
Logical Methods in Computer Science
Vol. 5 (1:5) 2009, pp. 1–20
www.lmcs-online.org

Submitted Aug. 13, 2007
Published Mar. 2, 2009

ANTICHAINS FOR THE AUTOMATA-BASED APPROACH TO

MODEL-CHECKING ∗

LAURENT DOYEN a AND JEAN-FRANÇOIS RASKIN b

a CCS, École Polytechnique Fédérale de Lausanne, Switzerland
e-mail address: laurent.doyen@epfl.ch

b CS, Université Libre de Bruxelles, Belgium
e-mail address: jraskin@ulb.ac.be

Abstract. We propose and evaluate antichain algorithms to solve the universality and
language inclusion problems for nondeterministic Büchi automata, and the emptiness prob-
lem for alternating Büchi automata. To obtain those algorithms, we establish the existence
of simulation pre-orders that can be exploited to efficiently evaluate fixed points on the au-
tomata defined during the complementation step (that we keep implicit in our approach).
We evaluate the performance of the algorithm to check the universality of Büchi automata
using the random automaton model recently proposed by Tabakov and Vardi. We show
that on the difficult instances of this probabilistic model, our algorithm outperforms the
standard ones by several orders of magnitude.

1. Introduction

In the automata-based approach to model-checking [VW86, VW94], programs and prop-
erties are modeled by finite automata. Let A be a finite automaton that models a program
and let B be a finite automaton that models a specification that the program should satisfy.
Correctness is defined by the language inclusion L(A) ⊆ L(B), that is all traces of the pro-
gram (executions) should be traces of the specification. To solve the inclusion problem, the
classical automata-theoretic solution constructs an automaton for Lc(B) the complement
of the language of the automaton B and then checks that L(A)∩Lc(B) is empty (the later
intersection being computed as a synchronised product).

1998 ACM Subject Classification: F.4.1, I.1.2.
Key words and phrases: alternating Büchi automata, nondeterministic Büchi automata, emptiness, uni-

versality, language inclusion, antichains.
∗ A preliminary version of this paper appeared in the Proceedings of the 13th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Lecture Notes in Computer
Science 4424, Springer-Verlag, 2007, pp. 451-465.

This research was supported in part by the FRFC project “Centre Fédéré en Vérification” funded by the
Belgian National Science Foundation (FNRS) under grant nr 2.4530.02, by the PAI program Moves supported
by the Belgian Federal Gouvernment: “Fundamental Issues in Modelling, Verification and Evolution of
Software” (http://moves.vub.ac.be), by the Swiss National Science Foundation, and by the European
COMBEST project.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (1:5) 2009
c© L. Doyen and J.-F. Raskin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 L. DOYEN AND J.-F. RASKIN

In the finite case, the program and the specification are automata over finite words
(NFA) and the construction for the complementation is conceptually simple: it is achieved
by a classical subset construction. In the case of infinite words, the program and (or at
least) the specification are nondeterministic Büchi automata (NBW). The NBW are also
complementable; this was first proved by Büchi [Büc62]. However, the result is much harder

to obtain than in the case of NFA. The original construction of Büchi has a 2O(2n) worst
case complexity (where n is the size of the automaton to complement) which is not optimal.
In the late eighties Safra in [Saf88], and later Kupferman and Vardi in [KV01], have given

optimal complementation procedures that have 2O(n log n) complexity (see [Mic88] for the
lower bound). While for finite words, the classical algorithm has been implemented and
shown practically usable, for infinite words, the theoretically optimal solution is difficult
to implement and very few results are known about their practical behavior. Recent im-
plementations have shown that applying these algorithms for automata with more than
around ten states is hard [TV07, GKSV03]. Such sizes are clearly not sufficient in practice.
As a consequence, tools like Spin [RH04] that implement the automata-theoretic approach
to model-checking ask either that the complement of the specification is explicitly given or
they limit the specification to properties that are expressible in LTL.

In this paper, we propose a new approach to check L(A) ⊆ L(B) that can handle
much larger Büchi automata. In a recent paper, we have shown that the classical subset
construction can be avoided and kept implicit for checking language inclusion and language
universality for NFA and their alternating extensions [DDHR06]. Here, we adapt and extend
that technique to the more intricate case of automata on infinite words.

To present the intuition behind our new techniques, let us consider a simpler setting of
the problem. Assume that we are given a NBW B and we want to check if Σω ⊆ L(B), that
is to check if L(B) is universal. First, remember that L(B) is universal when its complement
Lc(B) is empty. The classical algorithm first complements B and then checks for emptiness.
The language of a NBW is nonempty if there exists an infinite run of the automaton that
visits accepting locations infinitely often. The existence of such a run can be established in
polynomial time by computing the following fixed point F ≡ νy ·µx · (Pre(x)∪ (Pre(y)∩α))
where Pre is the predecessor operator of the automaton (given a set L of locations it returns
the set of locations that can reach L in one step) and α is the set of accepting locations
of the automaton. The automaton is non-empty if and only if its initial location is a
member of the fixed point F . This well-known algorithm is quadratic in the size of the
automaton. Unfortunately, the automaton that accepts the language Lc(B) is usually huge
and the evaluation of the fixed point is unfeasible for all but the smallest specifications B. To
overcome this difficulty, we make the following observation: if � is a simulation pre-order on
the locations of Bc (ℓ1 � ℓ2 means ℓ1 can simulate ℓ2) which is compatible with the accepting
condition (if ℓ1 � ℓ2 and ℓ2 ∈ α then ℓ1 ∈ α), then the sets that are computed during the
evaluation of F are all �-downward-closed (if an element ℓ is in the set then all ℓ′ � ℓ are also
in the set). Then �-downward-closed sets can be represented by their �-maximal elements
and if operations on such sets can be computed directly on their representation, we have the
ingredients to evaluate the fixed point in a more efficient way. For an automaton B over finite
words, set inclusion would be a typical example of a simulation relation for Bc [DDHR06].
The same technique can be applied to avoid subset constructions in games of imperfect
information [DDR06, CDHR07]. We generically call antichain algorithms the techniques
that are based on compact representation of downward-closed because when the simulation

3

is a partial order (and it usually is), the maximal elements form an antichain, i.e., a set of
incomparable elements.

We show that the classical constructions for Büchi automata that are used in the
automata-theoretic approach to model-checking are all equipped with a simulation pre-
order that exists by construction and does not need to be computed. On that basis we
propose antichain algorithms to check universality of NBW, language inclusion for NBW,
and emptiness of alternating Büchi automata (ABW). Each of these problems reduces to
emptiness checking of NBW, via classcial constructions.

The novelty of our antichain algorithms is to realize that only downward-closed sets
can be computed by the fixed point for emptiness, and therefore to use more succinct
representations of those downward-closed sets, by storing maximal elements only. Moreover,
such compact representations do not come at the price of an increase in the time complexity
for the basic operations that are necessary to check emptiness (such as ∩, ∪, and Pre), i.e., we
show that they are computable in time polynomial in the size of the compact representation,
while this size can be exponentially smaller than the actual downward-closed set. Note that,
while a compact representation exists in general (i.e., for any simulation pre-order), we have
no generic result that would show that efficient computations can be done symbolically in
all cases. Therefore, we have to instantiate the approach for each class of problem, and find
efficient algorithms for the basic operations.

We evaluate an implementation of our algorithm for the universality problem of NBW
and on a randomized model recently proposed by Tabakov and Vardi. We show that the
performance of the antichain algorithm on this randomized model outperforms by several
order of magnitude the existing implementations of the Kupferman-Vardi algorithm [TV07,
GKSV03]. While the classical solution is limited to automata of size 8 for some parameter
values of the randomized model, we are able to handle automata with more than one
hundred locations for the same parameter values. We have identified the hardest instances
of the randomized model for our algorithms and show that we can still handle problems
with several dozens of locations for those instances.

Structure of the paper. In Section 2, we give all necessary definitions related to Büchi au-
tomata, and we recall the Kupferman-Vardi and Miyano-Hayashi constructions that are
used for complementation of NBW. The reader interested in the general theory behind our
technique can read Section 3 without going into the details of those constructions (only
the definitions of NBW and emptiness are useful to understand Section 3). The notion of
simulation pre-order for a Büchi automaton is presented and we prove that the fixed point
needed to establish emptiness of nondeterministic Büchi automata handles only downward
closed sets for such pre-orders. We use this observation in Section 4 to define an antichain
algorithm to decide emptiness of ABW. In Section 5, we adapt the technique for the uni-
versality problem of NBW. In Section 6, we report on the performances of the algorithm
for universality, and in Section 7, we extend those ideas to obtain an antichain algorithm
for language inclusion of NBW.

2. Büchi Automata and Classical Algorithms

Definition 2.1. An alternating Büchi automaton (ABW) is a tuple A = 〈Loc, ι,Σ, δ, α〉
where:

• Loc is a finite set of states (or locations). The size of A is |A| = |Loc|;

4 L. DOYEN AND J.-F. RASKIN

• ι ∈ Loc is the initial state;
• Σ is a finite alphabet ;
• δ : Loc × Σ → B+(Loc) is the transition function where B+(Loc) is the set of positive

boolean formulas over Loc, i.e. formulas built from elements in Loc ∪ {true, false} using
the boolean connectives ∧ and ∨;
• α ⊆ Loc is the set of accepting states.

