
Games with Imperfect Information:

Theory and Algorithms ⋆

Laurent Doyen1 and Jean-François Raskin2

1 LSV, ENS Cachan & CNRS, France
2 Université Libre de Bruxelles (ULB), Belgium

Abstract. We study observation-based strategies for two-player turn-
based games played on graphs with parity objectives. An observation-
based strategy relies on imperfect information about the history of a
play, namely, on the past sequence of observations. Such games occur
in the synthesis of a controller that does not see the private state of
the plant. Our main results are twofold. First, we give a fixed-point
algorithm for computing the set of states from which a player can win
with a deterministic observation-based strategy for a parity objective.
Second, we give an algorithm for computing the set of states from which
a player can win with probability 1 with a randomized observation-based
strategy for a reachability objective. This set is of interest because in the
absence of perfect information, randomized strategies are more powerful
than deterministic ones.

1 Introduction

Games are natural models for reactive systems. We consider zero-sum two-player
turn-based games of infinite duration played on finite graphs. One player repre-
sents a control program, and the second player represents its environment. The
graph describes the possible interactions of the system, and the game is of infinite
duration because reactive systems are usually not expected to terminate. In the
simplest setting, the game is turn-based and with perfect information, meaning
that the players have full knowledge of both the game structure and the sequence
of moves played by the adversary. The winning condition in a zero-sum graph
game is defined by a set of plays that the first player aims to enforce, and that the
second player aims to avoid. We focus on ω-regular sets of plays expressed by the
parity condition (see Section 2) and we briefly present properties and algorith-
mic solutions for such games. The theory and algorithms for games with perfect
information has been extensively studied [Mar75,EJ91,Tho95,Tho02,Hen07].

Turn-based games of perfect information make the strong assumption that
the players can observe the state of the game and the previous moves before
playing. This is however unrealistic in the design of reactive systems because the

⋆ This research was supported in part by the European Quasimodo and Gasics
projects, by the PAI program Moves funded by the Belgian Federal Government,
and by the CFV (Federated Center in Verification) funded by the F.R.S.-FNRS.

H

T

H

1

2

3

#
H
:2

#
T
:1

fl
ip

1

2

3

Fig. 1. The 3-coin game.

components of a system have an internal state that is not visible to the other
components, and because their execution is concurrent, each component choosing
moves independently of the others. Such situations require to introduce games
with imperfect information where the players have partial information about the
play. We illustrate the games with imperfect information with the 3-coin game,
shown in Fig. 1.

Three coins c1, c2, c3 are arranged on a table, either head or tail up.
Player 1 does not see the coins, but he is informed of the number of
heads (H) and tails (T). The coins are manipulated by Player 2. The
objective of Player 1 is to have all coins head up (HHH) while avoiding
at all cost a configuration where all coins show tail (TTT). The game is
played as follows. Initially, Player 2 chooses a configuration of the coins
with two heads and one tails. Then, the following rounds are played:
Player 1 can choose one coin in the set {c1, c2, c3} and ask Player 2 to
toggle that coin. Player 2 must execute the choice of Player 1 and he
may further decide to exchange the positions of the two other coins. The
game stops whenever the three coins are all head up (Player 1 wins) or
all tail up (Player 2 wins). Otherwise Player 2 announces the number of
heads and tails, and the next round starts.

This is a game with imperfect information for Player 1 as she does not know
the exact position of the coins, but only the number of heads and tails. In this
game, does Player 1 have a strategy such that for all strategies of Player 2,
the game reaches HHH and avoids TTT? We are interested in observation-based

strategies which rely on the information available to Player 1. In fact, Player 1
has no deterministic observation-based strategy to win the 3-coin game, because
Player 2 can always find a spoiling counter-strategy using his ability to exchange
coins after Player 1’s move. If we do not allow Player 2 to exchange the coins,
then Player 1 has a deterministic observation-based winning strategy consisting
in successively trying to toggle every coin. This strategy requires memory and
it is easy to see that memory is necessary to win this game. On the other hand,

2

if we allow Player 1 to take his decision using a source of randomization, then
she would be able to win the original 3-coin game with probability 1. This
shows that randomized strategies are in general more powerful than deterministic
strategies.

We study in this course mathematical models and algorithms for games with
imperfect information. The model that we consider is asymmetric in the sense
that Player 1 has imperfect information about the state while Player 2 has
perfect knowledge [Rei84,CDHR07,DDR06]. This model is useful for the design
of control programs embedded in an environment that provides observations
about its state via shared variables or sensors. We discuss the asymmetry of the
definition in Section 3.1 and we argue that the existence of deterministic winning
strategies for the Player 1 does not depend on the ability or not for Player 2 to
see the exact position of the game. In the rest of Section 3, we present the theory
and algorithms to decide the existence of observation-based winning strategies.
We use a reduction of games with imperfect information to games with perfect
information, and we exploit the structure of this reduction to obtain a tailored
data-structure and symbolic algorithms. We focus on reachability and safety

objectives which ask Player 1 to respectively reach and avoid a designated set of
target configurations. For parity objectives, we choose to provide a reduction to
safety games. We also briefly present algorithms to construct winning strategies.

In Section 4, we introduce randomized observation-based strategies and we
present an algorithmic solution for reachability and Büchi objectives. The al-
gorithm computes the set of winning positions of the game and constructs a
randomized observation-based winning strategy.

2 Games with perfect information

Game graphs A game graph is a tuple G = 〈L, lI , Σ, ∆〉, where L is a finite
set of states, lI ∈ L is the initial state, Σ is a finite alphabet of actions, and
∆ ⊆ L×Σ×L is a set of labeled transitions. We require the game graph G to be
total i.e., for all ℓ ∈ L and all σ ∈ Σ, there exists ℓ′ ∈ L such that (ℓ, σ, ℓ′) ∈ ∆.

The turn-based game on G is played by two players for infinitely many rounds.
The first round starts in the initial location lI of the game graph. In each round,
if the current location is ℓ, Player 1 chooses an action σ ∈ Σ, and then Player 2
chooses a location ℓ′ such that (ℓ, σ, ℓ′) ∈ ∆. The next round starts in ℓ′.

Plays and strategies A play in G is an infinite sequence π = ℓ0ℓ1 . . . such that
ℓ0 = lI , and for all i ≥ 0, there exists σi ∈ Σ such that (ℓi, σi, ℓi+1) ∈ ∆. We
denote by Inf(π) the set of locations that occur infinitely often in π. A history

is a finite prefix π(i) = ℓ0 . . . ℓi of a play, and its length is |π(i)| = i. We denote
by Last(π(i)) = ℓi the last location in π(i).

A deterministic strategy in G for Player 1 is a function α : L+ → Σ that
maps histories to actions, and for Player 2 it is a function β : L+ ×Σ → L such
that for all π ∈ L+ and all σ ∈ Σ, we have (Last(π), σ, β(π, σ)) ∈ ∆. We denote
by AG and BG the set of all Player 1 and Player 2 strategies in G, respectively.

3

A strategy α ∈ AG is memoryless if Last(π) = Last(π′) implies α(π) = α(π′)
for all π, π′ ∈ L+, that is the strategy only depends on the last location of the
history. We define memoryless strategies for Player 2 analogously.

The outcome of deterministic strategies α (for Player 1) and β (for Player 2)
in G is the play π = ℓ0ℓ1 . . . such that σi = α(π(i)) and ℓi+1 = β(π(i), σi)
for all i ≥ 0. This play is denoted outcome(G, α, β). A play π is consistent

with a deterministic strategy α for Player 1 if π = outcome(G, α, β) for some
deterministic strategy β for Player 2. We denote by Outcome1(G, α) the set of
plays that are consistent with α. Plays that are consistent with a deterministic
strategy for Player 2 and the set Outcome2(G, β) are defined analogously.

