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Abstract—Graph planning gives rise to fundamental

algorithmic questions such as shortest path, traveling

salesman problem, etc. A classical problem in discrete

planning is to consider a weighted graph and construct

a path that maximizes the sum of weights for a given time
horizon T . However, in many scenarios, the time horizon is

not fixed, but the stopping time is chosen according to some

distribution such that the expected stopping time is T . If

the stopping time distribution is not known, then to ensure

robustness, the distribution is chosen by an adversary, to

represent the worst-case scenario.

A stationary plan for every vertex always chooses the

same outgoing edge. For fixed horizon or fixed stopping-

time distribution, stationary plans are not sufficient for
optimality. Quite surprisingly we show that when an adver-

sary chooses the stopping-time distribution with expected

stopping time T , then stationary plans are sufficient. While

computing optimal stationary plans for fixed horizon is

NP-complete, we show that computing optimal station-

ary plans under adversarial stopping-time distribution

can be achieved in polynomial time. Consequently, our
polynomial-time algorithm for adversarial stopping time

also computes an optimal plan among all possible plans.

I. INTRODUCTION

Graph search algorithms. Reasoning about graphs is fun-

damental in computer science, in particular in logic (such

as to describe graph properties with logic [6], [2]) and

artificial intelligence [13], [9]. Graph search/planning

algorithms are at the heart of such analysis, and give

rise to some of the most important algorithmic problems

in computer science, such as shortest path, travelling

salesman problem (TSP), etc.

Finite-horizon planning. A classical problem in graph

planning is the finite-horizon planning problem [9],

where the input is a directed graph with weights assigned

to every edge and a time horizon T . The weight of

an edge represents the reward/cost of the edge. A plan

is an infinite path, and for finite horizon T the utility

of the plan is the sum of the weights of the first

T edges. An optimal plan maximizes the utility. The
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computational problem for finite-horizon planning is to

compute the optimal utility and an optimal plan. The

finite-horizon planning problem has many applications:

the qualitative version of the problem corresponds to

finite-horizon reachability, which plays an important role

in logic and verification (e.g., bounded until in RTCTL,

and bounded model-checking [4], [1]); and the more

general quantitative problem of optimizing the sum of

rewards has applications in artificial intelligence and

robotics [13, Chapter 10, Chapter 25], and in control

theory and game theory [5, Chapter 2.2], [11, Chapter 6].

Solutions for finite-horizon planning. For finite-horizon

planning the classical solution approach is dynamic

programming (or Bellman equations), which corresponds

to backward induction [8], [5]. This approach not only

works for graphs, but also for other models (e.g., Markov

decision processes [12]). A stationary plan is a path

where for every vertex always the same choice of edge

is made. For finite-horizon planning, stationary plans are

not sufficient for optimality, and in general, optimal plans

are quite involved. Represented as transducers, optimal

plans require storage proportional to at least T (see

later Example 1). Since in general optimal plans are

involved, a related computational question is to compute

effective simple plans, i.e., plans that are optimal among

stationary plans.

Expected finite-horizon planning.A natural variant of the

finite-horizon planning problem is to consider expected

time horizon, instead of the fixed time horizon. In the

finite-horizon problem the allowed stopping time of the

planning problem is a Dirac distribution at time T . In
expected finite-horizon problem the expected stopping

time is T . A well-known example where the fixed finite-

horizon and the expected finite-horizon problems are

fundamentally different is playing Prisoner’s Dilemma:

if the time horizon is fixed, then defection is the only

dominant strategy, whereas for expected finite-horizon

problem cooperation is feasible [10, Chapter 5]. Another

classical example of expected finite horizon that is well-

studied is the notion of discounting, where at each time

step the stopping probability is λ, and this corresponds978-1-7281-3608-0/19/$31.00 c©2019 IEEE



plan complexity arbitrary stationary

Specified distribution memory necessary PTIME NP-complete

Unknown distribution (best-case) memory necessary PTIME NP-complete

Unknown distribution (adversarial) stationary sufficient PTIME

Table I: Plan complexity (left) and computational complexity (right).

to an expected stopping time equal to 1/λ [5].

Specified vs. unknown distribution. For the expected

finite-horizon problem there are two variants: (a) spec-

ified distribution: the stopping-time distribution with

finite support is specified; and (b) unknown distribution:

the stopping-time distribution is unknown, and either

resolved as the best-case scenario, or resolved as the

worst-case scenario by an adversary. The expected finite-

horizon problem with adversarial distribution represents

the robust version of the planning problem, where the

distribution is unknown and the adversary represents the

worst-case scenario.

Motivation. We now present some motivation to study

the expected stopping-time problem with adversarial

distribution. As mentioned before, the well-studied

discounted-sum problem is a specific example of

stopping-time distribution. In comparison, our general

framework is relevant in the following scenarios: First,

in many scenarios the discount factor is not known

precisely, and for robust analysis the factor is chosen

adversarially. Second, the discounted-sum model makes

an assumption on the shape of the stopping-time dis-

tribution. A weaker assumption is to consider time-

varying discount factors [3]. If the discount factors are

not known, then robust solutions require the adversar-

ial choice of the factors. The above scenarios suggest

that complex stopping-time distributions are required to

model realistic scenarios, and if the precise parameters

are unknown, then robust solutions require adversarial

choices. Moreover, in all cases when the stopping-time

distribution is important yet unknown, a conservative es-

timate (i.e., lower bound) of the optimal value is obtained

using the adversarial choice. Thus the problems we

consider present robust extensions of the classical finite-

horizon planning that has a wide range of applications.

Results. In this work, we consider the expected finite-

horizon planning problems in graphs. To the best of

our knowledge this problem has not been studied in the

literature.