We say that a set X ⊆ Loc satisfies a formula ϕ ∈ B+(Loc) (noted X |= ϕ) iff the
truth assignment that assigns true to the members of X and assigns false to the members of
Loc\X satisfies ϕ. A run of A on an infinite word w = σ0 · σ1 . . . is a dag Tw = 〈V, vι,→〉
where:

• V = Loc × N is the set of nodes. A node (ℓ, i) represents the state ℓ after the first i

letters of the word w have been read by A. Nodes of the form (ℓ, i) with ℓ ∈ α are called
α-nodes;
• vι = (ι, 0) ∈ V is the root of the dag;
• and →⊆ V × V is such that (i) if (ℓ, i) → (ℓ′, i′) then i′ = i + 1 and (ii) for every

(ℓ, i) ∈ V , the set {ℓ′ | (ℓ, i)→ (ℓ′, i + 1)} satisfies the formula δ(ℓ, σi).
We say that (ℓ′, i+1) is a successor of (ℓ, i) if (ℓ, i)→ (ℓ′, i+1), and we say that (ℓ′, i′)

is reachable from (ℓ, i) if (ℓ, i)→∗ (ℓ′, i′).

A run Tw = 〈V, vι,→〉 of A on an infinite word w is accepting iff all its infinite paths π

rooted at vι visit α-nodes infinitely often. An infinite word w ∈ Σω is accepted by A if there
exists an accepting run on it. We denote by L(A) the set of infinite words accepted by A,
and by Lc(A) the set of infinite words that are not accepted by A.

Definition 2.2. A nondeterministic Büchi automaton (NBW) is an ABW whose transition
function is restricted to disjunctions over Loc.

Runs of NBW reduce to (linear) traces. The transition function of NBW is often
seen as a function [Q × Σ → 2Q] and we write δ(ℓ, σ) = {ℓ1, . . . , ℓn} instead of δ(ℓ, σ) =
ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓn. We note by Pre

A
σ (L) the set of predecessors by σ of the set L: Pre

A
σ (L) =

{ℓ ∈ Loc | ∃ℓ′ ∈ L : ℓ′ ∈ δ(ℓ, σ)}. Let Pre
A(L) = {ℓ ∈ Loc | ∃σ ∈ Σ : ℓ ∈ Pre

A
σ (L)}.

Problems. The emptiness problem for NBW is to decide, given an NBW A, whether
L(A) = ∅. This problem is solvable in polynomial time. The symbolic approach through
fixed point computation is quadratic in the size of A [EL86]. Other symbolic approaches
have been proposed with better complexity bounds [BGS00, GPP03], but the fixed point
computation shows better performances in practice [RBS00].

The universality problem for NBW is to decide, given an NBW A over the alphabet Σ
whether L(A) = Σω where Σω is the set of all infinite words on Σ. This problem is PSpace-
complete [SVW87]. The classical algorithm to decide universality is to first complement the
NBW and then to check emptiness of the complement. The difficult step is the complemen-
tation as it may cause an exponential blow-up in the size of the automaton. There exist
two types of construction, one is based on a determinization of the automaton [Saf88] and
the other uses ABW as an intermediate step [KV01]. We review the second construction
below.

The language inclusion problem for NBW is to decide, given two NBWA and B, whether
L(A) ⊆ L(B). This problem is central in model-checking and it is PSpace-complete in the
size of B. The classical solution consists in checking the emptiness of L(A) ∩ Lc(B), which
again requires the expensive complementation of B.

5

The emptiness problem for ABW is to decide, given an ABW A, whether L(A) = ∅.
This problem is also PSpace-complete and it can be solved using a translation from ABW
to NBW that preserves the language of the automaton [MH84]. Again, this construction
involves an exponential blow-up that makes explicit implementations feasible only for au-
tomata limited to around ten states. However, the emptiness problem for ABW is very
important in practice for LTL model-checking as there exist efficient polynomial transla-
tions from LTL formulas to ABW [GO01]. The classical construction is presented below.

Kupferman-Vardi construction. Complementation of ABW is straightforward by dual-
izing the transition function (by swapping ∧ and ∨, and swapping true and false in each
formulas) and interpreting the accepting condition α as a co-Büchi condition, i.e. a run Tw

is accepted if all its infinite paths have a suffix that contains no α-nodes.
The result is an alternating co-Büchi automaton (ACW). The accepting runs of ACW

have a layered structure that has been studied in [KV01], where the notion of rank is
defined. The rank is a nonnegative integer associated to each node of an accepting run Tw

of an ACW on a word w. Let G0 = Tw. Nodes of rank 0 are those nodes from which only
finitely many nodes are reachable in G0. Let G1 be the run Tw from which all nodes of rank
0 have been removed. Then, nodes of rank 1 are those nodes of G1 from which no α-node is
reachable in G1. For all i ≥ 2, let Gi be the run Tw from which all nodes of rank 0, . . . , i−1
have been removed. Then, nodes of rank 2i are those nodes of G2i from which only finitely
many nodes are reachable in G2i, and nodes of rank 2i + 1 are those nodes of G2i+1 from
which no α-node is reachable in G2i+1. Intuitively, the rank of a node (ℓ, i) hints how
difficult it is to prove that all the paths of Tw that start in (ℓ, i) visit α-nodes only finitely
many times. It can be shown that every node has a rank between 0 and 2(|Loc| − |α|),
and all α-nodes have an even rank [GKSV03]. The layered structure of the runs of ACW
induces a construction to complement ABW [KV01]. We present this construction directly
for NBW.

Definition 2.3 ([KV01]). Given a NBW A = 〈Loc, ι,Σ, δ, α〉 and an even number k ∈ N,
let KV(A, k) = 〈Loc

′, ι′,Σ, δ′, α′〉 be an ABW such that:

• Loc
′ = Loc× [k] where [k] = {0, 1, . . . , k}. Intuitively, the automaton KV(A, k) is in state

(ℓ, n) after the first i letters of the input word w have been read if it guesses that the
rank of the node (ℓ, i) in a run of A on w is at most n;
• ι′ = (ι, k);

• δ′((ℓ, i), σ) =

{

false if ℓ ∈ α and i is odd
∧

ℓ′∈δ(ℓ,σ)

∨

0≤i′≤i(ℓ
′, i′) otherwise

For example, if δ(ℓ, σ) = {ℓ1, ℓ2}, then

δ′((ℓ, 2), σ) = ((ℓ1, 2) ∨ (ℓ1, 1) ∨ (ℓ1, 0)) ∧ ((ℓ2, 2) ∨ (ℓ2, 1) ∨ (ℓ2, 0))

• α′ = Loc× [k]odd where [k]odd is the set of odd numbers in [k].

The ABW specified by the Kupferman-Vardi construction accepts the complement lan-
guage of L(A) and its size is quadratic in the size of the original automaton A.

Theorem 2.4 ([KV01]). For all NBW A = 〈Loc, ι,Σ, δ, α〉, for all 0 ≤ k′ ≤ k, we have
L(KV(A, k′)) ⊆ L(KV(A, k)) and for k = 2(|Loc| − |α|), we have L(KV(A, k)) = Lc(A).

6 L. DOYEN AND J.-F. RASKIN

Miyano-Hayashi construction. Classically, to check emptiness of ABW, a variant of
the subset construction is applied that transforms the ABW into a NBW that accepts the
same language [MH84]. Intuitively, the NBW maintains a set s of states of the ABW that
corresponds to a whole level of a guessed run dag of the ABW. In addition, the NBW
maintains a set o of states that “owe” a visit to an accepting state. Whenever the set o

gets empty, meaning that every path of the guessed run has visited at least one accepting
state, the set o is initiated with the current level of the guessed run. It is asked that o gets
empty infinitely often in order to ensure that every path of the run dag visits accepting
states infinitely often. The construction is as follows.

Definition 2.5 ([MH84]). Given an ABW A = 〈Loc, ι,Σ, δ, α〉, define MH(A) as the NBW
〈2Loc×2Loc, ({ι}, ∅),Σ, δ′ , α′〉 where α′ = 2Loc×{∅} and δ′ is defined, for all 〈s, o〉 ∈ 2Loc×2Loc

and σ ∈ Σ, as follows:

• If o 6= ∅, then

δ′(〈s, o〉, σ) = {〈s′, o′ \ α〉 | o′ ⊆ s′, s′ |=
∧

ℓ∈s

δ(ℓ, σ) and o′ |=
∧

ℓ∈o

δ(ℓ, σ)}

• If o = ∅, then δ′(〈s, o〉, σ) = {〈s′, s′ \ α〉 | s′ |=
∧

ℓ∈s δ(ℓ, σ)}.

The size of the Miyano-Hayashi construction is exponential in the size of the original
automaton.

Theorem 2.6 ([MH84]). For all ABW A, we have L(MH(A)) = L(A).

The size of the automaton obtained after the Kupferman-Vardi and the Miyano-Hayashi
construction is an obstacle to the direct implementation of the method.

Direct complementation. In our solution, we implicitly use the two constructions to
complement Büchi automata but, as we will see, we do not construct the automata. For
the sake of clarity, we give below the specification of the automaton that would result from
the composition of the two constructions. In the definition of the state space, we omit the
states (ℓ, i) for ℓ ∈ α and i odd, as those states have no successor in the Kupferman-Vardi
construction.

