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Abstract. We consider Markov Decision Processes (MDPs) with meaifpay
parity and energy parity objectives. In system design, #réypobjective is used
to encodev-regular specifications, while the mean-payoff and enelgjgatives
can be used to model quantitative resource constraintsefiéigy condition re-
quires that the resource level never drops belpwnd the mean-payoff condi-
tion requires that the limit-average value of the resou@samption is within
a threshold. While these two (energy and mean-payoff) idlalssonditions are
equivalent for two-player games, we show that they differMPs. We show
that the problem of deciding whether a state is almost-simaing (i.e., winning
with probability 1) in energy parity MDPs is in N\ coNP, while for mean-
payoff parity MDPs, the problem is solvable in polynomiahé.

1 Introduction

Markov decision processes (MDPs) are a standard model &ersyg that exhibit both
stochastic and nondeterministic behaviour. The nondétésm represents the freedom
of choice of control actions, while the probabilities déiserthe uncertainty in the re-
sponse of the system to control actions. The control prolitenMiIDPs asks whether
there exists a strategy (or policy) to select control agionorder to achieve a given
goal with a certain probability. MDPs have been used in shaeas such as planning,
probabilistic reactive programs, verification and synikie$ (concurrent) probabilistic
systems [12,22,1].

The control problem may specify a goal as a set of desiredsrguch as-regular
specifications), or as a quantitative optimization objexctor a payoff function defined
on the traces of the MDP. Typically, discounted-payoff arehmpayoff functions have
been studied [15]. Recently, the energy objectives (cpmeding to total-payoff func-
tions) have been considered in the design of resource+edmstl embedded systems [3,
7,20] such as power-limited systems, as well as in queusdiogegses, and gambling
models (see also [4] and references therein). The energgtlg requires that the sum
of the rewards be always nonnegative along a trace. Eneljggtoke can be expressed
in the setting of boundaryless one-counter MDPs [4]. In thgecof MDPs, achieving
energy objective with probability is equivalent to achieving energy objective in the
stronger setting of a two-player game where the probaieili$toices are replaced by
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adversarial choice. This is because if a trac@lates the energy condition in the game,
then a finite prefix op would have a negative energy, and this finite prefix has pesiti

probability in the MDP. Note that in the case of two-playemgs, the energy objective

is equivalent to enforce nonnegative mean-payoff valus][3,

In this paper, we consider MDPs equipped with the combinatf@ parity objective
(which is a canonical way to express theegular conditions [21]), and a quantitative
objective specified as either mean-payoff or energy camipecial cases of the parity
objective include reachability and fairness objectiveshsas Biichi and coBuchi condi-
tions. Such combination of quantitative and qualitativeeotives is crucial in the design
of reactive systems with both resource constraints andifuma requirements [6, 11, 3,
2]. For example, Kucera and Strazovsky consider the coation of PCTL with mean-
payoff objectives for MDPs and present an EXPTIME algoritfi@]. In the case of
energy parity condition, it can also be viewed as a naturresion of boundaryless
one-counter MDPs with fairness conditions.

Consider the MDP in Fig. 1, with the objective to visit thedBilstateg- infinitely
often, while maintaining the energy level (i.e., the sumhef transition weights) non-
negative. A winning strategy frongy would loop 20 times ongy to accumulate en-
ergy and then it can afford to reach the probabilistic stedgenfwhich the Biichi state
is reached with probability and cost20. If the Biichi state is not reached immedi-
ately, then the strategy needs to rechd@enits of energy and try again. This strategy
uses memory and it is also winning with probabilitfor the nonnegative mean-payoff
Bichi objective. In general however, the energy and mesyofb parity objectives do
not coincide (see later the example in Fig. 2). In particutae memory requirement
for energy parity objective is finite (at most exponentialjil& it may be infinite for
mean-payoff parity.