• Our first simple result is that for the specified distri-

bution problem, the optimal value can be computed

in polynomial time (Theorem 1). However, since

the specified distribution generalizes the fixed finite-

horizon problem, the optimal plan description as an

explicit transducer is of size T . Hence the output

complexity is not polynomial in general (where the

output is the optimal plan). Second, we consider

the decision problem whether there is a stationary

plan to ensure a given utility. We show that this

problem is NP-complete (Theorem 2). We establish

the same results (Theorem 6 and Theorem 7) for

the best-case scenario of unknown distributions.

Our most interesting results are for the adversarial un-

known distribution problem, which we describe below:

• We show that stationary plans suffice for optimality

(Theorem 3).

• We show that the optimal value and an optimal

stationary plan can be computed in polynomial time

(Theorem 4).

We highlight the surprising aspects and novelty of the

above results.

• First, the result about optimality of stationary

plans for adversarial distribution is surprising and

counter-intuitive. In the classical finite-horizon

problem (and in the specified-distribution problem),

the adversary does not have any choice, and in the

best-case scenario the choice of the distribution is

made favorably. In terms of the choice of plans and

the choice of stopping-time distributions, in the first

two cases there is only one quantification over the

choice of plans, and in the last case, there are two

quantifications, but no quantifier alternation. In all

the above cases, stationary plans do not suffice for

optimality. In contrast, we show that in the presence

of an adversary the simpler class of stationary plans

suffices for optimality. The adversarial case repre-

sents a quantifier alternation between the choice of

plans and stopping-time distribution. Quite surpris-

ingly our results establish that simpler plans suffice
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Fig. 1: A weighted graph (with n+ 1 vertices) where the optimal path (of length T = k · n+ 1) is not simple: at

v0, the optimal plan chooses k times the edge (v0, v1), and then the edge (v0, vn).

for optimality in the quantifier alternation case as

compared to the cases with no quantifier alternation,

or only one quantifier.

• For the expected finite-horizon problem with adver-

sarial distribution, the backward induction approach

does not work, as there is no a-priori bound on

the stopping time. We develop new algorithmic

ideas to establish polynomial-time complexity. Note

that our algorithm also computes stationary optimal

plans (which are as well optimal among all plans)

in polynomial time, whereas computing stationary

optimal plans for fixed finite horizon, or specified

distribution, is NP-complete. Thus again our algo-

rithm establishes a surprising result: a problem with

quantifier alternation can be solved in polynomial-

time, whereas the same problem without quantifier

alternation is NP-complete.

Our results are summarized in Table I and are relevant

for synthesis of robust plans for expected finite-horizon

planning.

II. PRELIMINARIES

Weighted graphs. A weighted graph G = 〈V,E,w〉
consists of a finite set V of vertices, a set E ⊆ V ×V of

edges, and a function w : E → Z that assigns a weight

to each edge of the graph.

Plans and utilities. A plan is an infinite path in G from

a vertex v0, that is a sequence ρ = e0e1 . . . of edges

ei = (vi, v
′
i) ∈ E such that v′i = vi+1 for all i ≥ 0. A

path induces the sequence of utilities u0, u1, . . . where

ui =
∑

0≤k≤i w(ek) for all i ≥ 0. We denote by UG the

set of all sequences of utilities induced by the paths of

G. For finite paths ρ = e0e1 . . . ek (i.e., finite prefixes

of paths), we denote by start(ρ) = v0 and end(ρ) = v′k
the initial and last vertex of ρ, and by |ρ| = k + 1 the

length of ρ.

Plans as transducers. A plan uses finite memory if it can

be described by a transducer (Mealy machine or Moore

machine [7]) that given a prefix of the path (i.e., a finite

sequence of edges) chooses the next edge. A stationary

plan is a path where for every vertex the same choice

of edge is made always. A stationary plan as a Mealy

machine has one state, and as a Moore machine has at

most |V | states. Given a graph G we denote by SG the

set of all sequences of utilities induced by stationary

plans in G.

Distributions and stopping times. A sub-distribution is

a function δ : N → [0, 1] such that pδ =
∑

t∈N
δ(t) ∈

(0, 1]. The value pδ is the probability mass of δ. Note that
pδ 6= 0. The support of δ is Supp(δ) = {t ∈ N | δ(t) 6=
0}, and we say that δ is the sum of two sub-distributions

δ1 and δ2, written δ = δ1 + δ2, if δ(t) = δ1(t) + δ2(t)
for all t ∈ N. A stopping-time distribution (or simply, a

distribution) is a sub-distribution with probability mass

equal to 1. We denote by ∆ the set of all stopping-time

distributions, and by ∆⇈ the set of all distributions δ
with |Supp(δ)| ≤ 2, called the bi-Dirac distributions.

Expected utility and expected time. The expected utility

of a sequence u = u0, u1, . . . of utilities under a sub-

distribution δ is Eδ(u) =
1
pδ
·
∑

t∈N
ut ·δ(t). In particular,

the expected utility of the identity sequence 0, 1, 2, . . .
is called the expected time, denoted by Eδ.

III. EXPECTED FINITE-HORIZON: SPECIFIED

DISTRIBUTION

Given a stopping-time distribution δ with finite sup-

port, we show that the optimal expected utility can be

computed in polynomial time. This result is straightfor-

ward.

Theorem 1. Let G be a weighted graph. Given a

stopping-time distribution δ = {(t1, p1), . . . , (tk, pk)} ⊆
N×Q, with all numbers encoded in binary, the optimal

expected utility supu∈UG
Eδ(u) can be computed in

polynomial time.

In the fixed-horizon problem with δ = {(T, 1)}, the
optimal plan need not be stationary. The example below

shows that in general the transducer for optimal plans

3
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Fig. 2: Three loops of respective length L1 = 6 = 2 · 3,
L2 = 10 = 2 · 5, and L3 = 15 = 3 · 5. For T = 32 =
6 + 10 + 15 + 1, the optimal plan needs to visit each

cycle once.

require O(T/|V |) states as Mealy machine, and O(T )
states as Moore machine.