Definition 2.7. Given a NBW A = 〈Loc, ι,Σ, δ, α〉 and an even number k ∈ N, let
KVMH(A, k) = 〈Qk ×Qk, qι,Σ, δ′, α′〉 be a NBW such that:

• Qk = 2(Loc×[k])\(α×N
odd) where Nodd is the set of odd natural numbers;

• qι = ({(ι, k)}, ∅);
• Let odd = Loc× [k]odd; δ′ is defined for all s, o ∈ Qk and σ ∈ Σ, as follows:
− If o 6= ∅, then δ′(〈s, o〉, σ) is the set of pairs 〈s′, o′ \ odd〉 such that:

(i) o′ ⊆ s′;
(ii) ∀(ℓ, n) ∈ s · ∀ℓ′ ∈ δ(ℓ, σ) · ∃n′ ≤ n : (ℓ′, n′) ∈ s′;

(iii) ∀(ℓ, n) ∈ o · ∀ℓ′ ∈ δ(ℓ, σ) · ∃n′ ≤ n : (ℓ′, n′) ∈ o′.
− If o = ∅, then δ′(〈s, o〉, σ) is the set of pairs 〈s′, s′ \ odd〉 such that:

∀(ℓ, n) ∈ s · ∀ℓ′ ∈ δ(ℓ, σ) · ∃n′ ≤ n : (ℓ′, n′) ∈ s′.
• α′ = Qk × {∅};

We write 〈s, o〉
σ
−→δ′ 〈s

′, o′〉 to denote 〈s′, o′〉 ∈ δ′(〈s, o〉, σ).

7

ℓ1 ℓ2

ℓ3

If �

ℓ2

ℓ3 ℓ4

then �

σ

σ

Figure 1: Simulation (Definition 3.1).

Theorem 2.8 ([KV01, MH84]). For every NBW A = 〈Loc, ι,Σ, δ, α〉 and for all 0 ≤ k′ ≤ k,
we have L(KVMH(A, k′)) ⊆ L(KVMH(A, k)). In case of k = 2(|Loc| − |α|), we also have
L(KVMH(A, k)) = Lc(A).

In the sequel, we denote by KVMH(A) the automaton KVMH(A, 2(|Loc|− |α|)), and we
denote by Q×Q its set of states (we omit the subscript k).

3. Simulation Pre-Orders and Fixed Points

Let A = 〈Loc, ι,Σ, δ, α〉 be a NBW. Let 〈2Loc,⊆,∪,∩, ∅,Loc〉 be the powerset lattice of
locations. The fixed point formula FA ≡ νy · µx · (Pre

A(x) ∪ (Pre
A(y) ∩ α)) can be used to

check emptiness of A as we have L(A) 6= ∅ iff ι ∈ FA. Intuitively, the greatest fixed point
νy in FA computes in the n-th iteration the set of states from which n accepting states can
be visited with some word. When this set stabilizes, infinitely many visits to an accepting
state are possible.

We show in this section that a certain structural property of the NBW is tightly cor-
related to the structure of the sets that are computed by the fixed point FA. The key
property is the notion of simulation relation for finite automata. Let �⊆ Loc × Loc be a
pre-order and let ℓ1 ≺ ℓ2 iff ℓ1 � ℓ2 and ℓ2 6� ℓ1.

Definition 3.1. A pre-order � is a simulation for A iff the following properties hold:

• for all ℓ1, ℓ2, ℓ3 ∈ Loc, for all σ ∈ Σ, if ℓ3 � ℓ1 and ℓ2 ∈ δ(ℓ1, σ) then there exists ℓ4 ∈ Loc

such that ℓ4 � ℓ2 and ℓ4 ∈ δ(ℓ3, σ) (see illustration in Figure 1);
• for all ℓ ∈ α, for all ℓ′ ∈ Loc, if ℓ′ � ℓ then ℓ′ ∈ α.

Downward-closed sets. A set L ⊆ Loc is �-closed iff for all ℓ1, ℓ2 ∈ Loc, if ℓ1 � ℓ2 and
ℓ2 ∈ L then ℓ1 ∈ L. The �-closure of L, is the set ↓L = {ℓ ∈ Loc | ∃ℓ′ ∈ L : ℓ � ℓ′}. We
denote by Max(L) the set of �-maximal elements of L: Max(L) = {ℓ ∈ L | ∄ℓ′ ∈ L : ℓ ≺ ℓ′}.
For any �-closed set L ⊆ Loc, we have L =↓Max(L). Furthermore, if � is a partial order,
then Max(L) is an antichain of elements and it can serve as a canonical representation of L.

Our goal is to show that the operators involved in the fixed point formula FA preserve
�-closedness. This is true for union and intersection, for all relations �.

Lemma 3.2. For all relations �, for all �-closed sets L1, L2, the sets L1 ∪L2 and L1 ∩L2

are �-closed.

8 L. DOYEN AND J.-F. RASKIN

The next lemma shows that simulation relations are necessary (and also sufficient)
to guarantee preservation of �-closedness under the Pre operator. Note that many other
notions of simulation pre-orders have been defined for Büchi automata, see [EWS05].1

Lemma 3.3. Let A = 〈Loc, ι,Σ, δ, α〉 be a NBW. A pre-order �⊆ Loc×Loc is a simulation
for A if and only if the following two properties hold:

(a) the set α is �-closed.
(b) for all �-closed sets L ⊆ Loc, for all σ ∈ Σ, Pre

A
σ (L) is �-closed;

Proof. First, assume that � is a simulation for A. Then, the set α is �-closed by Defini-
tion 3.1, which establishes (a). To prove (b), let L ⊆ Loc be a �-closed set and let σ ∈ Σ.

For all ℓ1 ∈ Pre
A
σ (L) there exists ℓ2 ∈ L such that ℓ2 ∈ δ(ℓ1, σ). By Definition 3.1, for

all ℓ3 � ℓ1 there exists ℓ4 ∈ Loc such that ℓ4 � ℓ2 and ℓ4 ∈ δ(ℓ3, σ) (see Figure 1). So

ℓ4 ∈ L since L is �-closed and ℓ2 ∈ L, and thus ℓ3 ∈ Pre
A
σ (L) which shows that Pre

A
σ (L) is

�-closed.
Second, assume that (a) and (b) hold, and show that � satisfies Definition 3.1. By (a),

for all ℓ ∈ α and for all ℓ′ � ℓ, we have ℓ′ ∈ α. Now, let ℓ1, ℓ2, ℓ3 ∈ Loc and σ ∈ Σ such that
ℓ3 � ℓ1 and ℓ2 ∈ δ(ℓ1, σ). Consider the �-closed set L2 =↓{ℓ2}. By (b), the set Pre

A
σ (L2) is

�-closed and thus ℓ3 ∈ Pre
A
σ (L2). Therefore, there exists ℓ4 ∈ L2 (i.e. ℓ4 � ℓ2) such that

ℓ4 ∈ δ(ℓ3, σ). Hence, � is a simulation for A.

Lemmas 3.2 and 3.3 entail that all sets computed in the iterations of the fixed point
formula FA are �-closed for any simulation � for A. We can take advantage of this fact
to use a compact representation of those sets, namely their maximal elements. This would
indeed reduce the size of the sets to manipulate by the fixed point algorithms (possibly
exponentially as we will see later). Notice that in general, this compact representation can
make more difficult the computation of the Pre operator. To illustrate this, consider the
example in Figure 2 where we want to compute Preσ(↓{ℓ}). More precisely, given ℓ we need
to compute the maximal elements of the �-closed set Preσ(↓{ℓ}). The set ↓{ℓ} is delimited
by the dashed curve in the figure. First, note that applying Preσ to {ℓ} would give the empty
set from which the correct result can obviously not be extracted. Second, if we assume that
the states ℓ1, . . . , ℓk are �-incomparable, then the result is Max(Preσ(↓{ℓ})) = {ℓ1, . . . , ℓk},
which shows that essentially any set can be obtained, including sets of maximal elements
that are huge or difficult to manipulate symbolically. Third, even if the result is compact
(e.g., if ℓi � ℓ1 for all 1 ≤ i ≤ k, then the result is the singleton {ℓ1}), the computation
may somehow require to enumerate all the ℓi for i = 1, 2, . . . , k where k may be for instance
exponential in the size of the problem.

The above remarks show that for each particular application (i.e., for each class of
automata, and each particular simulation � that we use), we need (1) to define a predecessor

operator Pre
abs that applies to maximal elements, such that Pre

abs(Max(L)) = Max(Pre(L))
for all �-closed sets L, (2) to present an algorithm to compute this operator, and establish
its correctness, and (3) to study the complexity of such an algorithm.

Finally, note that the way to compute Max(L1∩L2) given Max(L1) and Max(L2) should
also be defined for each application, while for union, the following general rule applies:
Max(L1 ∪ L2) = Max(Max(L1) ∪Max(L2)).

In the next sections, we show that the NBW that we have to analyze in the automata-
based approach to model-checking are all equipped with a simulation pre-order that can be

1In [EWS05], the simulation of Definition 3.1 is called direct simulation.

9

ℓ

ℓ1

ℓ2

...