We study the computational complexity of the problem of dexj if there exists a
strategy to achieve energy parity objective, or mean-gqgofty objective with proba-
bility 1 (i.e., almost-surely). We provide the following boundstieese problems.

1. For energy parity MDPs, we show that the problem is inMNEoNP, and present
a pseudo-polynomial time algorithm. Since parity gamegymahially reduce to
two-player energy games [18, 3,5], and thus to energy MDirs, problem for
almost-sure energy parity MDPs is at least as hard as sotwnoeplayer parity
games.

2. For mean-payoff parity MDPs, we show that the problem igadide in polynomial
time (and thus PTIME-complete).

We refer to [12, 16, 9] for importance of the computation ohast-sure winning set re-
lated to robust solutions (independence of precise tiangirobabilities) and the more
general quantitative problem. The computation of the atrsage winning set in MDPs
typically relies either on the end-component analysis nalysis of attractors and sub-
MDPs. Our results for mean-payoff parity objectives relytb@ end-component anal-
ysis, but in a more refined way than the standard analysigtairoa polynomial-time
algorithm. Our proof combines techniques for mean-payudffgarity objectives to pro-
duce infinite-memory strategy witnesses, which is necgsaageneral. We present an
algorithm that iterates successively over even prioriZieand computes almost-sure
winning end-components with the even priority as the best priority. The problem



Fig. 1. An energy Biichi MDP. The playelrstates areo, g2, and the probabilistic state is.

of positive mean-payoff objectives and parity objectivas been considered indepen-
dently in [17].

For energy parity MDPs the end-component based analysiard®polynomial-
time algorithm does not work since solving energy parity MO at least as hard
as solving two-player parity games. Instead, for energytyp8DPs, we present a
guadratic reduction to two-player energy Biichi games taice in NP coNP and
solvable in pseudo-polynomial time [7].

From our results, it follows that for energy parity MDPsaségies with finite mem-
ory are sufficient (linear in the number of states times tHeevaf the largest weight),
while infinite memory may be necessary for mean-payoff paviDPs. The details of
the proofs can be found in [8], as well as the solution forutisfion of mean-payoff
parity and energy parity objectives. An interesting opeediion is to extend the results
of this paper from MDPs to two-player stochastic games.

2 Definitions

Probability distributions. A probability distributionover a finite setd is a function
k:A—[0,1] suchtha®’ ., x(a) = 1. Thesupportof « is the seSupp(x) = {a €
A | k(a) > 0}. We denote byD(A) the set of probability distributions aA.

Markov Decision ProcessesA Markov Decision ProcesdiDP) M = (@, E, 6) con-
sists of a finite sef) of states partitioned intplayer-1 states)); andprobabilistic states
Qp(ie.,Q =Q:UQpandQ; NQp = 0), asetk C Q x Q of edges such that for
all ¢ € Q, there exists (at least ong) € @ such that(¢,¢’) € E, and a probabilistic
transition functiond : Qp — D(Q) such that for aly € Qp and¢’ € Q, we have
(q,q") € Eiff 5(q)(¢") > 0. We often writed(q, ¢’) for §(q)(¢'). For a statey € Q, we
denote byE(q) = {¢' € Q| (¢,¢') € E} the set of possible successorsg;of

End-components and Markov chainsA setU C @ isd-closedifforall g € UNQp
we haveSupp(d(g)) C U. The sub-MDP induced by &closed seU is M [ U =
(U,EN (U x U),0). Note thatM | U is an MDP if for allq € U there existy’ € U
such that(q,¢’) € E. A Markov chainis a special case of MDP whet@, = (. A
closed recurrent sefor a Markov chain is a-closed set/ C @ which is strongly
connected. End-components in MDPs play a role equivaletibsed recurrent sets in
Markov chains. Given an MDR/ = (Q, E, §) with partition (Q1,Qp), a setU C @



of states is aend-componenf U is ¢-closed and the sub-MDP/ | U is strongly
connected [12, 13]. We denote ByM ) the set of end-components of an MDP.

