For an aattom/3 over finite words,
set inclusion would be a typical example of a simulationtietafor 3¢ [DDHRO06].

We show that the classical constructions for Blichi autantlaat are used in the
automata-theoretic approach to model-checking are alppgd with a simulation pre-
order that exists by construction and does not need to be wigtpOn that basis we
propose new algorithms to check universality of NBW, larggianclusion for NBW,
and emptiness of alternating Biichi automata (ABW).

We evaluate an implementation of our new algorithm for thivensality problem
of NBW and on a randomized model recently proposed by TabakalVardi. We
show that the performance of the new algorithm on this raridedmodel outperforms
by several order of magnitude the existing implementatiminthe Kupferman-Vardi
algorithm [Tab06,GKSV03]. When the classical solutioninsifed to automata of size
8 for some parameter values of the randomized model, we é&#d@bandle automata
with more than one hundred locations for the same paramaliges. We have identified
the hardest instances of the randomized model for our @fgosiand show that we can
still handle problems with several dozens of locationsliaise instances.



Structure of the paperin Section 2, we recall the Vardi-Kupferman and Miyano-
Hayashi constructions that are used for complementatiddBiV. In Section 3, we
recall the notion of simulation pre-order for a Biichi autdon and prove that the fixed
point needed to establish emptiness of nondeterministehBautomata handles only
closed sets for such pre-orders. We use this observatiopdtiod 4 to define a new
algorithm to decide emptiness of ABW. In Section 5, we adhpttechnique for the
universality problem of NBW. In Section 6, we report on thefpemances of the new
algorithm for universality. In Section 7, we extend thosesisito obtain a new algorithm
for language inclusion of NBW. Section 8 concludes the paper

2 Buchi Automata and Classical Algorithms

An alternating Bichi automatorfABW) is a tupleA = (Loc, ¢, 7, 4, o) where:

— Loc is a finite set of states (or locations). Téieeof A is |A| = |Loc|;

— ¢ € Locis theinitial state;

— XYis afinitealphabet

— 0§ : Loc x X — BT (Loc) is thetransition functionwhere 3" (Loc) is the set of
positive boolean formulas ovéroc, i.e. formulas built from elements ihoc U
{true, false} using the boolean connectivesandv;

— « C Loc is the acceptance condition.

We say that a sek C Loc satisfiesa formulay € B™(Loc) (notedX £ o) iff
the truth assignment that assigtise to the members oX and assigngalse to the
members of oc\ X satisfiesy.

A run of A on an infinite wordw = 0 - 07 ... iIsabAaG T, = (V,v,, —) where:

— V = Loc x Nis the set of nodes. A nodé, ) represents the stateafter the first
letters of the wordv have been read byl. Nodes of the fornt/, i) with ¢ € « are
calleda-nodes

— v, = (1,0) is the root of theDAG;

—and— C V x Vissuchthat 4) if (¢,i) — (¢',4') theni’ = i+ 1 and §:) for every
(¢,3) e V,theset{¢' | (¢,i) — (¢',i+ 1)} satisfies the formula(¢, o;).

We say that?’,i + 1) is asuccessoof (¢,1) if (¢,i) — (¢',i+ 1), and we say that
(¢',i") isreachablefrom (¢,4) if (¢,7) —* (¢',4).

ArunT, = (V,v,,—) of A on an infinite wordw is acceptingff all its infinite paths

7 rooted at, (thusw € Loc®) visit a-nodes infinitely often. An infinite word) € X%

is acceptedby A iff there exists an accepting run on it. We denotefiyd) the set
of infinite words accepted byl, and by£¢(.A) the set of infinite words that are not
accepted byA.

A nondeterministic Bchi automaton(NBW) is an ABW whose transition func-
tion is restricted to disjunctions ovepc. Runs of NBW reduce to (linear) traces. The
transition function of NBW is often seen as a functighx ~ — 2] and we write
6(0,0) ={ly,...,0,} instead 0B (£,0) = {1V L5V - - -V £,,. We note byPreZ* (L) the
set of predecessors byof the setL: Pre2 (L) = {¢ € Loc | 3’ € L : {' € §(¢,0)}.
LetPre(L) = {¢ € Loc | 3o € X : £ € Pre2(L)}.



Problems The emptiness problerfor NBW is to decide, given an NBWA, whether
L(A) = (. This problem is solvable in polynomial time. The symboljgpeoach
through fixed point computation is quadratic in the sizedof

Theuniversality problenfor NBW is to decide, given an NBW over the alphabet
X whetherL(A) = X* whereX* is the set of all infinite words o&'. This problem
is PSAce-complete [SVW87]. The classical algorithm to decide ursedity is to first
complement the NBW and then to check emptiness of the conguierfihe difficult
step is the complementation as it may cause an exponerdiaigh in the size of the
automaton. There exists two types of construction, one sed@n a determinization
of the automaton [Saf88] and the other uses ABW as an intaéateestep [KV97]. We
review the second construction below.

Thelanguage inclusion problerfor NBW is to decide, given two NBWA and 5,
whetherL(.A) C £(B). This problem is central in model-checking and it iSFRSE-
complete. The classical solution consists in checking thptmess ofL(.A4) N L¢(B),
which again requires the expensive complementatidf. of

Theemptiness probleifior ABW is to decide, given an ABWA, whetherZ(A) = 0.
This problem is also PE\cE-complete and it can be solved using a translation from
ABW to NBW that preserves the language of the automaton [MH&4dain, this con-
struction involves an exponential blow-up that makes glaimplementations feasi-
ble only for automata limited to around ten states. Howaheremptiness problem for
ABW is very important in practice for LTL model-checking &gte exist efficient poly-
nomial translations from LTL formulas to ABW [GOO01]. The sfcal construction is
presented below.