ℓk

σ
σ

σ

Figure 2: Computing the predecessors of a �-closed set.

exploited to compute efficiently the intersection and the predecessor operators. Hence, we
show that the expected efficiency in terms of space consumption of the antichain represen-
tation does not come at the price of a blow-up in the computation times of these operators.
We do so for the emptiness problem of ABW, and for the universality and language inclu-
sion problems for NBW. All these problems can be reduced to the emptiness problem of
NBW that are obtained by specific constructions (analogous of the powerset construction),
for which simulation relations need not to be computed for each instance of the problems,
but can be defined generically (like set inclusion is such a relation for the classical powerset
construction).

4. Emptiness of ABW

We now show how to apply Lemmas 3.2 and 3.3 to check more efficiently the emptiness
of ABW. Let A1 = 〈Loc1, ι1,Σ, δ1, α1〉 be an ABW for which we want to decide whether
L(A1) = ∅. We know that the (exponential) Miyano-Hayashi construction gives a NBW
A2 = MH(A1) such that L(A2) = L(A1). The emptiness of A1 (or equivalently of A2)
can be decided more efficiently by computing the fixed point FA2

and without constructing
explicitly A2. To do so, we establish the existence of a simulation for A2 for which we can
compute ∪, ∩ and Pre by manipulating only maximal elements of closed sets of locations.

Definition 4.1. Let MH(A1) = 〈Loc2, ι2,Σ, δ2, α2〉. Remember that Loc2 ⊆ 2Loc1 × 2Loc1 .
Define the pre-order �alt⊆ Loc2 × Loc2 such that 〈s, o〉 �alt 〈s

′, o′〉 iff (i) s ⊆ s′, (ii) o ⊆ o′,
and (iii) o = ∅ iff o′ = ∅.

Note that the pre-order �alt is a partial order. As a consequence, given a set of pairs
L = {〈s1, o1〉, 〈s2, o2〉, . . . , 〈sn, on〉}, the set Max(L) is an antichain and identifies L.

Lemma 4.2. For all ABW A1, the partial order �alt is a simulation for MH(A1).

Proof. Let A1 = 〈Loc1, ι1,Σ, δ1, α1〉 and MH(A1) = 〈Loc2, ι2,Σ, δ2, α2〉. First, let σ ∈ Σ

and 〈s1, o1〉, 〈s2, o2〉, 〈s3, o3〉 ∈ Loc2 be such that 〈s1, o1〉
σ
−→δ2 〈s2, o2〉 and 〈s3, o3〉 �alt

10 L. DOYEN AND J.-F. RASKIN

Algorithm 1: Algorithm for Pre
alt

σ (·).

Data : An ABW A1 = 〈Loc1, ι1,Σ, δ1, α1〉, σ ∈ Σ and 〈s′, o′〉 ∈ 2Loc1 × 2Loc1 such
that o′ ⊆ s′.

Result : The �alt-antichain Pre
alt

σ (〈s′, o′〉).

begin

1 LPre ← ∅;
2 o← {ℓ ∈ Loc1 | o

′ ∪ (s′ ∩ α1) |= δ1(ℓ, σ)} ;
3 if o′ 6⊆ α1 ∨ o′ = ∅ then

4 LPre ← {〈o, ∅〉} ;

5 if o 6= ∅ then

6 s← {ℓ ∈ Loc1 | s
′ |= δ1(ℓ, σ)} ;

7 LPre ← LPre ∪ {〈s, o〉} ;

8 return LPre;

end

〈s1, o1〉. We show that there exists 〈s4, o4〉 ∈ Loc2 such that 〈s3, o3〉
σ
−→δ2 〈s4, o4〉 and

〈s4, o4〉 �alt 〈s2, o2〉. Let us consider the case where o1 = ∅. Then we have o3 = ∅ by
definition of �alt and δ2(〈s1, o1〉, σ) = {〈s′, s′ \ α1〉 | s′ |=

∧

l∈s1
δ1(l, σ)}, this set being

contained in δ2(〈s3, o3〉, σ) = {〈s′, s′ \ α1〉 | s
′ |=

∧

l∈s3
δ1(l, σ)} as s3 puts less constraints

than s1 since s3 ⊆ s1. A similar reasoning holds if o1 6= ∅. Second, let 〈s1, o1〉 ∈ α2 and let
〈s2, o2〉 �alt 〈s1, o1〉. By definition of α2, we know that o1 = ∅, and by definition of �alt we
have o2 = ∅ and so 〈s2, o2〉 ∈ α2.

According to Lemmas 3.2 and 3.3, all the sets that we compute to evaluate FA2
are

�alt-closed. We need to compute intersection and Pre by only manipulating maximal el-
ements. Given 〈s1, o1〉, 〈s2, o2〉, we take 〈s, o〉 such that ↓〈s, o〉 =↓〈s1, o1〉 ∩ ↓〈s2, o2〉 as
follows:

〈s, o〉 =

{

〈s1 ∩ s2, o1 ∩ o2〉 if o1 ∩ o2 6= ∅,
〈s1 ∩ s2, ∅〉 if o1 = o2 = ∅,

(4.1)

and otherwise the intersection is empty.
Algorithm 1 computes the maximal elements of the set of σ-predecessors of the �alt-clo-

sure of a pair 〈s′, o′〉. This allows to compute the maximal elements of the set of predecessors
of any �alt-closed set by just manipulating its maximal elements, since Pre

A(L1 ∪ L2) =
⋃

σ∈Σ Pre
A
σ (L1) ∪ Pre

A
σ (L2).

Note that our algorithm runs in polynomial time, more precisely in O(|Loc1| · ‖δ1‖)
where ‖δ1‖ is the size of the transition relation, defined as the maximal number of boolean
connectives in a formula δ1(ℓ, σ).

Theorem 4.3. Given an ABW A1 = 〈Loc1, ι1,Σ, δ1, α1〉, σ ∈ Σ and 〈s′, o′〉 ∈ 2Loc1 × 2Loc1

such that o′ ⊆ s′, the set LPre = Pre
alt

σ (〈s, o〉) computed by Algorithm 1 is an �alt-antichain
such that ↓LPre = Pre

A2

σ (↓{〈s′, o′〉}) where A2 = MH(A1).

Proof. Let A2 = MH(A1) = 〈Loc2, ι2,Σ, δ2, α2〉. The following entails that ↓LPre = Pre
A2

σ (↓
{〈s′, o′〉}):

11

(a) LPre ⊆ Pre
A2

σ (↓{〈s′, o′〉}), and
(b) for all 〈s1, o1〉 ∈ Pre

A2

σ (↓{〈s′, o′〉}),

there exists 〈s, o〉 ∈ LPre such that 〈s1, o1〉 �alt 〈s, o〉.

To prove (a), we first show that 〈s, o〉
σ
−→δ2 〈s

′, o′〉 where 〈s, o〉 is added to LPre at line 7
of Algorithm 1. By the test of line 5, we have o 6= ∅. According to Definition 2.5 of MH(·),
we check that there exists a set o′′ ⊆ s′ such that o′ = o′′ \ α1 (we take o′′ = o′ ∪ (s′ ∩ α1)),
and the following conditions hold:

(i) s′ |=
∧

ℓ∈s δ1(ℓ, σ) since we have s′ |= δ1(ℓ, σ) for all ℓ ∈ s by line 6 of Alg. 1.
(ii) o′′ |=

∧

ℓ∈o δ1(ℓ, σ) since we have o′′ |= δ1(ℓ, σ) for all ℓ ∈ o by line 2 of Alg. 1.

Second, we show that 〈o, ∅〉
σ
−→δ2 〈s

′′, o′′〉 for some 〈s′′, o′′〉 �alt 〈s
′, o′〉 where 〈o, ∅〉 is

added to LPre at line 4 of Algorithm 1. We take s′′ = o′ ∪ (s′ ∩ α1) and o′′ = s′′ \ α1. Since
o′ ⊆ s′, we have (a) s′′ ⊆ s′, and we have (b) o′′ = o′ \ α1 ⊆ o′. Let us establish that (c)
o′ = ∅ iff o′′ = ∅. If o′ = ∅ then o′′ = ∅ since o′′ ⊆ o′. If o′ 6= ∅ then by the test of line 3, we
have o′ 6⊆ α1 and thus o′′ = o′ \ α1 6= ∅. Hence we have 〈s′′, o′′〉 �alt 〈s

′, o′〉, and by line 2 of
the algorithm, we have s′′ |= δ1(ℓ, σ) for all ℓ ∈ o, and thus s′′ |=

∧

ℓ∈o δ1(ℓ, σ). Therefore

〈o, ∅〉
σ
−→δ2 〈s

′′, o′′〉.

To prove (b), assume that there exist 〈s1, o1〉 and 〈s′1, o
′
1〉 such that 〈s1, o1〉

σ
−→δ2 〈s

′
1, o

′
1〉

and 〈s′1, o
′
1〉 �alt 〈s

′, o′〉. We have to show that there exists 〈s, o〉 ∈ LPre such that 〈s1, o1〉 �alt

〈s, o〉.

First, assume that o1 6= ∅. Since 〈s1, o1〉
σ
−→δ2 〈s

′
1, o

′
1〉, we have:

(i) for all ℓ ∈ s1, s′1 |= δ1(ℓ, σ) and since s′1 ⊆ s′ also s′ |= δ1(ℓ, σ). Let s be the set defined
at line 6 of Algorithm 1. For all ℓ ∈ Loc, if s′ |= δ1(ℓ, σ) then ℓ ∈ s. Hence, s1 ⊆ s.