Example 1. Consider the graph of Fig. 1 with |V | =
n+ 1 vertices, and time bound T = k · n+ 1 (for some

constant k). The optimal plan from v0 is to repeat k
times the cycle v0, v1, . . . , vn−1 and then switch to vn.
This path has value 1, and all other paths have lower

value: if only the cycle v0, v1, . . . , vn−1 is used, then the

value is at most 0, and the same holds if the cycle on

vn is ever used before time T . The optimal plan can be

represented by a Mealy machine of size O(T/|V |) that

counts the number of cycle repetitions before switching

to vn. A Moore machine requires size T as it needs a

new memory state at every step of the plan.

Example 2. In the example of Fig. 2 the optimal plan

needs to visit several different cycles, not just repeating

a single cycle and possible switching only at the end.

The graph consists of three loops on v0 with weights 0
and respective length 6, 10, and 15, and an edge to v1
with weight 1. For expected time T = 6 + 10 + 15 + 1,
the optimal plan has value 1 and needs to stop exactly

when reaching v1 (to avoid the negative self-loop on v1).
It is easy to show that the remaining length T − 1 = 31
can only be obtained by visiting each cycle once: as 31
is not an even number, the path has to visit a cycle of

odd length, thus the cycle of length 15; analogously, as
31 is not a multiple of 3, the path has to visit the cycle

of length 10, etc. This example can be easily generalized

to an arbitrary number of cycles by using more prime

numbers.

We now consider the complexity of computing optimal

plans among stationary plans.

Theorem 2. Let G be a weighted graph and λ be a

rational utility threshold. Given a stopping-time distribu-

0 t1

x

t2

y

T t3

z

Fig. 3: Timeline.

tion δ with finite support, whether supu∈SG
Eδ(u) ≥ λ

(i.e., whether there is a stationary plan with utility at

least λ) is NP-complete. The NP-hardness holds for the

fixed-horizon problem δ = {(T, 1)}, even when T and

all weights are in O(|V |), and thus expressed in unary.

IV. EXPECTED FINITE-HORIZON: ADVERSARIAL

DISTRIBUTION

Our main result is the computation of the following

optimal values under adversarial distributions1. Given a

weighted graphG and an expected stopping time T ∈ Q,

we define the following:

• Optimal values of plans. For a plan ρ that induces

the sequence u of utilities, let

val(ρ, T ) = val (u, T ) = inf
δ∈∆:Eδ=T

Eδ(u).

• Optimal value. The optimal value is the supremum

value over all plans:

val(G, T ) = sup
u∈UG

val (u, T ).

Our two main results are related to the plan complexity

and a polynomial-time algorithm.

Theorem 3. For all weighted graphs G and for all T
we have

val (G, T ) = sup
u∈UG

val(u, T ) = sup
u∈SG

val(u, T ),

i.e., optimal stationary plans exist for expected finite-

horizon under adversarial distribution.

Remark 1. Note that in contrast to the fixed finite-

horizon problem, where stationary plans do not suffice,

we show in the presence of an adversary, the simpler

class of stationary plans are sufficient for optimality in

expected finite-horizon. Moreover, while optimal plans

require O(T/|V |)-size Mealy (resp., O(T )-size Moore)

machines for fixed-length plans, our results show that

under adversarial distribution optimal plans require

O(1)-size Mealy (resp., O(|V |)-size Moore) machines.

Theorem 4. Given a weighted graph G and expected

finite-horizon T , deciding whether val(G, T ) ≥ 0 and

1Adversarial distributions may have finite or infinite support.
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0 Tt1 t2 t

optimal value of the path

(a) When an optimal distribution exists

0 Tt1 t

optimal value of the path

(b) When no optimal distribution exists

Fig. 4: Geometric interpretation of the value of a path.

computing val (G, T ) can be done in time polynomial

in |V |, log(T ), and log(W ) (where W is the largest

absolute weight in the graph G).

A. Theorem 3: Plan Complexity

In this section we prove Theorem 3. We start with the

notion of sub-distributions. Two sub-distributions δ, δ′

are equivalent if they have the same probability mass,

and the same expected time, that is pδ = pδ′ and Eδ =
Eδ′ . The following result is straightforward.

Lemma 1. If δ1, δ
′
1 are equivalent sub-distributions, and

δ1 + δ2 is a sub-distribution, then δ1 + δ2 and δ′1 + δ2
are equivalent sub-distributions.

Bi-Dirac distributions are sufficient. By Lemma 1, we

can decompose distributions as the sum of two sub-

distributions, and we can replace one of the two sub-

distributions by a simpler (yet equivalent) one to obtain

an equivalent distribution. We show that, given a se-

quence u of utilities, for all sub-distributions with three

points t1, t2, t3 in their support (see Fig. 3), there exists

an equivalent sub-distribution with only two points in

its support that gives a lower expected value for u.
Intuitively, if one has to distribute a fixed probability

mass (say 1) among three points with a fixed expected

time T , assigning probability pi at point ti, then we have

p3 = 1− p1 − p2 and p1 · t1 + p2 · t2 + p3 · t3 = T , i.e.,

p1 · (t1 − t3)
︸ ︷︷ ︸

p′
1

+ p2 · (t2 − t3)
︸ ︷︷ ︸

p′
2

= T − t3.

The expected utility is

p1 · ut1 + p2 · ut2 + p3 · ut3 =

p′1 ·
ut1 − ut3
t1 − t3

+ p′2 ·
ut2 − ut3
t2 − t3

+ ut3

which is a linear expression in variables {p′1, p
′
2} where

the sum p′1 + p′2 is constant. Hence the least expected

utility is obtained for either p′1 = 0, or p′2 = 0. This
is the main hint2 to show that bi-Dirac distributions are

sufficient to compute the optimal expected value.