Kupferman-Vardi construction Complementation of ABW is straightforward by du-
alizing the transition function (by swappingandV, and swappingrue andfalse in
each formulas) and interpreting the accepting conditi@s a co-Buchi condition,e.
arunTy, is accepted if all its infinite paths have a suffix that cordaina-nodes.

The result is an alternating co-Buichi automaton (ACW). Heeepting runs of
ACW have a layered structure that has been studied in [KM@HEre the notion of
ranksis defined. The rank is a positive number associated to ead afca runi;, of
an ACW on a wordv. LetGy = T,,. Nodes of rank are those nodes from which only
finitely many nodes are reachableGfy. Let G, be the rurl’,, from which all nodes of
rank0 have been removed. Then, nodes of ramke those nodes @f; from which no
«a-node is reachable i6¥;. For: > 1, let G; be the the rul’,, from which all nodes
of rank0,...,i — 1 have been removed. Then, nodes of rahre those nodes @f,;
from which only finitely many nodes are reachabl&dp;, and nodes of ranRki + 1
are those nodes @f-;; from which noa-node is reachable i&'s; ;. Intuitively, the
rank of a nodé/, ¢) hints how difficult it is to prove that all the paths @f, that start in
(¢, 1) visit a-nodes only finitely many times. It can be shown that everyertas a rank
betweerD and2(|Loc| — |a), and alla-nodes have an even rank [GKSVO03].

The layered structure of the runs of ACW induces a constradid complement
ABW [KV97]. We present this construction directly for NBW.ién a NBW A =
(Loc,t, X, 8, a) and an even numbér € N, letKV(A, k) = (Loc’,/, X,d', /) be an
ABW such that:



— Loc’ = Loc x [k] where[k] = {0,1,. .., k}. Intuitively, the automatoKV (A, k) is
in state(¢, n) after the first letters of the input word» have been read if it guesses
that the rank of the nodg, ) in a run of. A onw is at mostn;

-= (L7 IC),

- 0'((¢,1),0) = falseif ¢ € candi is odd, and otherwis&((¢,4),0) = \/, -, ({1,7)A
Virci(la, 'Y N ANy (U, 7) i 6(€,0) = €1 V lo V -+ -V £,,; For example, if
5(l,0) = £1Viythend ((¢,2),0) = ((£1,2)V (£1,1)V (£1,0))A((l2,2)V (b2,1)V
(£2,0)).

— o = Loc x [k]°% where[k]°? is the set of odd numbers jk].

The ABW that the Kupferman-Vardi construction specifiesegats the complement
language and its size is quadratic in the size of the originedmaton.

Theorem 1 ([KV97]) Forall NBWA = (Loc,:, X, d, ), forall 0 < &k’ < k, we have
LKV(A,E)) C L(KV(A,k)) and fork = 2(|Loc| — |al), we havel(KV (A, k)) =
LE(A).

Miyano-Hayashi construction Classically, to check emptiness of ABW, a variant of
the subset construction is applied that transforms the AB\&a NBW that accepts the
same language [MH84]. Intuitively, the NBW maintains a seff states of the ABW
that corresponds to a whole level of a guessedoaa of the ABW. In addition, the
NBW maintains a seat of states that “owe” a visit to an accepting state. Whendwer t
seto gets empty, meaning that every path of the guessed run hiéexivég least one
accepting state, the sets initiated with the current level of the guessed run. ltskexl
thato gets empty infinitely often in order to ensure that every ditine runbAG visits
accepting states infinitely often. The construction is dis\ics.

Givenan ABWA = (Loc, , ¥, 4, a), letMH(A) = (2tecx2tec ({1}, 0), X, o)
be a NBW wherey' = 2°¢ x {()} and¢’ is defined, for all(s, 0) € 2-°¢ x 2L°¢ and
o € X, as follows:

—If o # 0, thend'((s,0),0) = {(s',0' \a) | o C &,s = N, 0(¢,0)and
o' = Neeo 6(4,0) 1
— If o=10,thend’((s,0),0) = {(s', 8" \ @) | s' = Ny, 0(¢,0)}.

The size of the Miyano-Hayashi construction is exponeiitthe size of the origi-
nal automaton.

Theorem 2 ([MH84]) For all ABW A, we haveL(MH(A)) = L(A).

The size of the automaton obtained after the Kupfermani\é&rd the Miyano-
Hayashi construction is an obstacle to the straight impteat®n of the method. In
Section 3, we propose a new approach that circumvents tbiggm.

Direct complementation In our solution, we implicitly use the two constructions to
complement Biichi automata but, as we will see, we do nottoectgshe automata. For
the sake of clarity, we give below the specification of theoendton that would result
from the composition of the two constructions. In the defimitof the state space, we
omit the stateg?,q) for ¢ € « andi odd, as those states have no successor in the
Kupferman-Vardi construction.



Definition 3 Given a NBW.A = (Loc,t, X, J,a) and an even numbér € N, let
KVMH(A, k) = (Qk X Qk,q., X, , ') be a NBW such that:

— Qy, = 2(Locx[KD\(axN""") \yhereNedd js the set of odd natural numbers;
-4, = ({(La k)}7®)1
— Letodd = Loc x [k]°??; §' is defined for alls, o € Q;, ando € X, as follows:
e If 0 # 0, thend’((s, o), o) is the set of pairgs’, o’ \ odd) such that:
(1) o C¢;
(i7) Y(t,n) € s-Vl' €6
(i4i) Y(l,n) € 0o-Vl' €6
e If o =0, thend ((s,0),c
V(l,n)es- V' edll,o
— o = 2Loc><[k] % {@},

)3, n)es in <m;

,o)-3(W n')eod :n <n.

is the set of pairgs’, s’ \ odd) such that:
3, ') es in <n.