Objectives An objective for a game graph G = 〈L, lI , Σ, ∆〉 is a set ϕ ⊆ Lω.
We denote by ϕ = Lω \ ϕ the complement of ϕ. A deterministic strategy α

for Player 1 (resp. β for Player 2) is surely-winning for an objective ϕ in G if
Outcome1(G, α) ⊆ ϕ (resp. if Outcome2(G, β) ⊆ ϕ). We consider the following
objectives:

• Reachability and safety objectives. Given a set T ⊆ L of target locations,
the reachability objective Reach(T) = {ℓ0ℓ1 . . . | ∃k ≥ 0 : ℓk ∈ T } requires
that an observation in T is visited at least once. Dually, the safety objective
Safe(T) = {ℓ0ℓ1 . . . | ∀k ≥ 0 : ℓk ∈ T } requires that only locations in T are
visited.

• Büchi and coBüchi objectives. Given a set T ⊆ L of target locations, the
Büchi objective Buchi(T) = {π | Inf(π) ∩ T 6= ∅} requires that at least
one location in T is visited infinitely often. Dually, the coBüchi objective
coBuchi(T) = {π | Inf(π) ⊆ T } requires that only locations in T are visited
infinitely often.

• Parity objectives. For d ∈ N, let pr : L → {0, 1, . . . , d} be a priority func-

tion that maps each location to a nonnegative integer priority. The parity

objective Parity(pr) = {π | min{pr(ℓ) | ℓ ∈ Inf(π)} is even} requires that the
minimal priority occurring infinitely often is even.

Given a location ℓ̂, we also say that Player i (i = 1, 2) is surely-winning from ℓ̂ (or

that ℓ̂ is surely-winning) for an objective ϕ in G if Player i has a surely-winning

strategy in for ϕ in the game Ĝ = 〈L, ℓ̂, Σ, ∆〉 where ℓ̂ is the initial location. A
game is determined if when player i does not have a surely-winning strategy from
a location ℓ for an objective ϕ, then Player 3 − i has a surely-winning strategy
from ℓ for the complement objective ϕ.

Exercise 1 Prove the following:

(a) Büchi and coBüchi objectives are special cases of parity objectives.
(b) The complement of a parity objective is again a parity objective.

�

The following result shows that (i) parity games are determined and (ii)
memoryless strategies are sufficient to win parity games.

4

Theorem 1 (Memoryless determinacy [EJ91]). In all game graphs G with

parity objective ϕ, the following hold:

• either Player 1 has a surely-winning strategy in 〈G, ϕ〉, or Player 2 has a

surely-winning strategy in 〈G, ϕ̄〉;
• Player 1 has a surely-winning strategy in 〈G, ϕ〉 if and only if she has a

memoryless surely-winning strategy in 〈G, ϕ〉;
• Player 2 has a surely-winning strategy in 〈G, ϕ〉 if and only if he has a

memoryless surely-winning strategy in 〈G, ϕ〉.

Exercise 2 Consider a game graph G = 〈L, lI , Σ, ∆〉 which is not total, and
assume that we modify the rules of the game as follows: if in a round where the
current location is ℓ, Player 1 chooses an action σ ∈ Σ such that there exists no
transition (ℓ, σ, ℓ′) ∈ ∆, then Player 1 is declared losing the game. Given a non-
total game graph G and parity objective ϕ in G, define a generic construction of
a total game graph G′ along with a parity objective ϕ′ such that Player 1 has a
surely-winning strategy in 〈G, ϕ〉 if and only if he has a surely-winning strategy
in 〈G′, ϕ′〉. �

Exercise 3 Traditionally, a two-player game is a directed graph 〈V, vI , E〉 where
V is partitioned into V1, V2 the sets of vertices of Player 1 and Player 2 respec-
tively, vI ∈ V is the initial vertex, and E ⊆ V × V is a set of edges. We
call this model edge-game. A parity objective is defined by a priority function
pr : V → {0, 1, . . . , d} as above. A (memoryless) strategy for player i (i = 1, 2)
is a function γi : Vi → E such that (v, γi(v)) ∈ E for all v ∈ Vi. The definition
of plays and outcomes is adapted accordingly. Show that the edge-games are
equivalent to our game graphs by defining a generic transformation (a) from
parity edge-games to parity game graphs, and (b) from parity game graphs to
parity edge-games, such that player 1 has a surely-winning strategy in one game
if and only if he has a surely-winning strategy in the other game.

Hint: for (a), first define an equivalent bipartite graph 〈V ′, v′I , E
′〉 such that

for all edges (v, v′) ∈ E′, v ∈ V ′
1 if and only if v′ ∈ V ′

2 . �

Algorithms We present an algorithmic solution to the problem of deciding,
given a game graph G and an objective ϕ, if Player 1 has a surely-winning
strategy for ϕ in G. The set of locations in which Player 1 has a surely-winning
strategy can be computed symbolically as the solution of certain nested fixpoint
formulas, based on the controllable predecessor operator Cpre : 2L → 2L which,
given a set of locations s ⊆ L, computes the set of locations ℓ ∈ L from which
Player 1 can force the game to be in a location of s in the next round, i.e. she
has an action σ ∈ Σ such that all transitions from ℓ labeled by σ lead to s.
Formally,

Cpre(s) = {ℓ ∈ L | ∃σ ∈ Σ · ∀ℓ′ ∈ L : if (ℓ, σ, ℓ′) ∈ ∆ then ℓ′ ∈ s}.

Exercise 4 (a) Show that Cpre is a monotone operator for the subset ordering
i.e., s ⊆ s′ implies Cpre(s) ⊆ Cpre(s′) for all s, s′ ⊆ L.
(b) Define the controllable predecessor operator for the two-player edge-games
of Exercise 3. �

5

Consider a game with safety objective Safe(T). To win such a game, Player 1
has to be able to maintain the game in the set T for infinitely many rounds. For
all i ≥ 0, let W i ⊆ L be the set of locations from which Player 1 can maintain
the game in the set T for at least the next i rounds. Clearly W i+1 ⊆ W i ⊆ T for
all i ≥ 0, and therefore the sequence of sets (W i)i≥0 is decreasing and eventually
stabilizes. The limit of this sequence is defined as

W =
⋂

i≥0

W i

and this is the set of surely-winning locations for Player 1. This result follows
from the facts that for all i ≥ 0 and from all locations ℓ ∈ W i+1, Player 1 can
force the game to be in a location of W i in the next round, and that W =
W j+1 = W j for some j ≥ 0. We can compute the sets W i as follows:

W 0 = T
W i+1 = T ∩ Cpre(W i) for all i ≥ 0

Note that the limit W is obtained after at most n iterations where n = |T | is
the number of target locations. The set W can also be viewed as the greatest

solution of the equation W = T ∩ Cpre(W), noted νW · T ∩ Cpre(W). The
argument showing that a unique greatest fixpoint exists is not developed in this
tutorial. We simply mention that it relies on the theory of complete lattices and
Kleene’s fixpoint theorem.

Theorem 2 (Safety games). The set of surely-winning positions for Player 1
in safety games with perfect information can be computed in linear time.

For reachability objectives, the algorithmic solution based on Cpre computes
a sequence of sets W i (i ≥ 0) such that from every ℓ ∈ W i, Player 1 can force the
game to reach some location ℓ ∈ T within the next i rounds. It can be computed
as follows:

W 0 = T
W i+1 = T ∪ Cpre(W i) for all i ≥ 0

The necessary number of iterations is at most |L\T |. In terms of fixpoint, the set
W is the least solution of the equation W = T ∪Cpre(W), noted µW ·T ∪Cpre(W).

Theorem 3 (Reachability games). The set of surely-winning positions for

Player 1 in reachability games with perfect information can be computed in linear

time.

For parity objectives, several algorithms have been proposed in the literature
(see e.g. [Zie98,Jur00,Sch08], and [FL09] for a survey). Using the result of mem-
oryless determinacy (Theorem 1), it is easy to show that parity games can be
solved in NP ∩ coNP. A major open problem is to know whether parity games
with perfect information can be solved in polynomial time.

We present an algorithmic solution for parity games using a reduction to
safety games. A variant of this reduction has been presented in [BJW02]. In the

6

worst case, it yields safety games of size exponentially larger than the parity
game. Such a blow-up is not surprising since safety games can be solved in
polynomial time. The reduction gives some insight on the structure of parity
games.