Lemma 2 (Bi-Dirac distributions are sufficient). For

all sequences u of utilities, for all time bounds T , the
following holds:

inf{Eδ(u) | δ ∈ ∆ ∧ Eδ = T } =

inf{Eδ(u) | δ ∈ ∆⇈ ∧ Eδ = T },

i.e., the set ∆⇈ of bi-Dirac distributions suffices for the

adversary.

Geometric interpretation. It follows from the proof of

Lemma 2 that the value of the expected utility of a

sequence u of utilities under a bi-Dirac distribution with

support {t1, t2} (where t1 < T < t2) and expected time

T is

ut1 +
T − t1
t2 − t1

· (ut2 − ut1).

In Fig. 4a, this value is obtained as the intersection of

the vertical axis at T and the line that connects the

two points (t1, ut1) and (t2, ut2). Intuitively, the optimal

2This argument works here because T > t2, which implies that
0 ≤ p2 ≤ 1 when p1 = 0, and vice versa. A symmetric argument
can be used in the case T < t2, to show that then either p2 = 0, or
p3 = 0.

5



0 Tt1 t2 t

optimal value of the path

(a) For the example of Fig. 4a.

0 Tt1 t

optimal value of the path

(b) For the example of Fig. 4b.

Fig. 5: Convex hull interpretation of the value of a path.

value of a path is obtained by choosing the two points t1
and t2 such that the connecting line intersects the vertical
axis at T as down as possible.

Lemma 3. For all sequences u of utilities, if ut ≥ a·t+b
for all t ≥ 0, then the value of the sequence u is at least

a · T + b.

Proof. By Lemma 2, it is sufficient to consider bi-Dirac

distributions, and for all bi-Dirac distributions δ with

arbitrary support {t1, t2} the value of u under δ is

ut1 +
T − t1
t2 − t1

· (ut2 − ut1)

=
ut1 · (t2 − T ) + ut2 · (T − t1)

t2 − t1

≥
(a · t1 + b) · (t2 − T ) + (a · t2 + b) · (T − t1)

t2 − t1
≥ a · T + b

It is always possible to fix an optimal value of t1
(because t1 ≤ T is to be chosen among a finite set of

points), but the optimal value of t2 may not exist, as

in Fig. 4b. The value of the path is then obtained as

t2 → ∞. In general, there exists t1 ≤ T such that it is

sufficient to consider bi-Dirac distributions with support

containing t1 to compute the optimal value. We say that

t1 is a left-minimizer of the expected value in the path.

Given such a value of t1, let ν = inft2≥T
ut2

−ut1

t2−t1
, and

we show in Lemma 4 that ut ≥ ut1 +(t− t1) · ν, for all
t ≥ 0. This motivates the following definition.

Line of equation fu(t). Given a left-minimizer t1, we
define the line of equation fu(t) as follows:

fu(t) = ut1 + (t− t1) · ν.

Note that the optimal expected utility is

min
0≤t1≤T

inf
t2≥T

ut1 +
T − t1
t2 − t1

· (ut2 − ut1) =

min
0≤t1≤T

ut1 + (T − t1) · ν = fu(T ).

In other words, fu(T ) is the optimal value.

Lemma 4 (Geometric interpretation). For all sequences

u of utilities, we have ut ≥ fu(t) for all t ≥ 0, and the

expected value of u is fu(T ).

Proof. The result holds by definition of ν for all t ≥ T .
For t < T , assume towards contradiction that ut < ut1+
(t− t1) ·ν. Let ε > 0 such that ut = ut1 +(t− t1) ·ν−ε.
We obtain a contradiction by showing that there exists a

bi-Dirac distribution under which the expected value of

u is smaller than the optimal value of u. Consider a bi-

Dirac distribution with support {t, t2} where the value

t2 is defined later.

We need to show that

ut +
T − t

t2 − t
· (ut2 − ut) < ut1 + (T − t1) · ν,

that is

ut · (t2 − T ) + ut2 · (T − t)

t2 − t
< ut1 + (T − t1) · ν

which, since ut = ut1 + (t − t1) · ν − ε, holds if

(successively)
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fu(t)

ρ

ρ′

C

C

C

(a) Repeating a good cycle (Lemma 6).

fu(t)

ρ

ρ′

C

(b) Removing a bad cycle (Lemma 7).

Fig. 6: Constructing a lasso without decreasing the value (Lemma 6 and Lemma 7).

ut1 · (t2 − T ) + (t− t1) · (t2 − T ) · ν + ut2 · (T − t)

≤ ε · (t2 − T ) + ut1 · (t2 − t) + (t2 − t) · (T − t1) · ν

ut1 ·(t−T )+ut2 ·(T −t)+ν ·(t ·t2+t1 ·T−t2 ·T −t ·t1)

≤ ε · (t2 − T )

(ut2−ut1)·(T−t)+ν ·(t2−t1)·(t−T )−ε·(t2−T ) ≤ 0

(T − t) ·

(
ut2 − ut1
t2 − t1

− ν

)

· (t2− t1)− ε · (t2− T ) ≤ 0.

We consider two cases: (i) if the infimum ν is attained,

then we have ν =
ut2

−ut1

t2−t1
for some t2 ≥ T , and

the inequality holds; (ii) otherwise, we can choose t2
arbitrarily, and large enough to ensure that (T − t) ·(

ut2
−ut1

t2−t1
− ν

)

is smaller than ε
2 , so that the inequality

holds.

A corollary of the geometric interpretation lemma is

that the value of a path can be obtained as the intersec-

tion of the vertical line at point T with the boundary of

the convex hull of the region above the sequence of util-

ities, namely convexHull({(t, y) ∈ N × R | y ≥ ut}).
This result is illustrated in Fig. 5.

Simple lassos are sufficient. A lasso is a path of the form

ACω where A and C are finite paths (with C a nonempty

cycle), where ACω is A followed by infinite repetition

of the cycle C. A lasso is simple if all strict prefixes of

the finite path AC are acyclic. In other words, simple

lassos correspond to stationary plans.