2
l

=

g
g

~—

We write (s, 0) Z+5 (s, 0') to denote(s’, o) € §'((s,0), 7).

Theorem 4 ([KV97,MH84]) For all NBW A = (Loc,¢, X, 4, ), forall 0 < k' < k,
we havel(KVMH(A, k")) € L(KVMH(A, k)) and fork = 2(|Loc| — |a|), we have
LKVMH(A, k)) = L(A).

3 Simulation Pre-Orders and Fixed Points

Let A = (Loc,, ¥, 6, a) be a NBW. Let(2'°¢, C. U, N, (), Loc) be the powerset lattice
of locations. The fixed poinE 4 = vy - ux - (Pre™(z) U (Pre(y) N ) can be used to
check emptiness ofl as we havel(A) # 0 iff « € F.a.

Let <C Loc x Loc be a pre-order and lé{ < /5 iff {1 < {5 andly A 4;.

Definition 5 A pre-order< is asimulatior? for A iff the following properties hold:

— forall ¢1,45,¢5 € Loc, forallo € X, if {3 < ¢; andly € §(¢1,0) then there exists
¢4 € Loc such thaty < ¢ and?y € (43, 0);
—forall/ € o, forall ¢/ € Loc, if ¢/ < ¢thent ¢ a.

A set L C Loc is <-closediff for all ¢1,¢5 € Loc, if {1 < ¢5 and?¢s € L then
0y € L. The=-closureof L, istheset| L = {¢ € Loc | 3¢’ € L : £ <X I'}. We
denote byMax(L) the set of<-maximal elements of.: Max(L) = {¢ € L | /' € L :
¢ < {'}. When the context is ambiguous, we sometimes writeandMax< with the
intended pre-order in subscript. For afyclosed sef. C Loc, we havel =|Max(L).
Furthermore, if< is a partial order, theMax(L) is an antichain of elements and it is
a canonical representation 6f The following lemma states interesting properties of
=<-closed sets of locations.

Lemma 6 For all NBW A = (Loc, ¢, X, 0, «), for all simulations= for A4, the follow-
ing properties hold:

1. for all <-closed sef. C Loc, forall o € X, PreZ}(L) is <-closed;

% Several notions of simulation pre-orders have been defimeBiichi automata, see [EWS05]
for a survey.



2. for all <-closed setd.q, Ly C Loc, L1 U Ly and L1 N L, are <-closed,;
3. the sety is <-closed.

We can take advantage of Lemma 6 to compute the fixed Foininore efficiently
in terms of space consumption and execution time. Firstepeasent-closed sets by
their maximal elements. This way, the size of the sets isllysdiastically reduced. As
we will see later, this can potentially save an exponerdigtidr. Second, the union ef-
closed sets can be computed efficiently using this reprasentas we hav®lax(L; U
Ly) = Max(Max(L;) U Max(Lz)). Third, we will see that the NBW that we have
to analyze in the automata-based approach to model-clgeakénall equipped with a
simulation pre-order that can be exploited to compute effity the intersection and
the predecessors ef-closed sets of locations.

Intuitively, when computing the sequence of approximagitor F 4, we can con-
centrate on maximal elements for a simulation pre-ordehaset locations are such
that if they have an accepting run i, then all the locations that are smaller for the
pre-order also have an accepting rundn

4 Emptiness of ABW

We now show how to apply Lemma 6 to check more efficiently thptamss of ABW.

Let A, = (Locy,t1,X,d1,1) be an ABW for which we want to decide whether
L(A1) = 0. We know that the (exponential) Miyano-Hayashi constarctjives a
NBW A; = MH(A,) such thatC(As) = £(A;). We show that the emptiness 4f

(or equivalently of4,) can be decided more efficiently by computing the fixed point
F 4, and without constructing explicitlyl,. To do so, we show that there exists a sim-
ulation for .45 for which we can compute, N andPre by manipulating only maximal
elements of closed sets of locations.

Let MH(A;) = (Loca, 12, X, 02, a2). Remember thatoc, = 2L°% x 2Loct, De-
fine the pre-order<,;C Locy x Locy such that for all(s, o), (s’,0’) € Locy, we
have (s,0) <. (s',0) iff (i) s C &, (ii) o C o, and (iii) o = 0 iff o/ = 0.
Note that this pre-order is a partial order. As a consequeagieen a set of paird, =
{(s1,01), ($2,02), ..., (Sn,0n)}, the seMax(L) is an antichain and identifigs.

Lemma 7 For all ABW A, the partial order=,; is a simulation folMH(.A;).

Proof. Let A; = (Locy,t1, X, 01, 1) andMH(A;) = (Loca, 1o, X, 02, aa). First, let
o € X and(s1,01), (s2,02), (s3,03) € Loce be such thatss, 03) <. (s1,01) and
(51,01) Z25, (s2,02). We show that there exists,, 04) € Locy suchthatss, 03) 2,
(s4,04) and(sy, 04) =<ar (s3,03). First, let us consider the case whete= (. In this
case, we have; = ) by definition of <, andda({s1,01),0) = {(s',s' \a1) | ' E
Nies, 01(1,0)}, this set being contained by ((s3,03),0) = {(s',s' \ a1) | s’ =

less 01(l,0)} asss puts less constraints than sincess C s;. A similar reasoning
holds ifo; # 0. Second, lets, 01) € as and let(sz, 02) =<ak (s1,01). By definition of
as, we know thab, = (3, and by definition o<, we haven, = () and so(s2, 02) € as.
|



Algorithm 1: Algorithm for Pre.(-).