Consider a game graph G = 〈L, lI , Σ, ∆〉 and a priority function pr : L →
{0, 1, . . . , d} defining the parity objective Parity(pr) that requires the minimal
priority occurring infinitely often to be even. We extend the locations of G with
tuples 〈c1, c3, . . . , cd〉 of counters associated with the odd priorities (we assume
that d is odd). The counters are initialized to 0, and each visit to a state with
odd priority p increments the counter cp. Intuitively, accumulating visits to an
odd priority is potentially bad, except if a smaller even priority is also eventually
visited. Therefore, each visit to a state with even priority p resets all counters
cp′ with p′ > p.

Under these rules, if player 1 has a surely-winning strategy in G for the
objective Parity(pr), then player 1 also has a memoryless surely-winning strategy,
and thus can enforce that each counter cp remains bounded by np the number
of locations with priority p. On the other hand, if Player 1 has no strategy that
maintains all counter cp below np, then it means that no matter the strategy
of Player 1, there exists a strategy of Player 2 such that the outcome of the
game visits some location with odd priority p at least twice, without visiting a
location of smaller priority. Since we can assume that Player 1 uses a memoryless
strategy, this shows that Player 2 can force infinitely many visits to an odd
priority without visiting a smaller priority, thus Player 1 cannot win the parity
game.

Formally, we define G′ = 〈L′, l′I , Σ, ∆′〉 where

• L′ = L× [n1]× [n3]× . . .× [nd] where [ni] denotes the set {0, 1, . . . , ni}∪{∞},
and ni is the number of locations with priority i in G;

• l′I = (lI , 0, 0, . . . , 0);

• ∆′ = {((ℓ1, c), σ, (ℓ2, update(c, p))) | (ℓ1, σ, ℓ2) ∈ ∆ and p = pr(q)} where

update(〈c1, c3, . . . , cd〉, p) =

{
〈c1, . . . , cp−1, 0, . . . , 0〉 if p is even
〈c1, . . . , cp−1, cp + 1, cp+1, . . . , cd〉 if p is odd

where we let cp + 1 = ∞ for cp ∈ {np,∞}.

The safety objective for G′ is Safe(T G
pr) where T G

pr = L′ ∩ (L × N
⌈ d

2
⌉) is the

set of locations in which no overflow occurred. The following lemma states the
correctness of the construction.

Lemma 1. For all game graphs G and priority functions pr, Player 1 is surely-

winning in G for the objective Parity(pr) if and only if Player 1 is surely-winning

in G′ for the objective Safe(T G
pr).

Proof. First, let α be a winning strategy for Player 1 in G for the parity ob-
jective Parity(pr). We construct a strategy α′ for Player 1 in the game G′ and

7

we show that this strategy is surely winning for the objective Safe(T G
pr). First,

without loss of generality we can assume that α is memoryless. We define α′

as follows, for all histories π in G′, let (ℓ, c) = Last(π), we take α′(π) = α(ℓ).
We show that α′ is winning for the objective Safe(T G

pr). Towards contradic-
tion, assume that it is not the case. Then there exists a strategy β′ of Player
2 such that outcome(G′, α′, β′) = (ℓ0, c0)(ℓ1, c1) . . . (ℓn, cn) . . . leaves T G

pr . Let
0 ≤ k1 < k2 be such that (ℓk2

, ck2
) is the first location where a counter (say

cp) reaches the value ∞ (p is the odd priority associated with this counter), and
k1 is the last index where this counter has been reset (k1 is equal to 0 if the
counter has never been reset). As cp overflows, we know that the subsequence
(ℓk1

, ck1
)(ℓk1+1, ck1+1) . . . (ℓk2

, ck2
) visits np+1 locations with priority p. As there

are np locations with priority p in G, we know that there is at least one location
with priority p which is repeating in the subsequence. Let i1 and i2 be the two
indexes associated with such a repeating location. Between i1 and i2, there is no
visit to an even priority smaller than p. Because Player 1 is playing a memory-
less strategy in G, Player 2 can spoil the strategy of Player 1 by repeating his
sequence of choices between i1 and i2. This contradicts our hypothesis that α is
a winning strategy in G for the parity objective Parity(pr).

Second, let us consider the case where Player 1 is not surely winning in G

for the objective Parity(pr). By determinacy, we know that Player 2 has a surely
winning strategy β for the parity objective Parity(pr). Using a similar argument
as above we can construct a strategy β′ for Player 2 for surely winning the
reachability objective Reach(T G

pr). By determinacy, this shows that Player 1 is

not surely-winning in G′ for the objective Safe(T G
pr). �

Note that since Büchi and coBüchi objectives are parity objectives (see Ex-
ercise 1), the above reduction to safety games applies and yields a game G′ of
quadratic size, thus a quadratic-time algorithm for solving Büchi and coBüchi
games.

3 Games with imperfect information: surely-winning

In a game with imperfect information, the set of locations is partitioned into
information sets called observations. Player 1 is not allowed to see what is the
current location of the game, but only what is the current observation. Observa-
tions provide imperfect information about the current location. For example, if a
location encodes the state of a distributed system, the observation may disclose
the value of the shared variables, and hide the value of the private variables; or in
a physical system, an observation may give a range of possible values for param-
eters such as temperature, modeling sensor imprecision. Note that the structure
of the game itself is known to both players, imperfect information arising only
about the current location while playing the game.

8

3.1 Game structure with imperfect information

A game structure with imperfect information is a tuple G = 〈L, lI , Σ, ∆,O〉,
where 〈L, lI , Σ, ∆〉 is a game graph (see Section 2) and O is a set of observations

that partitions the set L of locations. For each location ℓ ∈ L, we denote by
obs(ℓ) the unique observation o ∈ O such that ℓ ∈ o. For each play π = ℓ0ℓ1 . . .,
we denote by obs(π) the sequence obs(ℓ0)obs(ℓ1) . . . and we analogously extend
obs(·) to histories, sets of plays, etc.

The game on G is played in the same way as in the perfect information case,
but now only the observation of the current location is revealed to Player 1. The
effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(π) = α(π′) for all histories π, π′ ∈ L+ with obs(π) = obs(π′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1 i.e., for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{ℓ} | ℓ ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {ℓ1}, o2 = {ℓ2, ℓ

′
2}, o3 = {ℓ3, ℓ

′
3}, and o4 = {ℓ4}. The

transitions are shown as labeled edges, and the initial state is ℓ1. The objective
of Player 1 is ϕ = Reach(o4) i.e., to reach location ℓ4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all π ∈ L+ such
that Last(π) ∈ o2, if α(π) = a, then in the previous round β chooses the state
ℓ2, and if α(π) = b, then in the previous round β chooses the state ℓ′2. Given
α and β, the play outcome(G, α, β) never reaches ℓ4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs (see exercice 3),
locations are partitioned into locations of Player 1 and locations of Player 2,
and the players choose edges from the locations they own. It can be shown that
for perfect information games, this model is equivalent to our definition (see

9

ℓ1

ℓ2

ℓ′
2

ℓ3

ℓ′
3

ℓ4 a, b

a, b

a, b

a

a

b

b

a, b

a, bo1

o2 o3 o4

Fig. 2. A game structure with imperfect information G.

Exercise 3). When extending the classical game model to imperfect information,
we need to remember that Player 1 does not see what is the current location,
and therefore he could not in general choose an edge from the current location.
Instead, one may ask Player 1 to choose in each round one edge per location, thus
to be prepared to all situations. This would require an alphabet of actions of the
form L → ∆ which is of exponential size. We prefer a simpler definition where
an alphabet Σ of actions is fixed, and each action selects some outgoing edges.
In this definition, all locations belong to Player 1 and the choices of Player 2 are
modeled by nondeterminism.

Another point of interest is the fact that games with imperfect information
sound asymmetric, as only Player 1 has partial view of the play. It should be
noted however that for surely-winning, it would be of no help to Player 1 that
Player 2 also has imperfect information. Indeed, a surely-winning strategy of
Player 1 has to ensure that all outcomes are in the objective, and this require-
ment is somehow independent of the ability or not of Player 2 to see the current
location. In terms of strategies, one can show that to spoil a not surely-winning
strategy of Player 1, Player 2 does not need to remember the history of the play,
but only needs to count the number of rounds that have been played. We say
that a deterministic strategy β : L+ × Σ → L for Player 2 is counting if for all
π, π′ ∈ L+ such that |π| = |π′| and Last(π) = Last(π′), and for all σ ∈ Σ, we
have β(π, σ) = β(π′, σ).