Plays.An MDP can be viewed as the arena of a game played for infirmtalgry rounds
from a stateyy € @ as follows. If the game is in a playérstateg, then playei chooses
the successor state in the #&{y); otherwise the game is in a probabilistic stat@and
the successor is chosen according to the probability bigtdnd(q). This game results
in a play from o, i.e., an infinite pattp = qoq; ... such that(¢;,¢;11) € F for all

i > 0. The prefix of length of p is denoted by(n) = qo . . . ¢», the last state gb(n)
is Last(p(n)) = ¢,. We write (2 for the set of all plays.

Strategies.A strategy(for player1) is a functione : Q*Q1 — D(Q) such that for
allp € Q*, ¢ € @Q1,andq € Q,if o(p-q)(¢) > 0, then(q,¢’) € E. We de-
note by’ the set of all strategies. Aoutcomeof o from ¢q is a playqoq; . .. where
qi+1 € Supp(o(qo - ..¢;)) foralli > 0 suchthay; € @Q,. Strategies that do not use ran-
domization are called pure. A player-1 strategis pureif for all p € @* andq € Q1,
there is a state’ € @ such thav(p - ¢)(¢’) = 1.

Outcomes and measuresOnce a starting staigc ) and a strategy € X are fixed,
the outcome of the game is a random wafkfor which the probabilities of evergvent
A C 2, which is a measurable set of plays, are uniquely defined 222]a stateg € Q
and an eventd C (2, we denote byP7 (A) the probability that a play belongs 4 if
the game starts from the stateand playerl follows the strategy. For a measurable
function f : 2 — R we denote byE7 [f] the expectatiorof the functionf under the
probability measuréy (-).

Finite-memory strategies.A strategy usedinite-memonyif it can be encoded by a
deterministic transducéMem, mg, a,, ) whereMem is a finite set (the memory of
the strategy)mo € Mem is the initial memory valueg, : Mem x Q — Mem is
an update function, and,, : Mem x Q1 — D(Q) is a next-move function. Thsize
of the strategy is the numbé@¥em| of memory values. If the game is in a player-
stateq, andm is the current memory value, then the strategy chooses tkiestate
¢’ according to the probability distribution,,(m, ¢), and the memory is updated to
ay(m, q). Formally, (Mem, mg, a,, v,y defines the strategy such thato(p - ¢) =
an (G (mo, p),q) for all p € Q* andq € @4, wherea,, extendsa,, to sequences
of states as expected. A strategymiemorylessf |[Mem| = 1. For a finite-memory
strategy, let M, be the Markov chain obtained as the productbivith the transducer
definingo, where((m, ¢), (m’,¢’)) is an edge inM, if m' = «,(m,q) and either
q € Q1 andq’ € Supp(a,(m,q)),0rq € Qpand(q,q’) € E.

Two-player gamesA two-player gamés a graphZ = (@, E) with the same assump-
tions as for MDP, except that the partition@fis denoted @1, Q2) whereQ- is the set
of player2 states The notions of play, strategies (in particular stratefpeplayer2),
and outcome are analogous to the case of MDP [7].

Objectives. An objectivefor an MDP M (or gameG) is a set¢p C {2 of infinite
paths. Letp : @ — N be apriority functionandw : E — Z be aweight function
where positive numbers represent rewards. We denoi# ltlye largest weight (in ab-
solute value) according t@. Theenergy levebf a prefixy = qoq;1 . .. ¢, of a play is



EL(w,v) = 1y w(gi, gi+1), and themean-payoff valdeof a playp = qoqi ... is
MP(w, p) = liminf, o + - EL(w, p(n)). In the sequel, when the weight functian
is clear from the context we omit it and simply wrii¢.(~) andMP(p). We denote by
Inf(p) the set of states that occur infinitely oftengnand we consider the following
objectives:

— Parity objectivesThe parity objectiveParity(p) = {p € 2 | min{p(q) | ¢ €
Inf(p)} is even} requires that the minimum priority visited infinitely oftee even.
The special cases 8lichiandcoBichiobjectives correspond to the case with two
priorities,p : @ — {0,1} andp : @ — {1, 2} respectively.