Data :An ABW A; = (Loci, i1, X,61,a1), 0 € X and(s’, o) € 25t x 2t
such thab’ C 5.

Result : The=,s-antichainPre2*((s’, 0')).

begin
1 Lpe — 0;
2 o« {leloci|dU(sNa1) Ed(lo)};
3 if o' Z a1 Vo =0 then
4 L Lere — {(0, D)} ;
5 if o # 0 then
6 s«—{leloci|s E&no)};
7 L Lpre — Lpe U {(S, O>} X
8 return Lpre;
end

So, we know according to Lemma 6 that all the sets that we ctanpevaluate- 4,
are=,-closed. So, we explain now how to compute intersectiongpagaperations by
manipulating maximal elements only. Givés, 01), (s2, 02), we can computés, o)
such that| (s,0) =] (s1,01)N | (s2,02) as follows. Ifo; N o2 # 0 then(s,o) =
(s1 N s2,01 Nog), and ifo; = 0o = () then(s,0) = (s1 N s2,0); otherwise the
intersection is empty. Algorithm 1 computes the predeasssba <,;.-closed set by
just manipulating its maximal elements. It runs in ti@éLoc; | - ||61]|) where||d; ]| is
the size of the transition relation, defined as the maximailmer of boolean connectives
in a formulad; (¢, o).

Theorem 8 Given an ABV\L41 = (Locy, 1, X,01, 1), 0 € X and (s, o') € 2tocr x
2tect gych thato’ C s/, the setLpre = Prea't(<s o)) computed by Algorithm 1 is an
=<ae-antichain such that Lp,. = Pre 2([{(s’,0")}) whereAds = MH(A;).

Proof. Let Ay = MH(A;) = <LOC2,L2,E 52,a2 We show that1) Lp,. C PreZ?(|
{(s',0')}) and(2) for all (s;,01) € Pre22(|{(s', 0’ }2 there eXIStS{s 0) € Lpr such
that(si,01) =<ai (s,0). This entails thatLp,e = Pre; 2 ([{(s,0)

To prove(1), we first show thats, o) 25, (s',0') where<s, o> is added talp,. at
line 7 of Algorithm 1. By the test of line 5, we hawe# (). According to the definition
of MH(-) (see Section 2), we have to check that there exists a’s€t s’ such that

o' =0"\ oy (we takeo” = o' U (s’ N «1)), and the following conditions hold:
(i) 8" = Nyes 01(¢, o) since we have’ |= §1(¢,0) forall £ € s by line 6 of Alg. 1.
(i) o" = N, 01(¢,0) since we have” |= 6, (¢, o) for all £ € o by line 2 of Alg. 1.

Second, we show thdb, ) %5, (s”,0") for some(s”,0") <. (s',0') where
(0,0) is added talp,. at line 4 of Algorithm 1.

We takes” = o’ U (s’ Nay) ando” = s” \ ay. Sinceo’ C s’, we have(a) s” C ¢,
and we haved) o” = o' \ a3 C ¢'. Let us establish thak) o' = 0 iff o’ = 0. If

= () theno” = () sinceo” C o'. If o’ # 0 then by the test of line 3, we have



o' € «a; and thuso” # (). Hence we havés”, o”) =<, (s’,0’), and by line 2 of the
algorithm, we have” |= 6, (¢, o) forall £ € o, and thus” |= A\ .., 61 (¢, o). Therefore
(0,0) =, (s, 0").

To prove(2), assume that there exigt;, o;) and (s}, 0}) such that(s;,01) 5,
(sh,0)) and(s}, o)) =ar (s',0’). We have to show that there exigtso) € Lp Such
that(si,01) <ai (s,0).

First, assume that, # (). Since(s1,01) 25, (s},0,), we have:

(i) forall £ € s1, ] = 61(¢,0) and sinces| C ¢’ alsos’ = 01(4,0). Lets be the
set defined at line 6 of Algorithm 1. For dll€ Loc, if s |= 61(¢,0) then? € s.
Hence,s; C s.

(i7) forall £ € oy, of | 61(£,0) for someo! C s} such that] = of \ a1. Hence
necessarily; C o] U (s) Nay) C o' U (s’ Naq) andthusforall € 01,0 U(s' N
a1) = 01(¢,0). Leto be the set defined at line 2 of Algorithm 1. For &l Loc, if
o' U(s'Naq) E 61(¢,0) thenl € o. Hencep; C o ando # ().

Hemce,(s, o) which is added td.p. by Alg. 1 at line 7 satisfiegsy, 01) <.k (s, 0).
Second, assume that = (). Since(s1,01) s (s}, 0;) ando; = ), we know that
forall ¢ € s1, s} E 01(¢,0) ando] = s} \ a;. Lets” = o' U (s’ N ay) so we have
(@) siNa; € s'Nag Cs"and(b) s§ \ a1 =0f Co C s” Hences; C s” and
thus for all? € s1, s” = 01(¢, 0). Leto be the set defined at line 2 of Algorithm 1. For
all ¢ € Loc, if s = 01(¢,0) then? € o. Hence,s; C o and(sy, ) =<.i (o, 0) where
(0, 0) is added tdLp,. by Algorithm 1 at line 4. Notice that the test at line 3 is Sitid
because) = s/ \ «; implies thato] Z «; vV o} = 0 and sincgs, o)) <ai (s',0"), we
haveo’ € a1 Vo' = 0. ]

5 Universality of NBW

Given the NBWA = (Loc,t, ¥, 4, a), we define the pre-ordex,,,C (20N x
gLoex Ny 5 (gLoexN y gloexNy gs follows: fors, s’, 0,0’ C Locx N, let (s, 0) <univ (s, 0)
iff the following conditions hold:

— forall (¢,n) € s, there existg/,n') € s’ such that’ < n;
— forall (¢,n) € o, there exist§/,n') € o’ such that' < n;
—o=0iff o/ = 0.