Theorem 4 ([CDHR07]). Let G be a game structure with imperfect informa-

tion and ϕ be an observable objective. There exists an observation-based strategy

αo ∈ AG such that for all β ∈ BG we have outcome(G, αo, β) ∈ ϕ if and only

if there exists an observation-based strategy αo ∈ AO
G such that for all counting

strategies βc ∈ BG we have outcome(G, αo, βc) ∈ ϕ.

Exercise 5 Prove Theorem 4. �

The requirement that observations partition the set of locations of the games
may seem to be restrictive. For example in a system using sensors, it would
be more natural to allow overlapping observations. For instance, if a control
program measures the temperature using sensors, the values that are obtained

10

ℓ1

ℓ2

ℓ′
2

ℓ3

ℓ′
3

ℓ4

ℓ′
4

a, b

a, b

a, b

a, b

a, b

a, b

b

a

a

b

Fig. 3. Memory is necessary for Player 1 to surely-win the objective Reach(ℓ′4).

have finite precision ε. When the sensor returns value t, the actual temperature
lies within the interval [t−ε, t+ε]. Clearly, for a measure t′ such that |t′− t| < ε,
we have that [t− ε, t+ ε]∩ [t′− ε, t′ + ε] 6= ∅. As a consequence, the temperature
observations overlap and do not form a partition of the space of values.

Exercise 6 Show that a game structure with imperfect information in which
the observations do not partition the state space can be transformed into an
equivalent game structure with imperfect information with partitioning obser-
vations in polynomial time. �

Consider the game structure with imperfect information in Fig. 3. The alpha-
bet of actions is Σ = {a, b} and the objective for Player 1 is to reach location ℓ′4.
The partition induced by the observations is represented by the dashed sets. We
claim that Player 1 has no memoryless observation-based surely-winning strategy
in this game. This is because from locations ℓ3 and ℓ′3, different actions need to
be played to reach ℓ′4, but since ℓ3 and ℓ′3 have the same observation, Player 1 has
to play the same action in a memoryless observation-based strategy. However,
if Player 1 remembers the previous observation, then he has a surely-winning
strategy, namely if {ℓ2} was observed in the previous round, then play a, and if
{ℓ′2} was observed in the previous round, then play b. This shows that memory
may be necessary for surely-winning in a game with imperfect information even
for a reachability objective. Intuitively, a sequence of past observations provides
more precise knowledge about the current location of the game than the current
observation only. Therefore, Player 1 should store and update this knowledge
along the play to maintain the most precise information possible. Initially, his
knowledge is the singleton {lI} (we assume that the structure of the game is
known to both players), and if the current knowledge is a set s ⊆ L, Player 1
chooses action σ ∈ Σ, and observation o ∈ O is disclosed, then the updated
knowledge is postGσ (s) ∩ o where postGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ ∆} i.e.,
the set of all locations reachable from locations in s by playing σ.

3.2 Reduction to games with perfect information

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉 with
observable parity objective ϕ, we construct an equivalent game structure (with

11

perfect information) GK = 〈S, sI , Σ, ∆K〉 with a parity objective ϕK which, in-
tuitively, monitors the knowledge that Player 1 has about the current location
of the play. The game GK is called knowledge-based subset construction. The
structure GK = 〈S, sI , Σ, ∆K〉 is defined as follows.

– The set of locations is S = {s ∈ 2L\{∅} | ∃o ∈ O · s ⊆ o}. In the sequel, we
call a set s ∈ S a cell.

– The initial location is sI = {lI}.
– The set of labeled transitions ∆K ⊆ S×Σ×S contains all (s, σ, s′) for which

there exists o ∈ O such that s′ = postGσ (s) ∩ o.

Note that since the game graph G is total and the observations form a partition
of the locations, the game graph GK is also total.

To complete the reduction, we show how to translate the objectives. Given
a priority function pr : O → {0, . . . , d} defining the parity objective ϕ in G, we
define the parity objective ϕK in GK using the priority function prK such that
prK(s) = pr(o) for all s ∈ S and o ∈ O such that s ⊆ o.

Theorem 5 ([CDHR07]). Player 1 has an observation-based surely-winning

strategy in a game structure G with imperfect information for an observable

parity objective ϕ if and only if Player 1 has a surely-winning strategy in the

game structure GK with perfect information for the parity objective ϕK.

Exercise 7 Write a proof of Theorem 5. �

Observable safety and reachability objectives are defined by sets T ⊆ L of
target locations that are a union of observations. Hence for all cells s ∈ S, either
s ∩ T = ∅ or s ⊆ T . In the above reduction, such an objective is transformed
into an objective of the same type with set of target cells T K = {s ∈ S | s ⊆ T }.

Exercise 8 Consider a game structure with imperfect information G =
〈L, lI , Σ, ∆,O〉 and a non-observable reachability objective defined by T ⊆ L.
Construct an equivalent game structure with imperfect information G′ with
an observable reachability objective Reach(T ′), i.e. such that Player 1 has an
observation-based surely-winning strategy in G for Reach(T) if and only if
Player 1 has an observation-based surely-winning strategy in G′ for Reach(T ′).
Hint: take G′ = 〈L, lI , Σ, ∆,O′〉 where O′ = {o∩T | o ∈ O}∪{o∩(L\T) | o ∈ O}.

Note that non-observable Büchi objectives are more difficult to handle. For
such objectives and more generally for non-observable parity objectives, our
knowledge-subset construction is not valid and techniques related to Safra’s de-
terminization need to be used [Saf88]. �

3.3 Symbolic algorithms and antichains

Theorem 5 gives a natural algorithm for solving games with imperfect informa-
tion with observable objective: apply the algorithms for solving games with per-
fect information to the knowledge-based subset construction presented above3.

3 Note that the symbolic algorithm can be applied without explicitly constructing the
knowledge-based construction.

12

The symbolic algorithms presented in Section 2 are based on the controllable
predecessor operator Cpre : 2S → 2S whose definition can be rewritten for all
q ⊆ S as:

Cpre(q) = {s ∈ S | ∃σ ∈ Σ · ∀s′ ∈ S : if (s, σ, s′) ∈ ∆K then s′ ∈ q}

= {s ∈ S | ∃σ ∈ Σ · ∀o ∈ O : if s′ = postGσ (s) ∩ o 6= ∅ then s′ ∈ q}.

A crucial property of this operator is that it preserves downward-closedness of
sets of cells. Intuitively, Player 1 is in a better situation when her knowledge is
more precise, i.e. when her knowledge is a smaller cell according to set inclusion.
A set q of cells is downward-closed if s ∈ q implies s′ ∈ q for all s′ ⊆ s. If Player 1
can force the game GK to be in a cell of a downward-closed set of cells q in the
next round from a cell s, then she is also able to do so from all cells s′ ⊆ s.
Formally, if q is downward-closed, then so is Cpre(q). It is easy to show that
∩ and ∪ also preserve downward-closedness, and therefore all sets of cells that
are computed for solving games of imperfect information are downward-closed.

As the symbolic algorithms are manipulating downward closed sets, it is
valuable to design a data-structure to represent them compactly. We define such
a data-structure here. The idea is to represent a set of cells by a set of sets of
locations and interpret this set as defining all the cells that are included in one
of its element. Clearly, in such a representation having a set of sets with two ⊆-
comparable element is not useful, so we can restrict our symbolic representations
to be antichains, i.e. set of sets of locations that are ⊆-incomparable.

Antichains for representing downward-closed sets Let us note A the set
of ⊆-antichains of sets of locations, that is

A = {{s1, s2, . . . , sn} ⊆ 2L | ∀1 ≤ i, j ≤ n : si ⊆ sj → i = j}.