— Energy objectives.Given an initial creditcy € N, the energy objective
PosEnergy(co) = {p € 2 | ¥n > 0 : ¢y + EL(p(n)) > 0} requires that the
energy level be always positive.

— Mean-payoff objectivesGiven a thresholdr € @Q, the mean-payoffobjective
MeanPayoff=" = {p € 2 | MP(p) > v} (resp.MeanPayoff”” = {p € 0 |
MP(p) > v}) requires that the mean-payoff value be at legsesp. strictly greater
thanv).

— Combined objective§he energy parityobjectiveParity(p) N PosEnergy(cy) and
themean-payoff paritpbjectiveParity (p) "\MeanPayoff~” (for ~€ {>, >}) com-
bine the requirements of parity and energy (resp., meaoff)apjectives.

Almost-sure winning strategies.For MDPs, we say that a playérstrategyo is
almost-sure winningn a state; for an objectives if P7(¢) = 1. For two-player games,
we say that a playet-strategy is winningin a state; for an objectives if all outcomes

of o starting inqg belong to¢. For energy objectives with unspecified initial credit, we
also say that a strategy is (almost-sure) winning if it isn@st-sure) winning fosome
finite initial credit.

Decision problems.We are interested in the following problems. Given an MIP
with weight functionw and priority functiorp, and a statey,
— the energy parity problenasks whether there exists a finite initial credjte N

and an almost-sure winning strategy for the energy parifgative fromgqy with

initial credit ¢y. We are also interested in computing tinimum initial credit

in go which is the least value of initial credit for which there stsian almost-sure

winning strategy for playet in ¢o. A strategy for playet is optimalin ¢ if it is

winning fromgo with the minimum initial credit;
— the mean-payoff parity problerasks whether there exists an almost-sure winning
strategy for the mean-payoff parity objective with thrdshbfrom ¢,. Note that it

is not restrictive to consider mean-payoff objectives witteshold0 because for

~e {>,>}, we haveMP(w, p) ~ v iff MP(w — v, p) ~ 0, wherew — v is the

weight function that assigns(e) — v to each edge € E.

The two-player game version of these problems is definecogoasbly [7]. It is
known that the initial credit problem for two-player enegpmes [6, 3], as well as two-
player parity games [14] can be solved in NREONP because memoryless strategies
are sufficient to win. Moreover, parity games reduce in poiyial time to mean-payoff
games [18], which are log-space equivalent to energy ga®& [It is a long-standing

% The results of this paper hold for the definition of mean-géyalue usinglim sup instead of
lim inf.



Fig. 2. The gadget construction is wrong for mean-payoff parity MDPlayerl is almost-sure
winning for mean-payoff Biichi in the MDP (on the left) butger1 is losing in the two-player
game (on the right) because playefbox-player) can force a negative-energy cycle.

open question to know if a polynomial-time algorithm exfststhese problems. Finally,
energy parity games and mean-payoff parity games are delvali PN coNP although
winning strategies may require exponential and infinite rmgnmespectively, even in
one-player games (and thus also in MDPs) [11, 7].

The decision problem for MDPs with parity objective, as veslwith mean-payoff
objective, can be solved in polynomial time [15,12, 9, 13jwéver, the problem is in
NP N coNP for MDPs with energy objective because an MDP with enelgective
is equivalent to a two-player energy game (where the prdibabistates are controlled
by player2). Indeed(1) a winning strategy in the game is trivially almost-sure viirgn
in the MDP, and2) if an almost-sure winning strategyin the MDP was not winning
in the game, then for all initial credit there would exist an outcomeof o such that
¢o +EL(p(i)) < 0 for some positiori > 0. The prefixp(i) has a positive probability in
the MDP, in contradiction with the fact thatis almost-sure winning. As a consequence,
solving MDP with energy objectives is at least as hard assglparity games.