We show that there is always a simple lasso with

optimal value. Our proof has four steps. Given a path

ρ that gives the utility sequence u, let ν be the slope of

fu(t). Given a cycle C in the path ρ, let SC be the

sum of the weights in C and let MC = SC

|C| be the

average weight of the cycle edges. The cycle C is good

if MC ≥ ν, i.e., the average weight of the cycle is at

least ν, and bad otherwise.

• First, we show (in Lemma 5) that every path con-

tains a good cycle.

• Second, we show (in Lemma 6) that if the first cycle

in a path is good, then repeating the cycle cannot

decrease the value of the path.

• Third, we show (in Lemma 7) that removing a bad

cycle from a path cannot decrease the value of the

path.

• Finally, we show (in Lemma 8) that given any path,

using the above two operations of removal of bad

cycles and repetition of good cycles, we obtain a

simple lasso that does not decrease the value of the

original path.

Thus we establish that simple lassos (or stationary plans)

are sufficient for optimality. To formalize the ideas we

consider the notion of cycle decomposition.

Cycle decomposition. The cycle decomposition of a

path ρ = e0e1 . . . is an infinite sequence of simple

cycles C1, C2, . . . obtained as follows: push successively
e0, e1, . . . onto a stack, and whenever we push an edge

that closes a (simple) cycle, we remove the cycle from

the stack and append it to the cycle decomposition. Note

that the stack content is always a prefix of a path of

length at most |V |.
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0 T

t

ρ′

ρ

ρ has greater sum
of weights

ρ is less constraining on
the slope of the line
f(t) =M · (t− T )

(a) The path length is smaller than T .

0 T

t

ρ′

ρ

ρ has greater sum
of weights

ρ is less constraining on
the slope of the line
f(t) =M · (t− T )

M = 1

M = 1
2

ϕρ ≡
1
8 ≤M ≤ 1

ϕρ′ ≡ 1
4 ≤M ≤

1
2

(b) The path length is greater than T .

Fig. 7: The path ρ is preferred to ρ′.

Lemma 5. Let T ∈ N. Given a path ρ
that induces a sequence u of utilities, let ν =
min0≤t1≤T inft2≥T

ut2
−ut1

t2−t1
. Then, in the cycle decom-

position of ρ there exists a simple cycle C withMC ≥ ν.

Proof. Towards contradiction, assume that all the

(finitely many) cycles C in the cycle decomposition of ρ
are such that MC < ν. Let t1 be a left-minimizer of ρ.
Since all cycles in ρ have average weight smaller than

ν, we have:

lim inf
t2→∞

ut2 − ut1
t2 − t1

< ν

Since the infimum is bounded by the liminf, it follows

that

min
0≤t1≤T

inf
t2≥T

ut2 − ut1
t2 − t1

< ν

which is in contradiction with the definition of ν.

We show that repeating a good cycle, and removing a

bad cycle from a path cannot decrease the value of the

path.

Lemma 6. Let T ∈ N. If the first cycle C in the cycle

decomposition of a path ρ is good, i.e., MC ≥ ν where

ν = min0≤t1≤T inft2≥T
ut2

−ut1

t2−t1
, then there exists a

lasso ρ′ such that val (ρ′, T ) ≥ val (ρ, T ).

Proof. Let u be the sequence of utilities induced by ρ.
Since C is the first cycle in ρ, there is a prefix of ρ of

the form AC where A is a finite path. Consider the lasso

ρ′ = ACω and its induced sequence of utilities u′.

We show that the value of ρ′ is at least the value

of ρ. By Lemma 4, the optimal value of u is fu(T ),
and the sequence u is above the line fu(t) (which has

slope ν), i.e., ut ≥ fu(t) for all t ≥ 0. By Lemma 3 it

is sufficient to show that u′ is above the line fu(t) to

establish that the optimal value of u′ is at least fu(T ),
that is val (ρ′, T ) ≥ val (ρ, T ), and conclude the proof

(the argument is illustrated in Fig. 6a).

We show that u′t ≥ fu(t) for all t ≥ 0:

• either t ≤ |A|+ |C|, and then u′t = ut ≥ fu(t),
• or t > |A| + |C|, and then let k ∈ N such that

|A| ≤ t− k · |C| ≤ |A|+ |C|, and we have

u′t = ut−k·|C| + k · SC (ρ′ = ACω)

≥ fu(t− k · |C|) + k ·MC · |C|

(u is above fu(t) and SC =MC · |C|)

≥ fu(t)− ν · k · |C|+ k ·MC · |C|

(fu(t) is linear with slope ν)

≥ fu(t) + k · |C| · (MC − ν)

≥ fu(t). (MC ≥ ν)

Lemma 7. Let T ∈ N. If a path ρ contains a bad

cycle C, that is such that MC < ν where ν =
min0≤t1≤T inft2≥T

ut2
−ut1

t2−t1
, then removing C from ρ

gives a path ρ′ such that val (ρ′, T ) ≥ val(ρ, T ).

Proof. Let u, u′ be the sequences of utilities induced by

respectively ρ and ρ′. By the same argument as in the

proof of Lemma 6 (using Lemma 3 and Lemma 4), it is

sufficient to show that u′ is above the line fu(t). Since
C is a cycle in ρ, there is a prefix of ρ of the form AC

8



where A is a finite path, and for all t ≥ 0 we have (the

argument is illustrated in Fig. 6b): either t ≤ |A|, then
u′t = ut ≥ fu(t), or t > |A|, and then

u′t = ut+|C| − SC

(C is removed from ρ to get ρ′)

≥ fu(t+ |C|)−MC · |C|

(u is above fu(t) and SC =MC · |C|)

≥ fu(t) + ν · |C| −MC · |C|

(fu(t) is linear with slope ν)

≥ fu(t) + |C| · (ν −MC)

≥ fu(t). (MC < ν)

Now we can show how to construct a simple lasso

with value at least the value of a given arbitrary path, and

it follows that simple lassos are sufficient for optimality.