Note that an antichain is a set of subsets of locations that are not necessary
cells. We denote by A the set of antichains. The set A is partially ordered as
follows. For q, q′ ∈ A, let q ⊑ q′ iff ∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′. The least upper
bound of q, q′ ∈ A is q ⊔ q′ = ⌈{s | s ∈ q or s ∈ q′}⌉, and their greatest lower
bound is q⊓q′ = ⌈{s ∩ s′ | s ∈ q and s′ ∈ q′}⌉. We view antichains as a symbolic
representation of ⊆-downward-closed sets of cells. Given an antichain q ∈ A, let
q↓ = {s ∈ S | ∃s′ ∈ q : s ⊆ s′} be the downward closure of q i.e., the set of cells
that it represents.

Exercise 9 Show that ⊔ and ⊓ are indeed the operators of least upper bound
and greatest lower bound respectively. By establishing this, you have shown that
the set of antichains forms a complete lattice. What are the least and greatest
elements of this complete lattice ? �

To define a controllable predecessor operator CpreA over antichains, we ob-
serve that for all q ∈ A,

Cpre(q↓) = {s ∈ S | ∃σ ∈ Σ · ∀o ∈ O · ∃s′ ∈ q : postGσ (s) ∩ o ⊆ s′}

= {s ∈ S | ∃σ ∈ Σ · ∀o ∈ O · ∃s′ ∈ q : s ⊆ p̃re
G
σ (s′ ∪ o)}

13

where o = L \ o and p̃re
G
σ (s) = {ℓ ∈ L | postGσ ({ℓ}) ⊆ s}. Hence, we define

CpreA(q) =
⊔

σ∈Σ

l

o∈O

⊔

s′∈q

{
p̃reσ(s′ ∪ o)

}

and this operator computes a symbolic representation of the controllable prede-
cessors of the downward-closed set of cells symbolically represented by q.

Lemma 2. For all antichains q ∈ A, we have CpreA(q)↓ = Cpre(q↓).

Exercise 10 Prove Lemma 2. �

In the definition of CpreA, the operations p̃re,
⊔

σ∈Σ and
⊔

s′∈q can be com-
puted in polynomial time, while

d
o∈O can be computed in exponential time

by simple application of the definitions. Unfortunately, it turns out that a
polynomial-time algorithm is unlikely to exist for computing

d
o∈O as the NP-

complete problem IndependentSet can be reduced to it.
Consider a graph G = (V, E) where V is a set of vertices and E ⊆ V × V

is a set of edges. An independent set of G is a set W ⊆ V of vertices such that
for all (v, v′) ∈ E, either v 6∈ W or v′ 6∈ W i.e., there is no edge of G connecting
vertices of W . The IndependentSet problem asks given a graph G and size
k to decide if there exists an independent set of G of size larger than k. This
problem is known to be NP-complete. We show that IndependentSet reduces
to computing ⊓.

Let G = (V, E) be a graph, and for each e = (v, v′) ∈ E let qe =
{
V \

{v}, V \ {v′}
}
. The set qe↓ contains all sets of vertices that are independent

of the edge e. Therefore, the antichain q = ⌈
⋂

e∈E qe↓⌉ contains the maximal
independent sets of G, and an algorithm to compute q would immediately solve
IndependentSet, showing that such an algorithm running in polynomial time
cannot exist unless P = NP . The idea of this reduction can be extended to show
that CpreA requires exponential time [BCD+08,FJR09].

Exercise 11 Compute the winning cells in the two versions of the 3-coin game
with the symbolic algorithm using the antichain representation. The 3-coin

game graph is given in Fig. 4. We give here the solutions to this exercise.

– We first consider the version in which Player 2 is allowed to exchange the
positions of the coins that are not toggled. To compute the winning cells of
the game with imperfect information, we compute the set of all cells that are
able to force the cell {7}. We give here the sequence of antichains computed
by our algorithm: X0 = {{7}}, X1 = X0 ⊔ Cpre(X0) = {{1}, {2}, {3}, {7}},
X2 = X1 ⊔Cpre(X1) = {{1}, {2}, {3}, {4}, {5}, {6}, {7}} = X1 and the fixed
point is reached. As {0} 6∈ X1↓, this shows that Player 1 does not have a
deterministic winning strategy in this game.

– We now consider the version where Player 2 is not allowed to exchange the
position of the coins that are not toggled. To compute the winning cells of the
game with imperfect information, we compute the set of all cells that are able

14

init

0

HTH

1

HHT

2

THH

3

HTT

4

TTH

5

THT

6

HHH

7

TTT

8

Σ

Σ

Σ

Σ

Σ

c3

c1,
c3

c1

c3

c2

c2,
c3

c2

c3

c1

c1

c3

c2

o1 o2 o3

o4

o5

Fig. 4. The 3-coin game graph with alphabet Σ = {c1, c2, c3}. The transitions between
states 2, 3, 5, and 6 are omitted for the sake of clarity.

to force the cell {7}. We give here the sequence of antichains computed by
our algorithm. X0 = {{7}}, X1 = X0 ⊔ Cpre(X0) = {{1}, {2}, {3}, {7}},
X2 = X1 ⊔ Cpre(X1) = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}, X3 =
X2 ⊔ Cpre(X2) = {{1, 2}, {2, 3}, {1, 3}, {4}, {5}, {6}, {7}}, X4 = X3 ⊔
Cpre(X3) = {{1, 2}, {2, 3}, {1, 3}, {4, 6}, {5, 6}, {4, 5}, {7}}, X5 = X4 ⊔
Cpre(X4) = {{1, 2, 3}, {4, 6}, {5, 6}, {4, 5}, {7}}, X6 = X5 ⊔ Cpre(X5) =
{{0, 1, 2, 3}, {0, 4, 6}, {0, 5, 6}, {0, 4, 5}, {0, 7}}, X7 = X6. As {0} ∈ X7↓, this
shows that Player 1 has a deterministic winning strategy in this version of
the 3-coin game.

�

3.4 Strategy construction

The algorithms presented in Section 2 for safety and reachability games com-
pute the set of winning positions for Player 1. We can use these algorithms to
compute the set of winning cells in a game with imperfect information, using
the controllable predecessor operator CpreA. This gives a compact representa-
tion (an antichain) of the downward-closed set of winning cells. However, it does
not construct surely-winning strategies. We show that in general, there is a di-
rect way to construct a surely-winning strategy for safety games, but not for
reachability and parity games.

For safety games with perfect information, the fixed point computation shows
that the set of winning positions satisfies the equation W = T ∩ Cpre(W).
Therefore, W ⊆ Cpre(W), and thus for each ℓ ∈ W , there exists an action
σℓ ∈ Σ such that postGσℓ

({ℓ}) ⊆ W . Since, W ⊆ T , it is easy to see that the
memoryless strategy playing σℓ in each location ℓ ∈ W is surely-winning.

For safety games with imperfect information, the fixed point W is represented
by an antichain qwin such that W = qwin↓. The strategy construction for safety
games with perfect information can be extended as follows. By definition of

15

CpreA, for each s ∈ qwin there exists σs ∈ Σ such that for all o ∈ O, we have
postGσs

(s) ∩ o ⊆ s′ for some s′ ∈ qwin. It is easy to see that the strategy playing
σs in every cell s′′ ⊆ s is surely-winning.

Thus, we can define a surely-winning strategy by the Moore machine
〈M, mI , update, µ〉 where M = qwin, mI = s such that sI ⊆ s for some s ∈ qwin,
µ : M → Σ is an output function such that µ(s) = σs as defined above for
all s ∈ M , and update : M × O → M is such that if update(s, o) = s′, then
postGσ (s) ∩ o ⊆ s′ for σ = µ(s) (note that such an s′ exists by the above re-
mark). The automaton A defines the observation-based strategy α such that
α(π) = σ where σ = µ(s) and s = update(mI , obs(π)) for all π ∈ L+ (where the
update function is extended to sequences of observations in the usual way, i.e.
update(m, o1 . . . on) = update(update(m, o1), o2 . . . on)).

For reachability games, the information contained in the fixpoint of win-
ning positions is not sufficient to extract a surely-winning strategy. Intuitively,
a surely-winning strategy needs to stay in the winning set (as in safety games),
and moreover should ensure some kind of progress with respect to the target
set T to guarantee that T is eventually reached. The notion of progress can be
formalized by a number rank(s) associated to each cell s such that Player 1 can
enforce to reach the target from cell s within at most rank(s) rounds.