(ii) for all ℓ ∈ o1, o′′1 |= δ1(ℓ, σ) for some o′′1 ⊆ s′1 such that o′1 = o′′1 \α1. Hence necessarily
o′′1 ⊆ o′1 ∪ (s′1 ∩α1) ⊆ o′ ∪ (s′ ∩α1) and thus for all ℓ ∈ o1, o′ ∪ (s′ ∩α1) |= δ1(ℓ, σ). Let
o be the set defined at line 2 of Algorithm 1. For all ℓ ∈ Loc, if o′∪ (s′∩α1) |= δ1(ℓ, σ)
then ℓ ∈ o. Hence, o1 ⊆ o and o 6= ∅.

Hence, 〈s, o〉 which is added to LPre by Alg. 1 at line 7 satisfies 〈s1, o1〉 �alt 〈s, o〉.

Second, assume that o1 = ∅. Since 〈s1, o1〉
σ
−→δ′ 〈s

′
1, o

′
1〉 and o1 = ∅, we know that

for all ℓ ∈ s1, s′1 |= δ1(ℓ, σ) and o′1 = s′1 \ α1. Let s′′ = o′ ∪ (s′ ∩ α1) so we have (a)
s′1 ∩ α1 ⊆ s′ ∩ α1 ⊆ s′′ and (b) s′1 \ α1 = o′1 ⊆ o′ ⊆ s′′. Hence, s′1 ⊆ s′′ and thus for all
ℓ ∈ s1, s′′ |= δ1(ℓ, σ). Let o be the set defined at line 2 of Algorithm 1. For all ℓ ∈ Loc, if
s′′ |= δ1(ℓ, σ) then ℓ ∈ o. Hence, s1 ⊆ o and 〈s1, ∅〉 �alt 〈o, ∅〉 where 〈o, ∅〉 is added to LPre

by Algorithm 1 at line 4. Notice that the test at line 3 is satisfied because o′1 = s′1 \ α1

implies that o′1 6⊆ α1 ∨ o′1 = ∅ and since 〈s′1, o
′
1〉 �alt 〈s

′, o′〉, we have o′ 6⊆ α1 ∨ o′ = ∅.

5. Universality of NBW

We present a new algorithm to check universality of NBW, based the existence of a
simple simulation relation for the complement automaton of NBW given by Definition 2.7.

Definition 5.1. Given an NBW A = 〈Loc, ι,Σ, δ, α〉, let KVMH(A) = 〈Q×Q, qι,Σ, δ′, α′〉.
Define the pre-order �univ⊆ (Q × Q) × (Q × Q) as follows: for all s, s′, o, o′ ∈ Q, let
〈s, o〉 �univ 〈s

′, o′〉 iff the following conditions hold:

• for all (ℓ, n) ∈ s, there exists n′ ≤ n such that (ℓ, n′) ∈ s′;
• for all (ℓ, n) ∈ o, there exists n′ ≤ n such that (ℓ, n′) ∈ o′;

12 L. DOYEN AND J.-F. RASKIN

• o = ∅ iff o′ = ∅.

This relation formalizes the intuition that it is easier to accept a word in KVMH(A)
from a given location with a high rank than with a small rank. This is because the rank
is always decreasing along every path of the runs of KV(A), and so a small rank is always
simulated by a greater rank. Hence, essentially the minimal rank of each location of s and
o is relevant to define the pre-order �univ. The third condition requires that only accepting
states simulate accepting states.

Lemma 5.2. For all NBW A, the pre-order �univ is a simulation for the NBW KVMH(A).

Proof. Let A = 〈Loc, ι,Σ, δ, α〉 and KVMH(A) = 〈Q × Q, qι,Σ, δ′, α′〉. First, we show that

for all 〈s1, o1〉, 〈s2, o2〉, 〈s3, o3〉 ∈ Q×Q, for all σ ∈ Σ, if 〈s1, o1〉
σ
−→δ′ 〈s2, o2〉 and 〈s3, o3〉 �

〈s1, o1〉 then 〈s3, o3〉
σ
−→δ′ 〈s2, o2〉. Notice that we have trivially 〈s2, o2〉 �univ 〈s2, o2〉. We

give the proof for o1 6= ∅. The case o1 = ∅ is proven similarly. According to Definition 2.7,

since 〈s1, o1〉
σ
−→δ′ 〈s2, o2〉 we have

(i) ∀(ℓ, n1) ∈ s1 · ∀ℓ
′ ∈ δ(ℓ, σ) · ∃n2 ≤ n1 : (ℓ′, n2) ∈ s2 and

(ii) ∀(ℓ, n1) ∈ o1 · ∀ℓ
′ ∈ δ(ℓ, σ) · ∃n2 ≤ n1 : (ℓ′, n2) ∈ o2

Since 〈s3, o3〉 � 〈s1, o1〉, we have o3 6= ∅ and

(i′) ∀(ℓ, n3) ∈ s3 · ∃n1 ≤ n3 : (ℓ, n1) ∈ s1 and
(ii′) ∀(ℓ, n3) ∈ o3 · ∃n1 ≤ n3 : (ℓ, n1) ∈ o1

Combining (i) and (i′) yields ∀(ℓ, n3) ∈ s3 · ∀ℓ
′ ∈ δ(ℓ, σ) · ∃n2 ≤ n3 : (ℓ′, n2) ∈ s2 :, and

combining (ii) and (ii′) yields ∀(ℓ, n3) ∈ o3 · ∀ℓ
′ ∈ δ(ℓ, σ) · ∃n2 ≤ n3 : (ℓ′, n2) ∈ o2. Since

o3 6= ∅, this implies that 〈s3, o3〉
σ
−→δ′ 〈s2, o2〉.

Second, for all 〈s, o〉 ∈ α′ we have o = ∅, and thus for all 〈s′, o′〉 ∈ Q×Q, if 〈s′, o′〉 � 〈s, o〉
then o′ = ∅ so that 〈s′, o′〉 ∈ α′.

Hence �univ is a simulation for KVMH(A).

According to Lemmas 3.2 and 3.3, all intermediate sets that are computed by the
fixed point FAc to check emptiness of Ac = KVMH(A) (and thus universality of A) are
�univ-closed. Since �univ is not a partial order, the set Max(L) for a �univ-closed set L

may contain several �univ-equivalent elements (x and y are �univ-equivalent if x �univ y

and y �univ x). For example, the set {〈{(ℓ, 3), (ℓ′ , 4)}, ∅〉} is �univ-equivalent to the set
{〈{(ℓ, 3), (ℓ, 4), (ℓ′ , 4)}, ∅〉}. In fact Max(L) is a union of �univ-equivalent classes. Hence,
the size of Max(L) can be reduced by keeping only one canonical element for each �univ-
equivalent class. Given a set s ∈ Q, define its characteristic function fs : Loc → N ∪ {∞}
such that fs(ℓ) = inf{n | (ℓ, n) ∈ s} with the usual convention that inf ∅ =∞. Note that if
fs(ℓ) 6=∞, then fs(ℓ) is even for all ℓ ∈ α.

Let f, g, f ′, g′ be characteristic functions. Let max(f, f ′) be the function f ′′ such that
f ′′(ℓ) = max{f(ℓ), f ′(ℓ)} for all ℓ ∈ Loc. We denote by f∅ the function such that f∅(ℓ) =∞
for all ℓ ∈ Loc. We write f ≤ f ′ if for all ℓ ∈ Loc, f(ℓ) ≤ f ′(ℓ) and we write 〈f, g〉 ≤ 〈f ′, g′〉
if f ≤ f ′, g ≤ g′ and g = f∅ iff g = f∅. Notice that ≤ is partial order over characteristic
functions, and that if s ⊆ s′, then fs′ ≤ fs for all s, s′ ∈ Q. The following lemma is a
corollary of Definition 5.1.

Lemma 5.3. For all sets s, s′, o, o′ ∈ Q, 〈fs′ , fo′〉 ≤ 〈fs, fo〉 if and only if 〈s, o〉 �univ 〈s
′, o′〉.

Define [[f]]= {s ∈ Q | ∃s′ ∈ Q : s ⊆ s′∧ fs′ = f} and [[〈f, g〉]]= {〈s, o〉 | 〈f, g〉 ≤ 〈fs, fo〉}.
We extend the operator [[·]] to sets of pairs of characteristic functions as expected. Notice

13

that f ≤ f ′ iff [[f ′]]⊆[[f]], that [[max(f, f ′)]]=[[f]] ∩ [[f ′]], and a corollary of Lemma 5.3 is that
the ≤-minimal elements of a set L of pairs of characteristic functions represents exactly the
�univ-maximal pairs 〈s, o〉 of [[L]].

Now, we show how to compute efficiently ∪, ∩ and Pre for �univ-closed sets that are
represented by characteristic functions. Let L1, L2 be two sets of pairs of characteristic
functions, let L∪ be the set of ≤-minimal elements of L1∪L2, and let L∩ be the ≤-minimal
elements of the union of:

{〈max(fs, fs′),max(fo, fo′)〉 | 〈fs, fo〉 ∈ L1 ∧ 〈fs′ , fo′〉 ∈ L2 ∧max(fo, fo′) 6= f∅} and
{〈max(fs, fs′), f∅〉 | 〈fs, f∅〉 ∈ L1 ∧ 〈fs′ , f∅〉 ∈ L2}.