In this paper, we show that the decision problem for MDPs witergy parity ob-
jective is in NPN coNP, which is the best conceivable upper bound unless/ggaihes
can be solved in P. And for MDPs with mean-payoff parity objex; we show that the
decision problem can be solved in polynomial time. The problor MDPs with mean-
payoff parity objectives under expectation semantics veasicered in [10], whereas
our semantics (threshold semantics) is different (we reqthie set of paths that sat-
isfy the mean-payoff threshold has probability 1 rathenttiee expected value satisfy
threshold).

The MDP in Fig. 2 on the left, which is essentially a Markov ichas an exam-
ple where the mean-payoff parity condition is satisfied atsurely, while the energy
parity condition is not, no matter the value of the initiaédit. For initial creditcy, the
energy will drop below) with positive probability, namelgﬁ.

End-component lemma.We now present an important lemma about end-components
from [12, 13] that we use in the proofs of our result. It states for arbitrary strategies



Fig. 3. Gadget for probabilistic states in energy Biichi MDP. Diawi® are probabilistic states,
circles are playet states, and boxes are playestates.

(memoryless or not), with probability 1 the set of stategte@ikinfinitely often along a
play is an end-component. This lemma allows us to derivelosiuns on the (infinite)
set of plays in an MDP by analyzing the (finite) set of end-cormgnts in the MDP.

Lemma 1. [12, 13] Given an MDPM, for all statesq € @ and all strategiesr € X,
we havePy ({w | Inf(w) € E(M)}) = 1.

3 MDPs with Energy Parity Objectives

We show that energy parity MDPs can be solved inMBoNP, using a reduction to
two-player energy Biichi games. Our reduction also presdhe value of the minimum
initial credit. Therefore, we obtain a pseudo-polynomigloaithm for this problem,
which also computes the minimum initial credit. Moreovee show that the memory
requirement for almost-sure winning strategies is at rRd&t|- 1, which is essentially
optimar*.

We first establish the results for the special case of eneiighBVIDPs. We present
a reduction of the energy Buchi problem for MDPs to the epdgchi problem for
two-player games. The result then follows from the fact thatlatter problem is in
NP N coNP and solvable in pseudo-polynomial time [7].

Given an MDPM, we can assume without loss of generality that every prdisabi
tic state has priorityl, and has two outgoing transitions with probabilifyeach [23,
Section 6]. We construct a two-player gatéy replacing every probabilistic state of
M by a gadget as in Fig. 3. The probabilistic stajesf M are mapped to playex-
states inG with two successor§y, L) and(g, R). Intuitively, player2 choosegq, L) to
check whether player can enforce the Biichi condition almost-surely. This isdhse
if player 1 can reach a Buchi state (with prioriy infinitely often when he controls
the probabilistic states (otherwise, no Biichi state is gisited, and sincé-, L) states
have priority1, the Buichi condition is not realized i@). And player2 choosegq, R)

4 Examplel in [7] shows that memory of siz& (|Q| — 1)-W + 1 may be necessary.



to check that the energy condition is satisfied. If playean exhaust the energy level
in G, then the corresponding play prefix has positive probahilit\/. Note that(q, R)
has priority0 and thus cannot be used by plageo spoil the Biichi condition.
Formally, givenM = (Q, E, §) with partition(Q1, Q@ p) of ), we construct a game

G = (Q', E') with partition (Q}, Qs) whereQ| = Q1 U (Qp x {L}) and@} =
Qpr U (Qp x {R}), see also Fig. 3. The states@ that are already i) get the same
priority as in M, the stateg-, L) have priorityl, and the state§, R) have priority0.
The setE’ contains the following edges:

— alledgeqq,¢’') € FE suchthay € Qq;

- edgeg(q, (¢,d)), ((¢:d),¢') forallg € Qp, d € {L,R}, andq’ € Supp(d(q)).