Lemma 8. Let T ∈ N. There exists a simple lasso ACω

such that val (ACω , T ) = val (G, T ).

Proof. Given an arbitrary path ρ, we construct a simple

lasso with at least the same value as ρ. It follows that

the optimal value is obtained by stationary plans. The

construction repeats the following steps:

1) Let C be the first cycle in the cycle decomposition

of ρ;
2) if C is a bad cycle for the original path ρ, then we

remove it to obtain a new path ρ′. We continue the

procedure with ρ′ (go to step 1.);
3) otherwise C is a good cycle for the original path

ρ. Let A be the prefix of ρ until C starts, and we

construct the lasso ACω .

First, note that if the above procedure terminates, then

the constructed lasso has a value at least the value of the

original path ρ (by Lemma 6 and Lemma 7), and it is a

simple lasso by definition of the cycle decomposition.

Now we show that the procedure always terminates.

By Lemma 5, there always exists a good cycle in the

cycle decomposition of ρ, and thus eventually a good

cycle becomes the first cycle in the path constructed by

the above procedure, which then terminates.

Theorem 3 follows from the above lemmas.

B. Theorem 4: Algorithm and Complexity Analysis

In this section we present our algorithm and then the

complexity analysis (Theorem 4).

Algorithm. The key challenges to obtain an algorithm are

as follows. First, while for the fixed-horizon problem

backward induction or powering of transition matrix

leads to an algorithm, for expected time horizon with an

adversary, there is no a-priori bound on the number of

steps, and hence the backward induction approach is not

applicable. Second, stationary optimal plans suffice, and

as shown in Theorem 2 computing optimal stationary

plans for the fixed horizon problem is NP-hard. We

present an algorithm that iteratively constructs the most

promising candidate paths according to a partial order of

the paths, and the key is to define the partial order.

It follows from the geometric interpretation lemmas

(Lemma 3 and Lemma 4) that the value of a path is at

least 0 if its sequence of utilities is above some line that

contains the point (T, 0).

Lemma 9. The value of a sequence u of utilities is at

least 0 if and only if there exists a slope M ∈ R such

that ut ≥M · (t− T ) for all t ≥ 0.

The expression ut −M · (t − T ) that appears in the

condition of Lemma 9 corresponds to the sequence of

utilities in the graph where M is subtracted from all

weights, up to the constant T ·M . Since M is unknown,

we can define the following symbolic constraint on M
(associated with a path ρ) that ensures, if it is satisfiable,
that the sequence of utilities of ρ = e0e1 . . . ek is above

the line of equation f(t) =M · (t− T ) :

ϕρ ≡
∧

0≤i≤k

(ui ≥M · (i− T ))

Note that k = |ρ|−1, and the constraint ϕρ represents

an interval (possibly empty, possibly unbounded) of

values forM . Intuitively, a finite path is more promising

(thus preferred) in order to be prolonged to an infinite

path with value at least 0 if the total sum of weights

is large and the constraint ϕρ is weak (see Fig. 7a and

Fig. 7b). To each finite path ρ, we associate a pair 〈z, ψ〉
consisting of the sum u of the weights in ρ, and the

constraint ψ = ϕρ.

For two pairs 〈z, ψ〉, 〈z′, ψ′〉 (associated with paths ρ
and ρ′ respectively), we write 〈z, ψ〉 � 〈z′, ψ′〉 if z ≥ z′

and ψ′ implies ψ, and we say that ρ is preferred to ρ′

(this is a partial order). Given a set S of such pairs,

denote by
⌈
S
⌉
= {s1 ∈ S | ∀s2 ∈ S : s2 � s1 → s1 �

s2} the set of �-maximal elements of S. Note that the

elements of
⌈
S
⌉
are pairwise �-incomparable.

Intuitively, if ρ and ρ′ end in the same vertex, and

ρ is preferred to ρ′, then it is easier to extend ρ than

ρ′ to obtain an (infinite) path with expected value at

least 0. Formally, for all infinite paths π with start(π) =

9



Algorithm 1 BestPaths(t0, v0, z0, ψ0)

Input : t0 ∈ N is an initial time point, v0 is

an initial vertex, z0 is the initial sum of

weights, and ψ0 is the initial constraint on

the slope parameter M .

Output: The table of �-maximal values of paths

from v0 with initial values t0, z0, ψ0.

begin

/* initialization */

1 D[t0, v0]← {〈z0, ψ0〉}
2 for v ∈ V \ {v0} do
3 D[t0, v]← ∅

/* iterations */

4 for i = 1, . . . , |V | do
5 for v ∈ V do

6 D[t0 + i, v]← ∅

7 for v1 ∈ V and 〈z1, ψ1〉 ∈ D[t0 + i− 1, v1]

do

8 if (v1, v) ∈ E then

9 z ← z1 + w(v1, v)
10 t← t0 + i− 1
11 ψ ← ψ1 ∧ (z ≥M · (t− T ))
12 D[t0 + i, v]←

D[t0 + i, v] ∪ {〈z, ψ〉}

13 D[t0 + i, v]←
⌈
D[t0 + i, v]

⌉

14 return D
end

end(ρ) = end(ρ′) we have val(ρ ·π, T ) ≥ val (ρ′ ·π, T ).
We use this result in the following form.

Lemma 10. Let ρ1, ρA be two paths of the same length

with the same end state, i.e., end(ρ1) = end(ρA). If ρ1 is

preferred to ρA, then for all paths ρC with start(ρC) =
end(ρA), the path ρ1 ·ρC is preferred to the path ρA ·ρC .