By Equation (4.1) and by the previous remarks, we have:

[[L∪]]=[[L1]] ∪ [[L2]] and [[L∩]]=[[L1]] ∩ [[L2]].

To compute Preσ(·) of a single pair of characteristic functions, we propose Algorithm 2
whose correctness is established by Theorem 5.4. Computing the predecessors of a set of
characteristic functions is then straightforward using the algorithm for union of sets of pairs
of characteristic functions since

Pre
KVMH(A)(L) =

⋃

σ∈Σ

⋃

ℓ∈L

Pre
KVMH(A)
σ (ℓ).

In Algorithm 2, we represent∞ by any number strictly greater than k = 2(|Loc|− |α|), and
we adapt the definition of ≤ as follows: f ≤ f ′ iff for all ℓ ∈ Loc, either f(ℓ) ≤ f ′(ℓ) or
f ′(ℓ) > k. In the algorithm, we use the notations ⌈n⌉odd for the least odd number n′ such
that n′ ≥ n, and ⌈n⌉even for the least even number n′ such that n′ ≥ n.

The structure of Algorithm 2 is similar to Algorithm 1, but the computations are
expressed in terms of characteristic functions, thus in terms of ranks. For example, lines 4-5
compute the equivalent of line 2 in Algorithm 1, where α1 corresponds here to the set of
odd-ranked locations, and thus contains no α-nodes. Details are given in the proof of
Theorem 5.4.

Theorem 5.4. Let A = 〈Loc, ι,Σ, δ, α〉 be a NBW, σ ∈ Σ, and 〈fs′ , fo′〉 be a pair of
characteristic functions such that fs′ ≤ fo′. The set LPre = Pre

univ

σ (〈fs′ , fo′〉) computed by

Algorithm 2 is such that [[LPre]]= Pre
KVMH(A)
σ ([[〈fs′ , fo′〉]]) and for all 〈fs, fo〉 ∈ LPre, we have

fs ≤ fo and fs(ℓ) and fo(ℓ) are even for all ℓ ∈ α.

Proof. Let Ac = KVMH(A) = 〈Q × Q, qι,Σ, δ′, α′〉, and let 〈s′, o′〉 be a pair of sets whose
characteristic functions are 〈fs′ , fo′〉 and o′ ⊆ s′ (such a pair exists because fs′ ≤ fo′). We
show that (a) [[LPre]]⊆ Pre

Ac

σ ([[〈fs′ , fo′〉]]) and (b) Pre
Ac

σ ([[〈fs′ , fo′〉]]) ⊆[[LPre]].
To prove (a), first consider a pair 〈fs, fo〉 added to LPre at line 13 of Algorithm 2 and

let 〈s, o〉 ∈[[〈fs, fo〉]]. We show that 〈s, o〉
σ
−→δ′ 〈s

′, o′〉 and fs ≤ fo.
By the test of line 9, we have fo 6= f∅ and therefore o 6= ∅. According to Definition 2.7

of KVMH(A), we have to check that there exists a set o′′ ⊆ s′ such that o′ = o′′ \ odd (we
take o′′ = o′ ∪ (s′ ∩ odd)), and the following conditions hold:

(i) ∀(ℓ, n) ∈ s · ∀ℓ′ ∈ δ(ℓ, σ) · ∃n′ ≤ n : (ℓ′, n′) ∈ s′.
Observe that for all ℓ ∈ Loc, for all ℓ′ ∈ δ(ℓ, σ), we have fs′(ℓ

′) ≤ fs(ℓ) (lines 11,12
of Algorithm 2). Since fs(ℓ) ≤ n (by definition of characteristic functions), we take
n′ = fs′(ℓ

′) so that we have n′ ≤ fs(ℓ) ≤ n and (ℓ′, n′) ∈ s′.
(ii) ∀(ℓ, n) ∈ o · ∀ℓ′ ∈ δ(ℓ, σ) · ∃n′ ≤ n : (ℓ′, n′) ∈ o′′.

14 L. DOYEN AND J.-F. RASKIN

Since o′′ = o′ ∪ (s′ ∩ odd), we have fo′′(ℓ
′) = fo′(ℓ

′) for ℓ′ ∈ α and fo′′(ℓ
′) =

min{fo′(ℓ
′), ⌈fs′(ℓ

′)⌉odd} for ℓ′ 6∈ α. Now, for all ℓ ∈ Loc, for all ℓ′ ∈ δ(ℓ, σ), we have
either ℓ′ ∈ α and then fo(ℓ) ≥ n′ for n′ = fo′(ℓ

′), or ℓ′ 6∈ α and then fo(ℓ) ≥ n′ for
n′ = min{fo′(ℓ

′), ⌈fs′(ℓ
′)⌉odd} (lines 4-6 of Algorithm 2). In both cases, for (ℓ, n) ∈ o

we have fo′′(ℓ
′) ≤ n′ ≤ fo(ℓ) ≤ n and (ℓ′, n′) ∈ o′′.

Moreover, we prove that:

(iii) fs ≤ fo.
Since fs′ ≤ fo′ , we have for all ℓ′ ∈ Loc either fo′(ℓ

′) > k or fo′(ℓ
′) ≥ fs′(ℓ

′). By
lines 4-6 of Algorithm 2, we have for all ℓ ∈ Loc, for all ℓ′ ∈ δ(ℓ, σ) either fo(ℓ) ≥ fo′(ℓ

′)
or fo(ℓ) ≥ ⌈fs′(ℓ

′)⌉odd, and thus either fo(ℓ) > k or fo(ℓ) ≥ fs′(ℓ
′). Hence, we have

for all ℓ ∈ Loc either fo(ℓ) > k or fo(ℓ) ≥ max{fs′(ℓ
′) | ℓ′ ∈ δ(ℓ, σ)}. Therefore, by

lines 11-12 of Algorithm 2, if ℓ 6∈ α, then fo(ℓ) > k or fo(ℓ) ≥ fs(ℓ), and if ℓ ∈ α, then
fo(ℓ) is even (line 6) and thus either fo(ℓ) > k or fo(ℓ) ≥ ⌈max{fs′(ℓ

′) | ℓ′ ∈ δ(ℓ, σ)}
⌉even = fs(ℓ). In all cases, fs ≤ fo.

(iv) ∀ℓ ∈ α : fs(ℓ) and fo(ℓ) are even.
This is enforced by line 12 and line 6 of the algorithm.

Second, consider a pair 〈fo, f∅〉 added to LPre at line 7, and let 〈s, ∅〉 ∈[[〈fo, f∅〉]]. Notice that
fo ≤ f∅ and that fo(ℓ) is even for all ℓ ∈ α by (iv). We show that there exists 〈s′′, o′′〉 �univ

〈s′, o′〉 such that 〈s, ∅〉
σ
−→δ′ 〈s

′′, o′′〉. We take s′′ = o′ ∪ (s′ ∩ odd) and o′′ = s′′ \ odd. Since
o′ ⊆ s′, we have (1) s′′ ⊆ s′, and we have (2) o′′ = o′ \ odd ⊆ o′. Moreover, if o′ 6= ∅, then
there exists let (ℓ, n) ∈ o′ for some ℓ ∈ Loc and even number n, since the maximal rank
k = 2(|Loc| − |α|) is even. So (ℓ, n) ∈ o′′ and thus o′′ 6= ∅. Since o′′ ⊆ o′, we have (3) o′ 6= ∅

iff o′′ 6= ∅. Hence 〈s′′, o′′〉 �univ 〈s
′, o′〉. The fact that 〈fo, ∅〉

σ
−→δ′ 〈s

′′, o′′〉 is proven similarly
to (ii).

To prove (b), assume that there exist 〈s1, o1〉 and 〈s′1, o
′
1〉 such that 〈s1, o1〉

σ
−→δ′ 〈s

′
1, o

′
1〉

and 〈s′1, o
′
1〉 ∈[[〈fs′ , fo′〉]]. We have to show that 〈s1, o1〉 ∈[[LPre]], i.e., 〈fs1

, fo1
〉 ≥ 〈fs, fo〉 for

some 〈fs, fo〉 ∈ LPre.
First, assume that o1 6= ∅. Notice that fs′

1
≥ fs′ and fo′

1
≥ fo′ since 〈s′1, o

′
1〉 ∈[[〈fs′, fo′〉]],

From the fact that 〈s1, o1〉
σ
−→δ′ 〈s

′
1, o

′
1〉, we get:

(i) for all (ℓ, n1) ∈ s1, for all ℓ′ ∈ δ(ℓ, σ), n1 ≥ fs1
(ℓ) ≥ fs′

1
(ℓ′) and thus n1 ≥ fs′(ℓ

′).