The edge$q, ¢') and((¢, d), ¢') in E’ get the same weight &g, ¢’) in M, and all edges
(¢, (¢,d)) get weight.

Lemma 2. Given an MDPM with energy Bichi objective, we can construct in linear
time a two-player gamé&' with energy Bichi objective such that for all states in M,
there exists an almost-sure winning strategy frgmn M if and only if there exists a
winning strategy frong, in G (with the same initial credit).

Note that the reduction presented in the proof of Lemma 2 evowit work for
mean-payoff Buchi MDPs. Consider the MDP on Fig. 2 for whibk gadget-based
reduction to two-player games is shown on the right. The ganesing for playerl
both for energy and mean-payoff parity, simply becausegr2ygan always choose to
loop through the box states, thus realizing a negative greerd mean-payoff value (no
matter the initial credit). However playéris almost-sure winning in the mean-payoff
parity MDP (on the leftin Fig. 2).

While the reduction in the proof of Lemma 2 gives a game with= |Q1| + 3 -
|Qp| states, the structure of the gadgets (see Fig. 3) is suchhtbanergy level is
independent of which of the transitiotg (¢, L)) or (¢, (¢, R)) is taken. Since from the
result of [7, Lemma 8] and its proof, it follows that the memapdates in winning
strategies for energy Biichi games can be done accordingeteriergy level of the
play prefix, it follows that the memory bound ®fn-W can be transfered to almost-
sure winning strategies in Energy Biichi MDPs, where |WinN Q| is the number of
playerd almost-sure winning states. Also, the pseudo-polynongakréhm for solving
two-player energy Biichi games can be used for MDPs, witlsdineeO (| E| - |Q| - W)
complexity [7, Table 1] .

Using Lemma 2, we solve energy parity MDPs by a reduction tergyn Buchi
MDPs. The key idea of the reduction is that if playiehas an almost-sure winning
strategy for the energy parity objective, then player 1 damose an even prioritQ:
and decide to satisfy the energy objective along with satigfthat priority2i is visited
infinitely often, and priorities less tha are visited finitely often.

W.l.0.g. we assume that playéistates and probabilistic states alternate Aig,) C
@, forallg € Qp,andE(q) C Qp forall ¢ € Q1. The reduction is then as follows.
Given an MDPM = (Q, E, §) with a priority functionp : @ — N and a weight
functionw : E — Z, we constructM’, p’,w') as follows.M’ is the MDPM =
(Q',E',¢") where:



- Q' =QuU(Q x{0,2,...,2r}) U {sink} where2r is the largest even priority of
a state inQ. Intuitively, a state(q,7) € Q' corresponds to the stageof M from
which player1 will ensure to visit priority: (which is even) infinitely often, and
never visit priority smaller thay

— FE’ containsE U {(sink, sink)} and the following edges. For each probabilistic state
g€ Qp,fori=0,2,...,2r,

o (a)if p(¢') > iforall ¢ € E(q), then((q,?),(¢’,7)) € E' forall ¢’ € E(q),

o (b) otherwise((g, i),sink) € E'.

For each playet stateq € Q1, for eachy’ € E(q), fori =0,2,...,2r,

e (a) (g,sink) € E" and((q,%),sink) € E’, and

o (b)if p(q') = i, then(q, (¢, i) € £’ and((q,4), (¢, 1)) € E".
The partition(Q’, @) of Q' is defined byQ; = Q1 U (Q1 x {0,2,...,2r}) U {sink}
andQ» = Q' \ Q). The weight of the edge§y, ¢'), (q,(¢’,4)) and ((¢,%), (¢, 1))
according tow’ is the same as the weight ¢, ¢’) according tow. The stateggq, )
such thap(q) = ¢ have priority0 according tg’ (they are the Buchi states), and all the
other states id)’ (includingsink) have priorityl.