In a reachability game with perfect information, the rank of a location ℓ in
the set of winning positions W is the least i such that ℓ ∈ W i. From a location
ℓ ∈ W with rank r > 0, a surely-winning strategy can play an action σℓ ∈ Σ

such that postGσℓ
({ℓ}) ⊆ W r−1.

In a game with imperfect information, knowing the rank of the cells in the
antichain qwin may still not be sufficient to obtain a surely-winning strategy.
Consider the game G in Fig. 5, with reachability objective Reach({ℓ2}) and
observations {ℓ0, ℓ1} and {ℓ2}. Since Cpre({{ℓ2}}) = {{ℓ1}} (by playing action
b) and Cpre({{ℓ1}, {ℓ2}}) = {{ℓ0, ℓ1}} (by playing action a), the fixed point
computed by the antichain algorithm is {{ℓ2}, {ℓ0, ℓ1}}. However, from {ℓ0, ℓ1},
after playing a, Player 1 reaches the cell {ℓ1} which is not in the fixed-point
(however, it is subsumed by the cell {ℓ0, ℓ1}). Intuitively, the antichain algorithm
has forgotten which action is to be played next from {ℓ1}. Note that playing a

again (and thus forever) is not winning.

This example illustrates the fact that the rank of a cell s is not necessarily
the same as the rank of a cell s′ ⊆ s. Therefore, for the purpose of strategy
construction, the fixpoint computation needs to store the rank associated with
a cell, and refine the rule of eliminating the cells that are subsumed by larger
cells to take ranks into account [BCD+09]. In fact, it can be shown that for some
family of reachability games with imperfect information, the fixpoint computed
in the antichain representation (without rank) is of polynomial size while any
finite-memory surely-winning strategy is of exponential size [BCD+08].

16

ℓ0 ℓ1 ℓ2

b a a, b

a b

Fig. 5. A reachability game G.

4 Games with imperfect information: almost-surely

winning

We revisit the 3-coin game. In Exercise 11, we have seen that Player 1 does
not have an observation-based deterministic winning strategy in this game when
Player 2 is allowed to exchange the position of the coins that are not toggled. This
is because Player 2 can guess the choice that Player 1 will make in the next round.
When a deterministic strategy for Player 1 is fixed, this information is formally
available to Player 2 but this is not realistic in practice. Player 1 should use a
source of randomization in order to avoid that Player 2 can guess the choice she
will make in the next round. Whenever the game is in a configuration with two
heads, Player 1 chooses uniformly at random one of the three coins. Clearly the
probability to choose the coin showing tail is 1

3 no matter if Player 2 has decided
to exchange the coins or not at the previous step. Otherwise, she should play the
same coin a second time to make sure to come back to a configuration with two
heads. She then repeats the same randomized strategy. Every two rounds, Player
1 has a 1

3 probability to reach the winning configuration. Note also that she is
sure to avoid the loosing configuration (all coins on tails). This simple strategy
is thus winning the reachability objective with probability one. This illustrates
the power of randomized strategies in games with imperfect information.

4.1 Playing with randomized strategies

Before going into the formalization, let us take a look at the example of Fig. 3.
From the initial location ℓ1, we have seen that Player 1 has no surely-winning
strategy for reaching ℓ4. This is because for all strategies α of Player 1, there ex-
ists a play π ∈ Outcome1(G, α) that visits ℓ3 infinitely often, and therefore never
visits ℓ4. However, the strategy β of Player 2 such that π = outcome(G, α, β)

chooses the successor ℓ̂ of ℓ1 in a way that depends on the next move of Player 1,
namely ℓ̂ = ℓ2 if α plays action a next, and ℓ̂ = ℓ′2 if α plays action b next. In a
concrete implementation of the system, this means that Player 2 needs to predict
the behavior of Player 1 infinitely often in order to win. In practice, since one
wrong guess make Player 1 win, this suggests that the probability that Player 2
wins (making infinitely many right guesses) is 0, and thus Player 1 can win with
probability 1.

We now formally define a notion of probabilistic winning. First, a randomized

strategy for Player 1 is a function α : (L×Σ)∗L → D(Σ) where D(Σ) denotes the
set of probability distributions over Σ i.e., the set of all functions f : Σ → [0, 1]

17

{ℓ1} {ℓ2, ℓ′
2
} {ℓ3, ℓ′

3
} {ℓ4} a, b

a, b a, b

a, b

a, b

Fig. 6. The knowledge-based subset construction for the game of Fig. 3.

such that
∑

σ∈Σ f(σ) = 1. Intuitively, if Player 1 uses distribution f , then he
plays each action σ with probability f(σ). We assume that Player 1 is informed
about which actual actions he played. Hence, strategies are mappings from in-
terleaved sequences of states and actions of the form ρ = ℓ0σ0ℓ1σ1 . . . σn−1ℓn

that we call labeled histories. We denote by L(ρ) = ℓ0ℓ1 . . . ℓn the projection of
ρ onto L∗. A strategy α is observation-based if for all pairs of labeled histories
ρ, ρ′ of the form ρ = ℓ0σ0ℓ1σ1 . . . σn−1ℓn and ρ′ = ℓ′0σ0ℓ

′
1σ1 . . . σn−1ℓ

′
n such that

for all i, 1 ≤ i ≤ n, obs(ℓi) = obs(ℓ′i), we have that α(ρ) = α(ρ′).

A randomized strategy for Player 2 is a function β : (L × Σ)+ → D(L)
such that for all labeled histories ρ = ℓ0σ0ℓ1σ1 . . . σn−1ℓn and σ ∈ Σ, for all
ℓ such that β(ρ, σ)(ℓ) > 0, we have (ℓn, σ, ℓ) ∈ ∆. We extend in the expected
way (using projection of labeled histories onto L∗ when necessary) the notions
of observation-based randomized strategies for Player 2, memoryless strategies,
consistent plays, outcome, etc.

Given strategies α and β for Player 1 and Player 2 respectively, and an initial
location ℓ0, the probability of a labeled history ρ = ℓ0σ0ℓ1σ1 . . . σn−1ℓn is P(ρ) =∏n−1

i=0 α(ℓ0σ0 . . . σi−1ℓi)(σi) ·β(ℓ0σ0 . . . σi−1ℓiσi)(ℓi). The probability of a history
π = ℓ0ℓ1 . . . ℓn is P(π) =

∑
ρ∈L−1(π) P(ρ), which uniquely defines the probabilities

of measurable sets of (infinite) plays [Var85]. The safety, reachability, and parity
objectives being Borel objectives, they are measurable [Kec95]. We denote by

Prα,β
ℓ (ϕ) the probability that an objective ϕ is satisfied by a play starting in ℓ

in the game G played with strategies α and β. A randomized strategy α for
Player 1 in G is almost-surely winning for the objective ϕ if for all randomized
strategies β of Player 2, we have Prα,β

lI
(ϕ) = 1. A location ℓ̂ ∈ L is almost-surely

winning for ϕ if Player 1 has an almost-surely winning randomized strategy α

in the game Ĝ = 〈L, ℓ̂, Σ, ∆〉 where ℓ̂ is the initial location.

Note that our definition is again asymmetric in the sense that Player 1 has
imperfect information about the location of the game while Player 2 has perfect
information. While having perfect information does not help Player 2 in the case
of surely-winning, it makes Player 2 stronger in the probabilistic case. Recent
works [BGG09,GS09] study a symmetric setting where the two players have
imperfect information. The decision problems are computationally harder to
solve (deciding if a location is almost-surely winning is EXPTIME-complete in
our setting, and it becomes 2EXPTIME-complete in the symmetric setting). We
choose to present the asymmetric setting for the sake of consistency with the first
part of this tutorial, because it is a simpler setting, and because the techniques
that we present can be adapted to solve the more general case.

18

4.2 An algorithm for reachability objectives

We present an algorithm for computing the locations of a reachability game
with imperfect information G from which Player 1 has an almost-surely winning
strategy. The algorithm can be extended to solve Büchi objectives [CDHR07].
The case of coBüchi and parity objectives remains open.