This relation formalizes the intuition that it is easier tewapt a word ik VMH (A, k)
from a given location with a high rank than with a low rank. 38 because the rank
is always decreasing along every path of the runs\fA, k), and so a rank is always
simulated by a greater rank. Hence essentially the miniarét of s ando is relevant
to define the pre-ordex,,;,. The third condition requires that accepting states are sim
ulated by accepting states.

The relation=,,, is a simulation for the NBWKVMH(A, k) (with state space
Qr x Q) defined in Section 2.

Lemma 9 For all NBW A, for all even numberg € N, the restriction of<,,, to
(Qr x Qr) x (Q x Q) is a simulation for the NBVKVMH( A, k) of Definition 3.



The proof of Lemma 9 is given in the appendix.

According to Lemma 6, all the intermediate sets that are aaetpby the fixed
point F 4. to check emptiness ol = KVMH(A, k) for k = 2(|Loc| — |«|) (and thus
universality of.A) are=<n,-closed.

Before computingJ, N andPre for <,,i,-closed sets, we make the following useful
observation. Given a sete ), define itscharacteristic functiory, : Loc — NU{oo}
such thatfs(¢) = inf{n | (¢,n) € s} with the usual convention thatf (§ = co.

Lemma 10 For all setss, s’,0,0" € Qy, if fs = fs and f, = fo, then(s,0) <unv
(s',0"y and(s’,0) Zuniv (5,0).

Let f,g, f', ¢ be characteristic functions. We wrife < f’ iff for all ¢ € Loc,
F0) < f'(¢) and we write(f, g) < (f',¢") iff f < f andg < ¢'. Letmax(f, ') be
the functionf” such thatf” (¢) = max{f(¢), f’(¢)} forall £ € Loc. We write f; for the
function such thafy(¢) = oo for all £ € Loc. Given an even numbér € N, define the
set[flk={s € Qr | fs = f} andthe sel(f, g)]x= {(s,0) | s €[] No € [g]xNo C
s}. Observe thayf < fiff [f'].<[f]r. We extend the operatdr]; to sets of pairs
of characteristic functions as expected. According to Leni®, the sef(f, g)]x is an
equivalence class for the equivalence relation induceg hy,, and a=<,,;,-closed set
(as well as its<,,;,-maximal elements) is a union of equivalence classes, smibe
equivalently seen as a union of pairs of characteristictfans.

Now, we show how to compute efficiently, N andPre for <,,;,-closed sets that
are represented by characteristic functions. LetL, be two sets of pairs of char-
acteristic functions, letl, be the set of<-minimal elements ofl.; U L,, and let
L = {{max(fs, fs), max(fo, for)) | {fs, fo) € LiN(fs, for) € LaAmax(fo, for) #
fo} U {(max(fs, fs), fo) | (fs: fo) € L1 A (fs, fo) € La}. Then, we havgL,],=
Max(i[[Ll]]k @] l[[LQ]]k) and[[Lm]]k: Max(l[[Ll]]k n l[[LQ]]k)

To computePre, (-) of a single pair of characteristic functions, we proposecAlg
rithm 2 whose correctness is established by Theorem 11. Gomgpthe predecessors
of a set of characteristic functions is then straightfoduasing the algorithm for union
of sets of pairs of characteristic functions since

PreKVMH(A,k)(L) _ U U PreSVMH(.A,k)(g)
oceX el

Theorem 11 GivenaNBWA = (Loc,+, ¥, 6, ), 0 € X, an even numbek, and a pair
of characteristic functionéf,, f,/) suchthatfss < f/, the setlp,e = Pret™ ((fs, for))
computed by Algorithm 2 is such thafLpe]= PrekYMHAD (| 11, f.)]5) and
v<fs;fo> € Lpre : fs < fo-

The proof of Theorem 11 is given in the appendix. In AlgoritBmwe represent
oo by any number strictly greater than and we adapt the definition ef as follows:
f < friffforall ¢ € Loc, eitherf(¢) < f'(¢) or f'(£) > k. In the algorithm, we use
the notationgn]°d for the least odd number’ such that.’ > n, and[n]® " for the
least even numbet’ such that’ > n.



Algorithm 2: Algorithm for Pre™(.).

Data :ANBW A = (Loc,t, X, d,a), o € X, an even numbek and a pair
(fs, for) Of characteristic functions.
Result :The sePret™ ((fo, for))-
begin
foreach ¢ € Loc do
fo(£) —0;
foreach ¢’ € (¢, o) do
if ¢/ € acthen f,(€) < max{fo(£), for (')}
L elsefo(¢) — max{fo(€), min{for (¢'), [ for (¢')1°*}};
| if £ € athen fo(£) — [fo(€)]%" ;
Pre < {<f07f(0>} ;
3 f,(¢) < k(i.e.o# () then
foreach? € Loc do
L fs(€) — max{fy (') | ' € 6(¢,0)};
if £ € athen fs(€) — [fs(£)]*";
L Lpre < Lere U{(fs; fo)} ;
return Lpye;
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end

The structure of Algorithm 2 is similar to Algorithm 1, butettomputations are
expressed in terms of characteristic functions, thus imseof ranks. For example,
lines 4-5 compute the equivalent of line 2 in Algorithm 1, we, corresponds here
to the set of odd-ranked locations, and thus containgwmmdes. Details are given
in the proof of Theorem 11. Algorithm 2 runs in ting®(|Loc|?), which is no more
computationally expensive than the classRa. However, there is often an exponential
factor between the number of elements in the argumeRtofn the two approaches.
For example, the set’ = 2-°<*[* x {(}} with an exponential number of elements is
represented by the unique péjt., f3) wheref,(¢) = 0 for all ¢ € Loc, which makes
the new approach much more efficient in practice.