Lemma 3. Given an MDP M with energy parity objective, we can construct in
guadratic time an MDPM’ with energy Bichi objective such that for all stateg

in M, there exists an almost-sure winning strategy frggrin M if and only if there
exists an almost-sure winning strategy frgsin M’ (with the same initial credit).

From the proof of Lemma 3, it follows that the memory requiegnis the same as
for energy Buchi MDPs. And if the weights arefr-1, 0, 1}, it follows that the energy
parity problem can be solved in polynomial time.

Theorem 1. For energy parity MDPs, (1) the decision problem of whethegieen
state is almost-sure winning is in NP coNP, and there is a pseudo-polynomial time
algorithminO(|E|-d-|Q|® - W) to solve it; and (2) memory of si2eQ|-W is sufficient
for almost-sure winning strategies.

4 MDPs with Mean-payoff Parity Objectives

In this section we present a polynomial-time algorithm folvgxg MDPs with mean-
payoff parity objective. We first recall some useful projerbf MDPs.

For an end-componebt € £(M), consider the memoryless strategy that plays
in every states € U N @ all edges inE(s) N U uniformly at random. Given the
strategyoy;, the end-componerif is a closed connected recurrent set in the Markov
chain obtained by fixing .

Lemma 4. Given an MDPAM and an end-componetf € £(M), the strategyoy
ensures that for all statese U, we haveP?V ({w | Inf(w) = U}) = 1.

Expected mean-payoff valueGiven an MDPM with a weight functionw, the ex-
pected mean-payoff valudenotedvalMP(w), is the function that assigns to every
state the maximal expectation of the mean-payoff objectia¢ can be guaranteed by



any strategy. Formally, fogy € @ we haveValMP(w)(q) = sup,¢ s Ef (MP(w)),
where MP(w) is the measurable function that assigns to a plahe long-run av-
erageMP(w, p) of the weights. By the classical results of MDPs with meanpefia
objectives, it follows that there exists pure memorylessnog strategies [15], i.e.,
there exists a pure memoryless optimal strateyysuch that for all; € @ we have
ValMP(w)(q) = EZ" (MP(w)).

It follows from Lemma 4 that the strategy; ensures that from any starting state
any other state is reached in finite time with probability 1. Therefore, thedue for
mean-payoff parity objectives in MDPs can be obtained bymating values for end-
components and then playing a strategy to maximize the ¢éxf@cto reach the values
of the end-components.

We now present the key lemma where we show that for an MDP shai iend-
component such that the minimum priority is even, the meayoff parity objective
Parity(p) N MeanPayoff=" is satisfied with probability 1 if the expected mean-payoff
value is at least at some state (the result also holds for strict inequallty)other
words, from the expected mean-payoff value of at leage ensure that both the mean-
payoff and parity objective is satisfied with probabilityrbin all states. The proof of
the lemma considers two pure memoryless strategies: orsdohastic shortest path
and the other for optimal expected mean-payoff value, anth@mes them to obtain an
almost-sure winning strategy for the mean-payoff paritjeotive (details in [8]).

Lemma 5. Consider an MDPM with state spacé€), a priority functionp, and weight
functionw such that (a)M is an end-component (i.eQ is an end-component) and
(b) the smallest priority inQ) is even. If there is a statg< @ such thatvalMP(w) > v
(resp.ValMP(w) > v), then there exists a strategy such that for all stateg € @ we
have]P"q’*(Parity(p)ﬂMeanPayosz”) =1 (resp.]P’g* (Parity(p)NMeanPayoff~") = 1).

Memory required by strategies.Lemma 5 shows that if the smallest priority in an end-
component is even, then considering the sub-game resttcthe end-component, the
mean-payoff parity objective is satisfied if and only if theean-payoff objective is
satisfied. The strategy constructed in Lemma 5 requiresit@fimemory, and in the
case of loose inequality (i.eMeanPayoff=") infinite. memory is required in general
(see [11] for an example on graphs), and if the inequalityristgi.e., MeanPayoff~"),
then finite memory strategies exist [17]. For the purposeoafgutation we show that
both strict and non-strict inequality can be solved in polyiial time. Since Lemma 5
holds for both strict and non-strict inequality, in sequfghis section we consider non-
strict inequality and all the results hold for strict inetityaas well.