Our algorithm uses the procedure

BestPaths(t0, v0, z0, ψ0) (shown as Algorithm 1) that

computes the �-maximal pairs 〈z, ψ〉 corresponding to

the paths ρ1 of length 1, 2, . . . , |V | that start at time t0
in vertex v0 (see Fig. 8), and that prolong a path ρ♯
with sum of weights z0 and constraint ψ0 on M (where

z is the sum of weights along ρ♯ · ρ1, and ψ ≡ ϕρ♯·ρ1
).

We give a precise statement of this result in Lemma 11.

Lemma 11 (Correctness of BestPaths). Let ρ♯ be a finite
path of length t0, that ends in state end(ρ♯) = v0 with

sum of weights z0 and associated constraint ψ0 on M .

Algorithm 2 ExistsPositivePath(v0)

Input : v0 is an initial vertex.

Output: true iff there exists a path from v0 with

expected utility at least 0.

begin

1 A← BestPaths(0, v0, 0, true)
2 for i = 0, . . . , |V | do
3 for v̂ ∈ V and 〈z1, ψ1〉 ∈ A[i, v̂] do
4 C ← BestPaths(i, v̂, z1, ψ1)
5 for j = 1, . . . , |V | − i do
6 for 〈z2, ψ2〉 ∈ C[i + j, v̂] do
7 if ψ2∧

z2−z1
j
≥M is satisfiable

then return true

8 return false

end

Let D = BestPaths(t0, v0, z0, ψ0). Then,

• for all 0 ≤ i ≤ |V |, for all v1 ∈ V , for all pairs

〈z, ψ〉 ∈ D[t0 + i, v1], there exists a path ρ1 of

length i with start(ρ1) = v0 and end(ρ1) = v1,
such that

– z is the sum of weights of the path ρ♯ · ρ1, and
– ψ ≡ ϕρ♯·ρ1

is the constraint on M associated

with the path ρ♯ · ρ1;

• for all paths ρ1 of length i ≤ |V | such that

start(ρ1) = v0 and end(ρ1) = v1, there exists a

pair 〈z′, ψ′〉 ∈ D[t0 + i, v1] such that 〈z′, ψ′〉 �
〈z, ψ〉 where

– z is the sum of weights of the path ρ♯ · ρ1, and
– ψ ≡ ϕρ♯·ρ1

is the constraint on M associated

with the path ρ♯ · ρ1.

As we know that simple lassos are sufficient for

optimal value (Lemma 8), our algorithmic solution is to

explore finite paths from the initial vertex, until a loop

is formed. Thus it is sufficient to explore paths of length

at most |V |. However, given a simple lasso ρA · ρ
ω
C , it

is not sufficient that the finite path ρA · ρC lies above a

line M · (t− T ) (where M satisfies the constraint ψAC

associated with ρA · ρC ) to ensure that the value of the

lasso ρA ·ρ
ω
C is at least 0. The reason is that by repeating

the cycle ρC several times, the path may eventually cross

the line M · (t− T ). We show (in Lemma 12) that this

cannot happen if the average weight MC of the cycle is

greater than the slope of the line (i.e., MC ≥M ).

Lemma 12. Given a lasso ρA · ρ
ω
C , let ψAC be the

symbolic constraint onM associated with the finite path

10



0 t0 t0 + i

ρ♯
z0
v0

ρ1

z
v1

ψ ≡ ϕρ♯·ρ1

〈z, ψ〉 ∈ D[t0 + i, v1]

where D = BestPaths(t0, v0, z0, ψ0)

Fig. 8: The result of the computation of BestPaths(t0, v0, z0, ψ0).

ρA · ρC , and let MC be the average weight of the cycle

ρC . The lasso ρA · ρ
ω
C has value at least 0 if and only if

the formula ψAC ∧ (MC ≥M) is satisfiable.

The algorithm ExistsPositivePath(v0) explores the

paths from v0, and keeps the �-preferred paths, that is

those with the largest total weight and weakest constraint

on M . There may be several �-incomparable paths of a

given length i that reach a given vertex v̂, therefore we

need to compute a set A[i, v̂] of �-incomparable pairs

(line 1 of Algorithm 2).

Given a pair 〈z1, ψ1〉 ∈ A[i, v̂], the algorithm

ExistsPositivePath further explores (for-loop at line 3 of

Algorithm 2) the paths from v̂, until a cycle ρC of length

j is formed around v̂, with average weightMC = z2−z1
j

and associated pair 〈z2, ψ2〉 ∈ C[i + j, v̂] (line 7 of

Algorithm 2) such that ψ2 ∧ (MC ≥ M) is satisfiable.

We claim that there exists such a cycle if and only if

there exists a lasso with value at least 0. The claim is

established in the following lemma.

Lemma 13 (Correctness of ExistsPositivePath). There

exists an infinite path from v0 with value at least 0 if

and only if ExistsPositivePath(v0) returns true.

Optimal value. We can compute the optimal value

using the procedure ExistsPositivePath as follows.

From Lemma 4, the optimal value is either of the

form
ut1

·(t2−T )+ut2
·(T−t1)

t2−t1
, or of the form ut1 +

(T − t1) · ν where the following bounds hold (ν =
inft2≥T

ut2
−ut1

t2−t1
):

• 0 ≤ t1 ≤ t2 ≤ |V |
• 0 ≤ t2 − t1 ≤ |V |
• 0 ≤ T − t1 ≤ |V |
• 0 ≤ t2 − T ≤ |V |
• −W · |V | ≤ ut1 , ut2 ≤W · |V |
• ν is a rational number p

q
where −W · |V | ≤ p ≤

W · |V | and 1 ≤ q ≤ |V |

Therefore, in both cases we get the following result.

Lemma 14. The optimal value belongs to the set

ValueSpace =
{p

q
| −2W · |V |2 ≤ p ≤ 2W · |V |2

and 1 ≤ q ≤ |V |
}

.