Hence, for all ℓ ∈ Loc we have fs1
(ℓ) ≥ max{fs′(ℓ

′) | ℓ′ ∈ δ(ℓ, σ)} = fs(ℓ), where fs

is computed by line 11 of Algorithm 2) for ℓ 6∈ α. We also have fs1
(ℓ) ≥ fs(ℓ) (see

line 12 of Algorithm 2) for ℓ ∈ α, as fs1
(ℓ) is even in that case. Thus, fs ≤ fs1

.
(ii) for all (ℓ, n2) ∈ o1, for all ℓ′ ∈ δ(ℓ, σ), n2 ≥ fo1

(ℓ) ≥ fo′′
1
(ℓ′) for some set o′′1 such that

o′′1 ⊆ s′1 and o′′1 \odd = o′1. Therefore o′′1 ⊆ o′1∪(s′1∩odd) and thus fo′′
1
≥ fo′

1
∪(s′

1
∩odd) ≥

fo′∪(s′∩odd) since fs′
1
≥ fs′ and fo′

1
≥ fo′ . Hence, for all ℓ ∈ Loc either fo1

(ℓ) > k or

fo1
(ℓ) ≥ fo(ℓ) (where fo is computed at lines 1-6 of Algorithm 2). Thus, fo ≤ fo1

.
(iii) By our assumption that o1 6= ∅, we have fo1

6= f∅, and so fo 6= f∅ by (ii).

Hence, the pair 〈fs, fo〉 added to LPre by Algorithm 2 at line 13 satisfies 〈fs1
, fo1
〉 ≥ 〈fs, fo〉

and thus 〈s1, o1〉 ∈[[LPre]].

Second, assume that o1 = ∅. Let s′′ = o′ ∪ (s′ ∩ odd). Since 〈s1, o1〉
σ
−→δ′ 〈s

′
1, o

′
1〉 and

o1 = ∅, we have o′1 = s′1 \ odd. Next, we use several times the fact that u ⊆ v implies
fv ≤ fu. Since fs′

1
≥ fs′ and fo′

1
≥ fo′ , we have (1) fs′

1
∩odd ≥ fs′∩odd ≥ fs′′ and (2)

fs′
1
\odd = fo′

1
≥ fo′ ≥ fs′′ . By (1) and (2), we get easily fs′

1
≥ fs′′ . Now, by the fact that

15

Algorithm 2: Algorithm for Pre
univ

σ (·).

Data : A NBW A = 〈Loc, ι,Σ, δ, α〉, σ ∈ Σ, and a pair 〈fs′ , fo′〉 of characteristic
functions.

Result : The set Pre
univ

σ (〈fs′ , fo′〉).

begin

1 foreach ℓ ∈ Loc do

2 fo(ℓ)← 0 ;
3 foreach ℓ′ ∈ δ(ℓ, σ) do

4 if ℓ′ ∈ α then fo(ℓ)← max{fo(ℓ), fo′(ℓ
′)} ;

5 else fo(ℓ)← max{fo(ℓ),min{fo′(ℓ
′), ⌈fs′(ℓ

′)⌉odd}} ;

6 if ℓ ∈ α then fo(ℓ)← ⌈fo(ℓ)⌉
even ;

7 LPre ← {〈fo, f∅〉} ;
8 k ← 2(|Loc| − |α|) ;
9 if ∃ℓ : fo(ℓ) ≤ k (i.e. o 6= ∅) then

10 foreach ℓ ∈ Loc do

11 fs(ℓ)← max{fs′(ℓ
′) | ℓ′ ∈ δ(ℓ, σ)} ;

12 if ℓ ∈ α then fs(ℓ)← ⌈fs(ℓ)⌉
even ;

13 LPre ← LPre ∪ {〈fs, fo〉} ;

14 return LPre;

end

〈s1, o1〉
σ
−→δ′ 〈s

′
1, o

′
1〉, we know that for all (ℓ, n1) ∈ s1, for all ℓ′ ∈ δ(ℓ, σ), n1 ≥ fs′

1
(ℓ′) and

thus n1 ≥ fs′′(ℓ
′). Notice that fo(ℓ) = max{fs′′(ℓ

′) | ℓ′ ∈ δ(ℓ, σ)}, where fo is computed at
lines 1-6 of Algorithm 2. Thus, n1 ≥ fo(ℓ) for all ℓ ∈ Loc and therefore fs1

≤ fo so that
〈s1, o1〉 ∈[[〈fo, f∅〉]] where 〈fo, f∅〉 is added to LPre by Algorithm 2 at line 13.

Algorithm 2 computes the predecessors of a pair 〈fs′ , fo′〉 in time O(|Loc|2), which
is polynomial in the size of the input, even though the number of pairs 〈s′, o′〉 that are
represented by the pair 〈fs′ , fo′〉 and by the computed set LPre can be of exponential size.
For example, the set α′ = Q×{∅} with an exponential number of elements is represented by
the unique pair 〈fs, f∅〉 where fs(ℓ) = 0 for all ℓ ∈ Loc. Hence the compact representation
that we propose does not come with an execution time blow-up, which makes the new
approach much more efficient in practice.

6. Implementation and Practical Evaluation

The randomized model. To evaluate our new algorithm for universality of NBW and
compare with the existing implementations of the Kupferman-Vardi and Miyano-Hayashi
constructions, we use a random model to generate NBW. This model was first proposed
by Tabakov and Vardi to compare the efficiency of some algorithms for automata in the
context of finite words automata [TV05] and more recently in the context of infinite words

16 L. DOYEN AND J.-F. RASKIN

automata [TV07]. In the model, the input alphabet is fixed to Σ = {0, 1}, and for each
letter σ ∈ Σ, a number kσ of different state pairs (ℓ, ℓ′) ∈ Loc× Loc are chosen uniformly at
random before the corresponding transitions (ℓ, σ, ℓ′) are added to the automaton. The ratio

rσ = kσ

|Loc| is called the transition density for σ. This ratio represents the average outdegree

of each state for σ. In all experiments, we choose r0 = r1, and denote the transition density
by r. The model contains a second parameter: the density f of accepting states. There is
only one initial state, and the number m of accepting states is linear in the total number of
states, as determined by f = m

|Loc| . The accepting states themselves are chosen uniformly

at random. Observe that since the transition relation is not always total, automata with
f = 1 are not necessarily universal.

Tabakov and Vardi have studied the space of parameter values for this model and argue
that “interesting” automata are generated by the model as the two parameters r and f vary.
They also study the density of universal automata.

Performance comparison. We have implemented our algorithm to check the universality
of randomly generated NBW. The code is written in C with an explicit representation for
characteristic functions, as arrays of integers. All the experiments are conducted on a
biprocessor Linux station (two 3.06Ghz Intel Xeons with 4GB of RAM).

Figure 3 shows as a function of r (transition density) and f (density of accepting states)
the median execution times for testing universality of 100 random automata with |Loc| = 30.
It shows that the universality test was the most difficult for r = 1.8 and f = 0.1 with a me-
dian time of 11 seconds. The times for r ≤ 1 and r ≥ 2.8 are not plotted because they were
always less than 250ms. A similar shape and maximal median time is reported by Tabakov
for automata of size 6, that is for automata that are five times smaller [TV07]. Another pre-
vious work reports prohibitive execution times for complementing NBW of size 6, showing
that explicitly constructing the complement is not a reasonable approach [GKSV03]. The
density of universal automata in the samples is shown in Figure 4. The density increases
when states have more transitions, while it seems less sensitive to the density of accepting
states. The difficult instances correspond to the values of the densities of transitions and
accepting states for which the probability to be universal is close to a half. Analogous
results have been observed in [TV07].

To evaluate the scalability of our algorithm, we have run the following experiment. For
a set of parameter values, we have evaluated the maximal size of automata (measured in
term of number of locations) for which our algorithm could analyze 50 over 100 instances in
less than 20 seconds. We have tried automata sizes from 10 to 1500, with a fine granularity
for small sizes (from 10 to 100 with an increment of 10, from 100 to 200 with an increment
of 20, and from 200 to 500 with an increment of 30) and a rougher granularity for large
sizes (from 500 to 1000 with an increment of 50, and from 1000 to 1500 with an increment
of 100).

The results are shown in Fig. 5, and the corresponding values are given in Table 1. The
vertical scale is logarithmic. For example, for r = 2 and f = 0.5, our algorithm was able to
handle at least 50 automata of size 120 in less than 20 seconds and was not able to do so
for automata of size 140. In comparison, Tabakov and Vardi have studied the behavior of
Kupferman-Vardi and Miyano-Hayashi constructions for different implementation schemes.
We compare with the performances of their symbolic approach which is the most efficient.
For the same parameter values (r = 2 and f = 0.5), they report that their implementation
can handle NBW with at most 8 states in less than 20 seconds [TV07].

17

Median Time (s)

12

8

4

0

f - ac
cep

tin
g de

ns
ity

0.1
0.3

0.5

0.7

0.9
r - transition density

1.4
1.8

2.2
2.6

Median execution time

Figure 3: Median time to check uni-
versality of 100 automata
of size 30 for each sample
point.

Density of universal

0
0.2
0.4
0.6
0.8

1

f - ac
cep

tin
g de

ns
ity

0.1
0.3

0.5

0.7

0.9
r - transition density

3
2.5

2
1.5

1
0.5

0.9

0.7

0.5

0.3

0.1

Figure 4: Density of universal au-
tomata for the samples of
Figure 3.

Number of locations

100

1000

10000

f
-
accep

tin
g

d
en

sity

0.1

0.3

0.5

0.7

0.9

r - transition density
0.2 0.6 1 1.4 1.8 2.2 2.6 3

∝

1200

800

400

0

Figure 5: Automata size for which the median execution
time to check universality is less than 20 seconds
(log scale). See also Table 1.