Winning end-component. Given an MDP M with a parity objectiveParity(p)
and a mean-payoff objectivMeanPayoff=" for a weight functionw, we call an
end-component/ winning if (@) min(p(U)) is even; and (b) there exists a state
with expected mean-payoff value at leastin the sub-MDP induced by/, i.e.,
maxgep ValMP(w)(q) > v in the sub-MDP induced by/. We denote by the set
of winning end-components, and &in = |J;.,, U be the union of the winning
end-components.

Reduction to reachability of winning end-componentBy Lemma 5 it follows that in
every winning end-component the mean-payoff parity objeds satisfied with prob-
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ability 1. Conversely, consider an end-compon&nthat is not winning, then either
the smallest priority is odd, or the maximal expected meayoff value that can be
ensured for any state i by staying inU is less tharv. Hence if only states i/
are visited infinitely often, then with probability 1 (i) &iér the parity objective is not
satisfied, or (ii) the mean-payoff objective is not satisfisdother words, if an end-
component that is not winning is visited infinitely oftengththe mean-payoff parity
objective is satisfied with probability 0. It follows thatettvalue function for MDPs
with mean-payoff parity objective can be computed by cornmgithe value function for
reachability to the setVin, i.e., formally,sup, . s; P7 (Parity(p) N MeanPayoff=") =
sup,¢ 5; P7 (Reach(Win)), whereReach(Win) is the set of paths that reaches a state in
Win at least once. Since the value function in MDPs with readitalobjectives can
be computed in polynomial time using linear programmind [itSuffices to present a
polynomial-time algorithm to compuMin in order to obtain a polynomial-time algo-
rithm for MDPs with mean-payoff parity objectives.

Computing winning end-components. The computation of the winning end-
components is done iteratively by computing winning endponents with smallest
priority O, then winning end-components with smallest ptyo2, and so on. The com-
putation ofWin is as follows:

— Fori > 0, letWs; be the set of maximal end-componetitwith states with priority
at least2; and that contain at least one state with priofityi.e., U contains only
states with priority at leasti, and contains at least one state with priofity Let
W, C Wy, be the set of maximal end-componebitss W,; such that there is a
stateq € U such that the expected mean-payoff value in the sub-MDFetst to
U'is atleast. LetWing; = Uy ey, U-

The setWin = U}i{fJ Wino; is the union of the states of the winning end-components
(formal pseudo-code in [8]).

Complexity of computing winning end-components.The winning end-component
algorithm runs forO(d) iterations and in each iteration requires to compute a maxi-
mal end-component decomposition and compute mean-paglois of at most end-
components, whereis the number of states of the MDP. The maximal end-component
decomposition can be achieved in polynomial time [12, 1.3T8F mean-payoff value
function of an MDP can also be computed in polynomial timengdinear program-
ming [15]. It follows that the value function of an MDP with me-payoff parity
objectives can be computed in polynomial time. The almast-svinning set is ob-
tained by computing almost-sure reachability\ién in polynomial time [12,13, 9].
This polynomial-time complexity provides a tight upper bduor the problem.

Theorem 2. The following assertions hold:

1. The set of alImost-sure winning states for mean-payoitypaiojectives can be com-
puted in polynomial time for MDPs.

2. For mean-payoff parity objectives, almost-sure winrstrgtegies require infinite
memory in general for non-strict inequality (i.e, for mepayoff parity objectives
Parity(p) N MeanPayoff=") and finite-memory almost-sure winning strategies exist
for strict inequality (i.e., foParity(p) N MeanPayoff~").
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