6 Implementation and Practical Evaluation

The randomized model To evaluate our new algorithm for universality of NBW
and compare with the existing implementations of the Kupter-Vardi and Miyano-
Hayashi constructions, we use a random model to generate. NBW model was
first proposed by Tabakov and Vardi to compare the efficierfcgome algorithms
for automata in the context of finite words automata [TVO5¢ anore recently in
the context of infinite words automata [Tab06]. In the modle¢ input alphabet is
fixed to X = {0,1}, and for each lettes € X, a numberk, of different state pairs
(£,¢") € Loc x Loc are chosen uniformly at random before the correspondimgitra
tions (¢, o, ¢') are added to the automaton. The ratjo= |£€Tac| is called thetransition
densityfor o. This ratio represents the average outdegree of each state fn all



Table 1. Automata size for which the median execution time for chegkiniversality is less
than 20 seconds. The symholmeananore than 1500

f "l 02|04|06|08|10|12|14|16|18|20|22|24]|26]|28](3.0
01| ox | o« | o« [550/200|{120| 60| 40| 30| 40| 50| 50 | 70| 90 |100
0.3|| o< | o« | o< [500|200|100| 40| 30 | 40 | 70 | 100| 120 | 160| 180|200
05| o< | o« | o< [500|200|120| 60 | 60 | 90 | 120| 120| 120 | 140| 260|500
0.7] o< | o« | o< |[500|200|120| 70 | 80 | 100|200| 440|1000| o | o< | o
09| ox | x | < |500|180(100| 80 |200|600| x | x x | x | x

experiments, we choosg = r;, and denote the transition density byThe model
contains a second parameter: tfemsityf of accepting stateS here is only one initial
state, and the number of accepting states is linear in the total number of states, a
determined byf = ILmTc\ The accepting states themselves are chosen uniformlpat ra
dom. Observe that since the transition relation is not abtagal, automata withf = 1
are not necessarily universal.

Tabakov and Vardi have studied the space of parameter vdudsis model and
argue that “interesting” automata are generated by the hasdihe two parameters

and f vary. They also study the density of universal automata &b(b].

Performance comparisonWe have implemented our algorithm to check the universal-
ity of randomly generated NBW. The code is writterGmvith an explicit representation
for characteristic functions, as arrays of integers. Adl €#xperiments are conducted on
a biprocessor Linux station (twd06Ghz Intel Xeons withtGB of RAM).

Fig. 1 shows as a function of (transition density) and (density of accepting
states) the median execution times for testing univeysalfiti00 random automata
with |Loc| = 30. It shows that the universality test was the most difficuitifo= 1.8
and f = 0.1 with a median time ofl1 seconds. The times for < 1 andr > 2.8 are
not plotted because they were always less tig@ims. A similar shape and maximal
median time is reported by Tabakov for automata of 6jzéat is for automata that are
five times smaller [Tab06]. Another previous work reportsipbitive execution times
for complementing NBW of sizé, showing that explicitly constructing the complement
is not a reasonable approach [GKSVO03].

To evaluate the scalability of our algorithm, we have ranftllewing experiment.
For a set of parameter values, we have evaluated the maxireabsautomata (mea-
sured in term of number of locations) for which our algoritbould analyze0 over
100 instances in less than 20 seconds. We have tried automatafsim10 to 1500,
with a fine granularity for small sizes (froir® to 100 with an increment ofl0, from
100 to 200 with an increment 020, and from200 to 500 with an increment 080) and
a rougher granularity for large sizes (fras0 to 1000 with an increment of0, and
from 1000 to 1500 with an increment 0100).

The results are shown in Fig. 2, and the corresponding valkegiven in Table 1.
The vertical scale is logarithmic. For example, for= 2 and f = 0.5, our algorithm
was able to handle at legst automata of siz&20 in less than 20 seconds and was not
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able to do so for automata of siz¢0. In comparison, Tabakov and Vardi have studied
the behavior of Kupferman-Vardi and Miyano-Hayashi camgions for different im-
plementation schemes. We compare with the performancégnfdymbolic approach
which is the most efficient. For the same parameter values ¢ and f = 0.5), they
report that their implementation can handle NBW with at n®states in less thaz
seconds [Tab06].

In Fig. 3, we show the median execution time to check univigysar relatively
difficult instances« = 2 and f vary from0.3 to 0.7). The vertical scale is logarithmic,
so the behavior is roughly exponential in the size of themata. Similar analyzes are
reported in [TabO06] but for sizes belo\.

Finally, we give in Fig. 4 the distribution of execution timér 100 automata of
size50 with r = 2.2 and f = 0.5, so that roughly half of the instances are universal.
Each point represents one automaton, and one point liesleule figure with an exe-
cution time of675s for a non universal automaton. The existence of very fetantes
that are very hard was often encountered in the experimamdshis is why we use the
median for the execution times. If we except this hard insgtafrig. 4 shows that uni-
versal automata (average tirag0ms) are slightly easier to analyze than non-universal
automata (average tim®)0ms). This probably comes from the fact that we stop the
computation of the (greatest) fixed point whenever thedhdtiate is N0 More i -less
than the successive approximations. Indeed, in such dase,the approximations are
=univ-decreasing, we know that the initial state would also reirlithe fixed point. Of
course, this optimization applies only for non-universabanata.