Extended subset construction First, note that the reduction to games with
perfect information GK of Section 3 does not preserve the notion of almost-surely
winning. The knowledge-based subset construction for the the game of Fig. 3 is
given in Fig. 6. It is easy to see that for all strategies of Player 1, Player 2
can avoid {ℓ4} by always choosing from {ℓ3, ℓ

′
3} the transition back to {ℓ1}. In

the original game, this amounts to allow Player 2 to freely “switch” between
location ℓ3 and ℓ′3. However, against Player 1 strategy playing a and b uniformly
at random, Player 2 cannot really decide which location of ℓ3 or ℓ′3 is reached,
since both have probability 1

2 to be reached regardless of Player 2 strategy. So, we
have to enrich the knowledge-based subset construction to take this phenomenon
into account. In the new construction, locations are pairs (s, ℓ) consisting of a
cell s and a location ℓ ∈ s. To reduce ambiguity, we call such pairs states. The
cell s encodes the knowledge of Player 1, and the location ℓ keeps track of the
choice of Player 2, forcing Player 2 to stick to his choice. Of course, we need to
take care that the decisions of Player 1 do not depend on the location ℓ, but
only on the cell s.

Given a game structure with imperfect information G = 〈L, lI , Σ, ∆,O〉,
we construct the game structure (with perfect information) H = Knw(G) =
〈Q, qI , Σ, ∆H〉 as follows:

– Q = {(s, ℓ) | ∃o ∈ O : s ⊆ o and ℓ ∈ s};
– the initial state is qI = ({ lI }, lI);
– the transition relation ∆H ⊆ Q×Σ×Q is defined by ((s, ℓ), σ, (s′, ℓ′)) ∈ ∆H

iff there is an observation o ∈ O such that s′ = postGσ (s)∩o and (ℓ, σ, ℓ′) ∈ ∆.

The structure H is called the extended knowledge-based subset construction of G.
Intuitively, when H is in state (s, ℓ), it corresponds to G being in location ℓ and
the knowledge of Player 1 being s. The game H = Knw(G) is given in Fig. 7 for
the game G of Fig. 2. Reachability and safety objectives defined by a target set
T ⊆ L are transformed into an objective of the same type where the target set
of states is T ′ = {(s, ℓ) ∈ Q | ℓ ∈ T }. A parity objective ϕ in G defined by a
priority function pr : L → N is transformed into a parity objective ϕKnw in H

using the priority function prKnw such that prKnw(s, ℓ) = pr(o) for all (s, ℓ) ∈ Q

and o ∈ O such that s ⊆ o.

Equivalence preserving strategies Since we are interested in observation-
based strategies for Player 1 in G, we require that the strategies of Player 1 in H

only depend on the sequence of knowledges s0 . . . si in the sequence of previously
visited states (s0, ℓ0) . . . (si, ℓi). Two states q = (s, ℓ) and q′ = (s′, ℓ′) of H are
equivalent, written q ≈ q′, if s = s′, i.e. when the knowledge of Player 1 is the

19

same in the two states. For a state q ∈ Q, we denote by [q]≈ = {q′ ∈ Q | q ≈ q′}
the ≈-equivalence class of q. Equivalence and equivalence classes for plays and
labeled histories are defined in the expected way. A strategy α for Player 1 in H

is equivalence-preserving if α(ρ) = α(ρ′) for all labeled histories ρ, ρ′ of H such
that ρ ≈ ρ′.

Theorem 6 ([CDHR07]). For all game structures G with imperfect informa-

tion, Player 1 has an observation-based almost-surely winning strategy in G for

a parity objective ϕ if and only if Player 1 has an equivalence-preserving almost-

surely winning strategy in H = Knw(G) for the parity objective ϕKnw.

Solving reachability objectives It can be shown that for reachability and
Büchi objectives, memoryless strategies are sufficient for Player 1 to almost-
surely win the game with perfect information H = Knw(G). Let H = Knw(G) =
〈Q, qI , Σ, ∆H〉, let Reach(T) with T ⊆ Q be an observable reachability objective
in H , and ≈ the equivalence relation between states of H as defined above.
Player 1 almost-surely wins from the set of states W ⊆ Q if there exist functions
Allow : Q → 2Σ and Good : Q → Σ such that for all q ∈ W :

1. for all q′ ≈ q and for all σ ∈ Allow(q), postHσ (q′) ⊆ W ,
2. in the graph (W, E) with E = {(q, q′) ∈ W ×W | (q, Good(q), q′) ∈ ∆H}, all

infinite paths visit a state in T ,
3. Good(q) ∈ Allow(q).

Condition 1 ensures that the set W of winning states is never left. This is neces-
sary because if there was a positive probability to leave W , then Player 1 would
not win the game with probability 1. Condition 2 ensures that from every state
q ∈ W , the target T is entered with some positive probability (remember that
the action Good(q) is played with some positive probability). Note that if all in-
finite paths in (W, E) eventually visit T , then all finite paths of length n = |W |
do so. Therefore, the probability to reach T within n rounds can be bounded
by a constant κ > 0, and thus after every n rounds the target set T is reached
with probability at least κ. Since Condition 1 ensures the set W is never left, the
probability that the target set has not been visited after m ·n rounds is at most
(1−κ)m. Since the game is played for infinitely many rounds, the probability to
reach T is limm→∞ 1 − (1 − κ)m = 1. By Condition 3, the actions that ensure
progress towards the target set can be safely played.

The algorithm to compute the set of states W ⊆ Q from which Player 1 has
an equivalence-preserving almost-surely winning strategy for Reach(T) is the
limit of the following computations:

W 0 = Q

W i+1 = PosReach(W i) for all i ≥ 0

where the PosReach(W i) operator is the limit of the sequence Xj defined by

X0 = T
Xj+1 = Xj ∪ Apre(W i, Xj) for all j ≥ 0

20

where

Apre(W, X) = {q ∈ W | ∃σ ∈ Σ : postHσ (q) ⊆ X and ∀q′ ≈ q : postHσ (q′) ⊆ W}.

The operator Apre(W, X) computes the set of states q from which Player 1 can
ensure that some state of X is visited in the next round with positive probability,
while ensuring that W is not left, even if the current state is q′ ≈ q (because if
the game is actually in q, then it means that Player 1 cannot be sure that the
game is not in q′ with some positive probability).

Note that for W = Q, the condition postHσ (q′) ⊆ W is trivial. Hence, for
W 0 = Q the set W 1 = PosReach(W 0) contains all states from which Player 1
can enforce to reach T with positive probability. Clearly, this set is an over-
approximation of the almost-surely winning states, since from Q \ W 1 and no
matter the strategy of Player 1, the probability that T is reached is 0. Therefore,
we compute in W 2 = PosReach(W 1) the set of states from which Player 1 can
enforce to reach T with positive probability without leaving W 1, giving a bet-
ter over-approximation of the set of almost-surely winning states. The iteration
continues until a fixpoint is obtained. Note that W 0 ⊇ W 1 ⊇ W 2 ⊇ · · · is a
decreasing sequence, and X0 ⊆ X1 ⊆ X2 ⊆ · · · is an increasing sequence for
each computation of PosReach(W i). This algorithm is thus quadratic in the size
of H , and exponential in the size of G.

Theorem 7. The problem of deciding whether Player 1 is almost-surely winning

in a reachability game with imperfect information is EXPTIME-complete.

It can be shown that the problem is EXPTIME-hard, see [CDHR07], and thus
the algorithm developed above is worst-case optimal. For Büchi objectives,
an EXPTIME algorithm can be obtained by substituting the first line of the
PosReach(W i) operator by X0 = T ∩ Spre(W i) where

Spre(W i) = Apre(W i, W i) = {q ∈ W i | ∃σ ∈ Σ · ∀q′ ≈ q : postHσ (q′) ⊆ W i}.

Intuitively, we start the iteration in PosReach(W i) with those target states from
which Player 1 can force to stay in W i in the next round. This ensures that
whenever a target state is reached (which will happen with probability one),
Player 1 can continue to play and will again force a visit to the target set with
probability one, thus realizing the objective Buchi(T) with probability 1.