Given a value p
q
, we can decide if there exists a path

with expected value at least p
q
by subtracting p

q·T from

all the weights the graphs, and asking if there exists a

path with expected value at least 0 in the modified graph.

Indeed, if we define w′(e) = w(e)+η for all edges e ∈ E
(where η is a constant), then for all paths ρ, if u is the

sequence of utilities along ρ according to w, and u′ is
the sequence of utilities along ρ according to w′, then

∑

i

pi · u
′
i =

∑

i

pi · (ui + η · i)

= η ·
∑

i

pi · i+
∑

i

pi · ui

= T · η +
∑

i

pi · ui,

thus the value of the path is shifted by T · η. Then it

follows from Lemma 14 that the optimal value can be

computed by a binary search using O(|ValueSpace|) =
O(log(W · |V |)) calls to ExistsPositivePath.

Optimal path. An optimal path can be constructed by

a slight modification of the algorithm. In BestPaths,

we can maintain a path associated to each pair in D
as follows: the empty path is associated with the pair

〈z0, ψ0〉 added at line 1 of Algorithm 1, and given the

path ρ1 associated with the pair 〈z1, ψ1〉 (line 7 of

Algorithm 1), we associate the path ρ1 · (v1, v) with

the pair 〈z, ψ〉 added to D at line 12 of Algorithm 1.

It is easy to see that for every pair 〈z, ψ〉 in D, the

associated path can be used as the path ρ1 in Lemma 11

(item 1). Therefore, when ExistsPositivePath(v0) returns
true (line 7 of Algorithm 2), we can output the path

ρ1 · ρ
ω
2 where ρi is the path associated with the pair

〈zi, ψi〉 (i = 1, 2).
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Complexity analysis. We show that the algorithm

ExistsPositivePath (Algorithm 2) runs in polynomial

time. The key challenge is to bound the number of

�-incomparable pairs computed by BestPaths (Algo-

rithm 1) and enumerated in the 4th for-loop (line 6 of

Algorithm 2). The number of such pairs corresponds

to the number of simple paths in a graph, and hence

could be exponential in general. However, we show that

only a polynomial number of paths can correspond to �-
incomparable pairs, and therefore there is a polynomial

bound on the number of �-incomparable pairs. Those

paths are characterized by a small number of parameters

(such as the length, the starting vertex, the ending vertex,

etc.) that have a polynomial-size range (namely, |V |),
and therefore they are at most polynomially many. It

follows that the worst-case complexity of BestPaths and

ExistsPositivePath, which is bounded by the dominant

operations of computing and enumerating over sets of

�-maximal elements, is polynomial time (Theorem 4).

V. EXPECTED FINITE-HORIZON: BEST-CASE

DISTRIBUTION

We now consider the problem of maximizing the value

of a plan where the value of a plan is computed as the

supremum value (instead of the infimum value) over

all distributions with expected stopping time T . The

optimization problem is thus to choose a path as well

as a stopping-time distribution in order to maximize the

value.

Given a weighted graph G and an expected stopping

time T ∈ Q, we define the following:

• Optimal sup-value of plans. For a plan ρ that

induces the sequence u of utilities, let

val sup(ρ, T ) = val sup(u, T ) = sup
δ∈∆:Eδ=T

Eδ(u).

• Optimal sup-value. The optimal sup-value is the

supremum value over all plans:

val sup(G, T ) = sup
u∈UG

val sup(u, T ).

Since the distribution is chosen by the maximizer and

there is no adversary, the optimal sup-value is at least

as large as the optimal (inf-)value defined in Section IV.

However, while stationary plans suffice against adver-

sarially chosen distributions, it turns out that optimal

plans for the sup-value are in general not stationary (i.e.,

memory is necessary for optimality).

However, we show that after time T memory is no

longer necessary. A plan ρ = e0e1 . . . is stationary after
T if for all T ≤ t1 < t2, if et1 = (·, v) and et2 = (·, v),

then et1+1 = et2+1. We denote by S≥T
G the set of all

sequences of utilities induced by plans in G that are

stationary after T .

Theorem 5. For all weighted graphs G and for all T
we have

val sup(G, T ) = sup
u∈UG

val sup(u, T ) = sup
u∈S

≥T

G

val sup(u, T ),

i.e., optimal stationary-after-T plans exist for expected

finite-horizon under best-case distribution.

It follows from Theorem 5 that an optimal plan for

the sup-value always exists (since there are finitely many

stationary-after-T plans).
We show that computing optimal plans among sta-

tionary plans cannot be done in polynomial time unless

P = NP. In contrast, the optimal sup-value for arbitrary

paths and best-case distribution can be computed in

polynomial time.

Theorem 6. Given a weighted graph G, an inte-

ger T , and a threshold λ ∈ Q, deciding whether

supu∈SG
val sup(u, T ) is at least λ is NP-complete. The

NP-hardness holds for T and all weights expressed in

unary.

We show that optimal plans for best-case distributions

have a shape that consists of simple cycles and con-

necting segments of polynomial length. As we have a

polynomial algorithm to compute the best path of a fixed

length (Theorem 1) we obtain a polynomial algorithm

for the best-case distribution problem by enumerating

the possible lengths and end-points of the segments and

cycles, and then computing the best utility such segments

can have.

Theorem 7. Given a weighted graph G and expected

finite-horizon T , the optimal sup-value can be computed

in time polynomial in |V |, log(T ), and log(W ) (where

W is the largest absolute weight in the graph G).

VI. CONCLUSION

In this work we consider the expected finite-horizon

problem. Our most interesting results are for worst-case

distribution of stopping times, for which we establish

stationary plans are sufficient, and present polynomial-

time algorithms (in contrast with the case of specified

distribution and best-case distribution where memory

is necessary and computing an optimal plan among

stationary plans is NP-complete). In terms of algorithmic

complexity, our main goal was to establish polynomial-

time algorithms, and we expect that better algorithms

and refined complexity analysis can be obtained.
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