7 Language Inclusion for Bichi automata

LetA; = (Locy, 1, X, 61, 1) and.A; be two NBW defined on the same alphabifor
which we want to check language inclusiad{:4;) C? £(A). To solve this problem,
we check emptiness @f(.A;) N £¢(.A3). As we have seen, we can use the Kupferman-
Vardi and Miyano-Hayashi construction to specify a NB¥Y = (Loca, t2, X, da, )

that accepts the complement of the languagd of
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Using the classical product construction, ketbe a finite automaton with set of
locationsLocy = Loc; x Loce, initial statecg = (1, t2), and tranition functioris
such thatdg((¢1,02),0) = 61(f1,0) x d2(l2,0). We equipB with the generalized
Buchi condition{1, 52} = {a1 X Loca,Loc; x as}, thus asking for a run oB to
be accepting that it visit§; and 3, infinitely often. It is routine to show that we have
L(B) = L(A1) N L(AS). The following fixed point

Fr=vy- (/wl . [PreB(xl) U (PreB(y) N 51)] N pxs - [PreB(wg) U (PreB(y) N ﬂg)])

can be used to check emptinessibhs we havel(B) # 0 iff . € Fj. We now
define the pre-ordek;,. over the locations ofs: for all (¢1,¢5), (¢},¢,) € Locg, let
(01, 02) Sinc (01, 05) iff £ = £} andly <yniy 05

Lemma 12 The relation=;,. is a simulation forf3.

As a consequence of the last lemma, we know that all the satsath have to
manipulate to solve the language inclusion problem usiediked pointFj; are <inc-
closed. The operators, N andPre can be thus computed efficiently, using the same
algorithms and data structures as for universality. Inipaler, let Pre)“(¢],(5) =
Pre (£]) x Pre™(¢4) wherePre""" is computed by Algorithm 2 (with inputl,). It

g g

is easy to show as a corollary of Theorem 11 te!™ (¢], £,) = PreB (| { (¢}, )}).

o

8 Conclusion

We have shown that the expensive complementation conistngdbr nondeterministic

Buchi automata can be avoided for solving classical problike universality and lan-

guage inclusion. Our approach is based on fixed points catipatand the existence
of simulation relations for the (exponential) construnased in complementation of
Buchi automata. Those simulations are used to dramatieaduce the amount of com-
putations needed to decide classical problems. Their tiefirrelies on the structure of
the original automaton and do not require explicit completaton.



The resulting algorithms evaluate a fixed point formula araddarredundant compu-
tations by maintaining sets of maximal elements accordirige simulation relation. In
practice, the computation of the predecessor operatochwbithe key of the approach,
is efficient because it is done on antichain of elements @&hgnthough the classical
approaches (as well as ours) have the same worst case caygexprototype imple-
mentation outperforms those approaches where completizenigexplicit. The huge
gap of performances holds over the entire parameter spaite shndomized model
proposed by Tabakov and Vardi.

Applications of this paper go beyond universality and laaggiinclusion for NBW,
as we have shown that the methodology applies to alternBticfi automata for which
efficient translations from LTL formula are known [GOO1]. & hope rises then that
significant improvements can be brought to the model-cimggiioblem of LTL.
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9 Appendix

Proof of Lemma9Let A = (Loc,, X, §, «) andKVMH(A, k) = (Qx xQk, q,, X, 0", ).
First, we show that for alls1,01), (s2,02), (s3,03) € Qr x Q, forall o € X, if
<$17 01> L(;/ <52, 02> and <$37 03> = <817 01> then <837 03> L(;/ <82, 02>. Notice that
we have trivially(sa, 02) <univ (s2, 02). We give the proof fop; # (. The case; = ()
is proven similarly. According to Definition 3, sinde;, 01) s (s2,02) we have(i)
V(l,ni) € 51 -V € 6(C,0) 3l ,n2) € s2:ng < nygand(ii) V(¢,ny) € o1 - V' €
0(0,0) - 3(l',na) € 02 : ng < ny. Since(ss,03) =< (s1,01), we haveos # () and (i)
V(¢,n3) € s3-3(€,n1) € 51 :m1 < ngand(ii’)V(£,n3) € 03-3(¢,n1) € 01 : n1 < n3.

Combining(:) and(i') yieldsV (¢, ng) € s3 - V¢’ € §(¢,0) - I(l',n2) € s3: ng <
n1 < ng, and combinindii) and (i) yieldsV(¢, ns) € o3 - V¢’ € §(¢,0) - I(¢',n2) €
02 : ma < ny < ng. Sinceoz # (), this implies thatss, 03) 25 (s2, 02).

Second, for als, 0) € o/ we haveo = (), and thus for alks’, o') C Loc x [k], if
(8',0") = (s,0) theno’ = so that(s’, o') € o’.

Hence=, is a simulation foKVMH (A, k). [ ]

Proof of Theorem 11Let A° = KVMH(A, k) = (Q X Qk,q,, X, 0", a’).

We show that1) [Lpre] S Pre (1[{fs, fo)]x) and(2) forall (s1, 01) € Pre (|
[{fs', fo)]k), there existgs, 0) €[Lpr]r such that(si,01) <unv (s,0). This entails

c

that |[Lece] = Pre2 (1[({fs, fo )]k).

We make the following preliminary remarks: &, 0) 5 (s',0'), then for all

[ea

(s1,01) €[{[fs, fo)]k, thereexistgs’, o) €[(fs, for)]r Suchthatsy, 01) —4 (s},0)),
which we write (fs, fo) 25 (fs, for). Similarly, if (s,0) <um (s',0'), then for
all (s1,0}) €[{fs, fo)]x we have(s,0) <unv (s],0}), which we write(s, 0) <univ
<fs’a f0’>'

To prove(1), we first show thatfs, f,) s (f«, for) foOr every pair(f, f,) added
to Lp. at line 12. Moreover, we show that < f,. By the test of line 8, we have
[foli# {0}. Let(s',0') €[(fs, for)]x ((s',0") exists becausé, < f,). According to
the definition ofKVMH(A, k) (see Section 2), we have to check that there exists a set
o C ¢ such that'’ = o’ \ odd (we takeo” = o’ U (s’ N odd)), and the following
conditions hold for alks, o) €[(fs, fo)]x:

(1) Vl,n)es -V e€d(l,o)-In'" <n: (', n)es.
Observe that for all € Loc, for all ¢/ € §(¢,0), we havefy (') < fs(¢)
(lines 10,11 of Algorithm 2). Sincé;(¢) < n, we taken’ = f. (¢') and we have
n' < fs(£) <nwith (¢/,n) € s'.