Antichains for randomized strategies When computing the set of surely-
winning locations of a game with imperfect information, we have shown that
antichains of sets of locations are a well-suited data-structure. This idea can be
extended for computing the sets of almost-surely winning locations of a game
with imperfect information.

Let G = 〈L, lI , Σ, ∆,O〉 be a game structure with imperfect information,
and let H be its extended knowledge based construction, i.e. H = Knw(G) =
〈Q, qI , Σ, ∆H〉. We define �⊆ Q×Q as (s, ℓ) � (s′, ℓ′) iff s ⊆ s′ and ℓ = ℓ′. This
order has the following properties:

21

{ℓ1}, ℓ1

{ℓ2, ℓ′
2
}, ℓ2

{ℓ2, ℓ′
2
}, ℓ′

2

{ℓ3, ℓ′
3
}, ℓ3

{ℓ3, ℓ′
3
}, ℓ′

3
{ℓ4}, ℓ4

a, b

a, b

a, b

a

a

b

b

a, b

a, b

≈ ≈

Fig. 7. Game structure H = Knw(G) (for G of Fig. 2).

– if a state q in H is almost-surely winning for the observable reachability
objective Reach(T), then for all q′ � q in H , q′ is almost-surely winning for
the objective Reach(T);

– given an observable reachability objective T , all the sets W 0, W 1, . . . , and
X0, X1, . . . are �-downward closed.

Exercise 12 Define the operations ⊓, ⊔ for the order �. Define the operations
PosReach and Apre so that they operate directly on �-antichains. �

Exercise 13 Apply the fixed point algorithm above to compute the almost-
surely winning positions in the 3-coin example when Player 2 is allowed to switch
coins. Make sure to use antichains during your computations. Extract from the
fixed point an almost-surely winning observation-based randomized strategy.

We give the solution to the exercise below. To determine the set of cells in
our 3-coin game from which Player 1 has a randomized strategy that allows her
to win the game with probability one, we execute our fixed point algorithm.
In the computations, we may denote sets of locations by the sequence of their
elements, e.g., 〈01235〉 denotes the set {0, 1, 2, 3, 5}.

W 0 = {〈012345678〉} × {0, 1, 2, 3, 4, 5, 6, 7, 8}. W 1 = PosReach(W 0) is
obtained by the following fixed point computation. X0 = (〈7〉, 7), X1 =
X0 ⊔ Apre(W 0, X0) = {〈01234578〉} × {0, 1, 2, 3, 4, 5, 7} ⊔ {〈01235678〉} ×
{0, 1, 2, 3, 5, 6, 7}⊔{〈01234678〉}×{0, 1, 2, 3, 4, 6, 7} = X2. W 2 = W 1. This fixed
point tells us that Player 1 has a randomized strategy to win the 3-coin game with
probability one. The randomized strategy can be extracted from the antichain
W 1 and is as follows. In the first round, all choices of Player 1 are equivalent, so
she can play c1. Then she receives the observation o2 and update her knowledge
to {1, 2, 3} which is subsumed by all the elements of the antichain. Then, she
plays any action which is associated to those elements with positive probability.
The action c1 is associated with {〈01235678〉} × {0, 1, 2, 3, 5, 6, 7}, action c2 is
associated with {〈01234578〉}×{0, 1, 2, 3, 4, 5, 7}, and action c3 is associated with
{〈01234678〉}× {0, 1, 2, 3, 4, 6, 7}. Let us consider the different cases:

– If the action c1 is played then the knowledge of Player 1 becomes
{5, 6}. This knowledge is subsumed by all the elements in {〈01235678〉} ×
{0, 1, 2, 3, 5, 6, 7} and the action associated with those element is 1. After

22

playing 1 the knowledge of Player 1 is now {1, 2}. Again this knowledge is
subsumed by all the elements of the fixed point so Player 1 can play each
action in {c1, c2, c3} with positive probability. Note that with this knowl-
edge, it is sufficient to choose play with positive probability in the set of
actions {c2, c3}, but this optimization is not necessary if we want to win
with probability one, it only reduces the expected time for winning.

– if the action c2 is played then the knowledge of Player 1 becomes
{4, 5}. This knowledge is subsumed by all the elements in {〈01234578〉} ×
{0, 1, 2, 3, 4, 5, 7} and the action associated with those element is c2. After
playing c2 the knowledge of Player 1 is now {2, 3}. And we can start again
playing all actions in {c1, c2, c3} with positive probability.

– the reasoning is similar for action c3.

So we see that our algorithm proposes at each even round to play a action at
random then to replay the same action. With this strategy, if Player 1 plays each
action with probability 1

3 when her knowledge is subsumed by {1, 2, 3}, she has
a probability 1

3 to reach 7 every two rounds and so she wins with probability 1.
�

References

[BCD+08] D. Berwanger, K. Chatterjee, L. Doyen, T. A. Henzinger, and S. Raje. Strat-
egy construction for parity games with imperfect information. In Proc. of
CONCUR: Concurrency Theory, Lecture Notes in Computer Science 5201,
pages 325–339. Springer-Verlag, 2008.

[BCD+09] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A Henzinger.
Alpaga: A tool for solving parity games with imperfect information. In
Proc. of TACAS: Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science 5505, pages 58–61. Springer-
Verlag, 2009.

[BGG09] N. Bertrand, B. Genest, and H. Gimbert. Qualitative determinacy and
decidability of stochastic games with signals. In Proc. of LICS: Logic in
Computer Science. IEEE Computer Society Press, 2009. To appear.

[BJW02] J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: from parity
games to safety games. Inf. Théorique et Applications, 36(3):261–275, 2002.

[CDHR07] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms
for omega-regular games of incomplete information. Logical Methods in
Computer Science, 3(3:4), 2007.

[DDR06] M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving
games of imperfect information. In Proc. of HSCC 2006: Hybrid Systems—
Computation and Control, Lecture Notes in Computer Science 3927, pages
153–168. Springer-Verlag, 2006.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determi-
nacy. In Proc. of FoCS: Foundations of Computer Science, pages 368–377.
IEEE, 1991.

[FJR09] E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL real-
izability. In Proc. of CAV: Computer-aided verification, Lecture Notes in
Computer Science 5643, pages 263–277. Springer, 2009.

23

[FL09] O. Friedmann and M. Lange. The PGSolver collection of parity game
solvers. Technical report, Ludwig-Maximilians-Universität München, 2009.

[GS09] V. Gripon and O. Serre. Qualitative concurrent games with imperfect infor-
mation. In Proc. of ICALP: Automata, Languages and Programming, 2009.
To appear.

[Hen07] T. A. Henzinger. Games, time, and probability: Graph models for system
design and analysis. In Proc. of SOFSEM (1): Theory and Practice of
Computer Science, Lecture Notes in Computer Science 4362, pages 103–
110. Springer, 2007.

[Jur00] M. Jurdziński. Small progress measures for solving parity games. In Proc. of
STACS: Theor. Aspects of Comp. Sc., LNCS 1770, pages 290–301. Springer,
2000.

[Kec95] A. Kechris. Classical Descriptive Set Theory. Springer, 1995.
[Mar75] D.A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371,

1975.
[Rei84] J. H. Reif. The complexity of two-player games of incomplete information.

Journal of Computer and System Sciences, 29(2):274–301, 1984.
[Saf88] S. Safra. On the complexity of omega-automata. In Proc. of FOCS: Foun-

dations of Computer Science, pages 319–327. IEEE, 1988.
[Sch08] S. Schewe. An optimal strategy improvement algorithm for solving parity

and payoff games. In Proc. of CSL: Computer Science Logic, Lecture Notes
in Computer Science 5213, pages 369–384. Springer, 2008.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. of
STACS: Symposium on Theoretical Aspects of Computer Science, volume
900 of Lecture Notes in Computer Science, pages 1–13. Springer, 1995.

[Tho02] W. Thomas. Infinite games and verification. In Proc. of CAV: Computer
Aided Verification, Lecture Notes in Computer Science 2404, pages 58–64.
Springer, 2002.

[Var85] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state
systems. In Proc. of FOCS: Foundations of Computer Science, pages 327–
338. IEEE Computer Society Press, 1985.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theoretical Computer Science, 200:135–183,
1998.

24