(i7) Y(t,n) € 0- V' € §(L,0)-Tn’ <n:(l',n') €.
Sinceo” = o' U (s’ Nodd), we havef, (¢') = f,(¢') for ¢’ € a and f,»(¢') =
min{ for (¢'), [ for (¢)]°%4} for ¢/ ¢ a. Now, for all¢ € Loc, for all ¢/ € §(¢,0),
we have eithe?’ € « and thenf,(¢) > n'/ forn’ = f,(¢'), or ¢’ ¢ « and then
fol€) > n' for n’ = min{ for (¢'), [ f& (¢))]°%} (lines 4-6 of Algorithm 2). In both
cases, fofl,n) € owe havef,, (¢') <n' < f,({) <nand(¥',n’) € 0.

Moreover, we prove that:



(i) f, < for
Sincefy < for, we have for alll. € Loc either fo, (¢) > k or for(€) > fo(0).
By lines 4-6 of Algorithm 2, we have for all € Loc, for all ¢/ € §(¢, o) either
foll) = for(€) or fo(€) > [fo(¢')]°%, and thus eitheff,(¢) > k or fo(£) >
fs (). Hence, we have for all € Loc either f,(¢) > k or f,(¢) > max{fs(¢') |
¢ € 6(¢,0)}. Therefore, by lines 10-11 of Algorithm 2, §f¢ «, thenf,(¢) > k
or f,(£) > fs(£), and if¢ € «, thenf,(¢) is even (line 6) and thus eith¢s(¢) > &
or f,(¢) > [max{fs(¢') | €' € 6(¢,0)} %" = fs(¢). In all casesf, < f,.

(iv) V¢ € «: fs(¢) andf,(¢) are even.
This is enforced by line 11 and line 6 of the algorithm.

Second, we show that for every péfi,, () added tdlp.. at line 7, we havéf,, () T4
(s, 0") for some(s”, 0") <univ (s,0") with (s, 0") €[{fs, for)]k ((s',0") exists be-
causefy < f,). We takes” = o' U (s’ Nodd) ando” = s” \ odd. Sinceo’ C ¢/,
we have(a) s” C s/, and we havéd) o” = o' \ odd C o’. Moreover, ifo’ # (), then
(¢, k) € o for somel € Loc, and sincek is even,({, k) € o” and thus” # 0. Since
0" C o, we have(c) o' # 0 iff o # 0. Hence(s”,0") <unv {s',0’). The fact that
(f0,0) L5 (5", 0") is proven similarly to(ii).

To prove(2), assume that there exiét;, o) and (s}, o}) such that(s;,0;) L5
(s, 01) and(s},0}) €l[{fs, for)]k- We have to show that there exisi&, f,) € Lpre
such that(sy, 01) =univ ([fs, fo)-

First, assume that; # (). Notice that sincés’, o)) <univ (fs, for), we have for all
¢ € Loceitherf (€) > kor fo (£) > fs(£), and eitherf,, (£) > kor fo (€) > for (£).
Since(sy,01) 25 (s,0}), we have:

(i) forall (¢£,n1) € sy, forall ¢’ € §(¢,0), n1 > fs,(£) > fo (¢') and thus ei-
therny > k orn; > fo(¢). Hence, for alll € Loc either f,, (¢) > k or
fs, (0) > max{fs (') | ¢' € 0(¢,0)} = fs(£) (wheref, is computed by line 10 of
Algorithm 2). Thus,fs < f,.

(43) for all (¢,ng) € oy, forall ¢’ € 6(¢,0), ng >> f,,(£) > for(¢') for some set
of such thato] C s} andof \ odd = 0o}. Hence necessarily! C o] U (s N
odd) C o' U (s" Nodd) and thusf,r > foi(snedd)- HENCE, for alll € Loc either
for (&) > Kk or f,,(£) > fo(¢) (wheref, is computed at lines 1-6 of Algorithm 2).
Thus, f, < fo,.

Hence,(fs, f,) added toLp, by Algorithm 2 at line 12 satisfieésy, 01) <univ
<f87 f0>

Second, assume that = (). Lets” = o’ U (s’ N odd). Since(sy, 01) 5 (s}, 0})
ando; = 0, we haven| = s} \ odd. Since(s!, o) <univ {fs, for), We have(a) s§ C s
and thussi Nodd C s’ Nodd C s” and(b) o} = s} \ odd C o' C s”. Hences} C s”
which is equivalent to say that for all€ Loc either f,; (¢) > k or fo (£) > fs(£).
Now, by the fact thats;, 0,) 55 (s},0}), we know that for all(¢,n;) € s, for
all ¢ € §(¢,0), n1 > fo (¢) and thus eithen; > korn; > fo(¢'). Notice that
fo(€) = max{fs:(¢') | ¢’ € §(¢,0)} wheref, is computed at lines 1-6 of Algorithm 2.
Thus, eithem; > k orny > f,(¢) for all ¢ € Loc and thereforef, < fs, so that
(51,0) =Zuniv {fo, 0) where(f,, 0) is added talp,. by Algorithm 2 at line 12. [ |