Table 1: Automata size (NBW) for which the median execution time for checking univer-
sality is less than 20 seconds. The symbol ∝ means more than 1500.

f
r 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.1 ∝ ∝ ∝ 550 200 120 60 40 30 40 50 50 70 90 100
0.3 ∝ ∝ ∝ 500 200 100 40 30 40 70 100 120 160 180 200
0.5 ∝ ∝ ∝ 500 200 120 60 60 90 120 120 120 140 260 500
0.7 ∝ ∝ ∝ 500 200 120 70 80 100 200 440 1000 ∝ ∝ ∝
0.9 ∝ ∝ ∝ 500 180 100 80 200 600 ∝ ∝ ∝ ∝ ∝ ∝

In Figure 6, we show the median execution time to check universality for relatively
difficult instances (r = 2 and f vary from 0.3 to 0.7). The vertical scale is logarithmic,
so the behavior is roughly exponential in the size of the automata. Similar analyzes are
reported in [TV07] but for sizes below 10.

Finally, we give in Figure 7 the distribution of execution times for 100 automata of
size 50 with r = 2.2 and f = 0.5, so that roughly half of the instances are universal. Each
point represents one automaton, and one point lies outside the figure with an execution

18 L. DOYEN AND J.-F. RASKIN

r=2, f=0.7
r=2, f=0.5
r=2, f=0.3

Scalability analysis

Automata size

M
ed

ia
n

ex
ec

u
ti
on

ti
m

e
(s

)

1601501401301201101009080706050403020100

100

10

1

0.1

0.01

Figure 6: Median time to check
universality (of 100 au-
tomata for each sample
point).

Not Universal
Universal

f=2.2, r=0.5

Execution time (s)

10.10.01

Figure 7: Execution time to check
universality of 100 au-
tomata, 57 of which
were universal.

time of 675s for a non universal automaton. The existence of very few instances that are
very hard was often encountered in the experiments, and this is why we use the median
for the execution times. If we except this hard instance, Figure 7 shows that universal
automata (average time 350ms) are slightly easier to analyze than non-universal automata
(average time 490ms). This probably comes from the fact that we stop the computation of
the (greatest) fixed point whenever the initial state is not in the �univ-closure of the current
approximation. Indeed, in such case, since the approximations are �univ-decreasing, we
know that the initial state would also not lie in the fixed point. Of course, this optimization
applies only for universal automata.

7. Language Inclusion for Büchi automata

Let A1 = 〈Loc1, ι1,Σ, δ1, α1〉 and A2 be two NBW defined on the same alphabet Σ for
which we want to check language inclusion: L(A1) ⊆

? L(A2). To solve this problem, we
check emptiness of L(A1)∩L

c(A2). As we have seen, we can use the Kupferman-Vardi and
Miyano-Hayashi construction to specify a NBW Ac

2 = 〈Loc2, ι2,Σ, δ2, α2〉 that accepts the
complement of the language of A2.

Using the classical product construction, let B = A1×A
c
2 be a finite automaton with set

of locations LocB = Loc1 × Loc2, initial state ιB = (ι1, ι2), and transition function δB such
that δB((ℓ1, ℓ2), σ) = δ1(ℓ1, σ)× δ2(ℓ2, σ). We equip B with the generalized Büchi condition
{β1, β2} = {α1 × Loc2,Loc1 × α2}, thus asking for a run of B to be accepting that it visits
β1 and β2 infinitely often. It is routine to show that we have L(B) = L(A1) ∩ L(Ac

2). The
following fixed point

F ′
B ≡ νy ·

(

µx1 ·
[

Pre
B(x1) ∪ (Pre

B(y) ∩ β1)
]

∩ µx2 ·
[

Pre
B(x2) ∪ (Pre

B(y) ∩ β2)
]

)

can be used to check emptiness of B as we have L(B) 6= ∅ iff ιB ∈ F
′
B. We now define the

pre-order �inc over the locations of B: for all (ℓ1, ℓ2), (ℓ
′
1, ℓ

′
2) ∈ LocB, let (ℓ1, ℓ2) �inc (ℓ′1, ℓ

′
2)

iff ℓ1 = ℓ′1 and ℓ2 �univ ℓ′2.
We extend the definition of simulation relation � (Definition 3.1) to generalized Büchi

automata B by asking that for each βi, the relation � is a simulation for B with accepting
states βi.

Lemma 7.1. The relation �inc is a simulation for B.

19

Proof. First, observe that equality is a simulation relation for A1. Then, the first condition
of Definition 3.1 is a direct consequence of the fact that equality (resp. �univ) is a simulation
relation for A1 (resp. for Ac

2), and that B = A1 × A
c
2 is the product of these automata.

Second, it is easy to see that the sets β1 and β2 are �inc-closed.

As a consequence of the last lemma, we know that all sets that we have to manipulate
to solve the language inclusion problem using the fixed point F ′

B are �inc-closed. The
operators ∪, ∩ and Pre can be thus computed efficiently, using the same algorithms and
data structures as for universality. In particular, let Pre

inc

σ (ℓ′1, ℓ
′
2) = Pre

A1

σ (ℓ′1) × Pre
univ

σ (ℓ′2)

where Pre
univ

σ is computed by Algorithm 2 (with input A2). It is easy to show as a corollary

of Theorem 5.4 that ↓Pre
inc

σ (ℓ′1, ℓ
′
2) = Pre

B
σ (↓{(ℓ′1, ℓ

′
2)}).

8. Conclusion

We have shown that the prohibitive complementation constructions for nondeterministic
Büchi automata can be avoided for solving classical problems like universality and language
inclusion. Our approach is based on fixed points computation and the existence of simulation
relations for the (exponential) constructions used in complementation of Büchi automata.
Those simulations are used to dramatically reduce the amount of computations needed to
decide classical problems. Their definition relies on the structure of the original automaton
and do not require explicit complementation.

The resulting algorithms evaluate a fixed point formula and avoid redundant compu-
tations by maintaining sets of maximal elements according to the simulation relation. In
practice, the computation of the predecessor operator, which is the key of the approach,
is efficient because it is done on antichains of elements only. Even though the classical
approaches (as well as ours) have the same worst case complexity, our prototype implemen-
tation outperforms those approaches where the structural properties of the complement
automaton (witnessed by the existence of simulation relations) is not exploited. The huge
gap of performances holds over the entire parameter space of the randomized model pro-
posed by Tabakov and Vardi.

Applications of this paper go beyond universality and language inclusion for NBW, as we
have shown that the methodology applies to alternating Büchi automata for which efficient
translations from LTL formula are known [GO01]. Significant improvements in the model-
checking and satisfiability problem of LTL can be achieved with the same ideas [DDMR08b,
DDMR08a].

Acknowledgment. We thank two anonymous reviewers for helpful comments and sugges-
tions.

References

[BGS00] R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm for strongly connected component
analysis in log symbolic steps. In Proceedings of FMCAD: Formal Methods in Computer-

Aided Design, Lecture Notes in Computer Science 1954, pages 37–54. Springer, 2000.
[Büc62] J. Richard Büchi. On a decision method in restricted second order arithmetic. In Proc. Interna-

tional Congress on Logic, Method, and Philosophy of Science, pages 1–12. Stanford University
Press, 1962.

[CDHR07] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-regular
games of incomplete information. Logical Methods in Computer Science, 3(3:4), 2007.

20 L. DOYEN AND J.-F. RASKIN

[DDHR06] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm for
checking universality of finite automata. In Proceedings of CAV: Computer-Aided Verification,
Lecture Notes in Computer Science 4144, pages 17–30. Springer-Verlag, 2006.

[DDMR08a] M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Alaska: Antichains for logic, automata and
symbolic kripke structures analysis. In Proceedings of ATVA 2008: Automated Technology for

Verification and Analysis, Lecture Notes in Computer Science 5311, pages 240–245. Springer-
Verlag, 2008.

[DDMR08b] M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative algorithms for
LTL satisfiability and model-checking. In Proceedings of TACAS: Tools and Algorithms for the

Construction and Analysis of Systems, Lecture Notes in Computer Science 4963, pages 63–77.
Springer-Verlag, 2008.

[DDR06] M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of imperfect
information. In Proceedings of HSCC: Hybrid Systems—Computation and Control, Lecture
Notes in Computer Science 3927, pages 153–168. Springer-Verlag, 2006.

[EL86] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional mu-
calculus (extended abstract). In Proceedings of LICS: Symposium on Logic in Computer Sci-

ence, pages 267–278. IEEE Computer Society, 1986.
[EWS05] K. Etessami, T. Wilke, and R. A. Schuller. Fair simulation relations, parity games, and state

space reduction for Büchi automata. SIAM J. Comput., 34(5):1159–1175, 2005.
[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing nondetermin-

istic Büchi automata. In Proceedings of CHARME: Correct Hardware Design and Verification

Methods, Lecture Notes in Computer Science 2860, pages 96–110. Springer-Verlag, 2003.
[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proceedings of CAV:

Computer-Aided Verification, Lecture Notes in Computer Science 2102, pages 53–65. Springer-
Verlag, 2001.

[GPP03] R. Gentilini, C. Piazza, and A. Policriti. Computing strongly connected components in a lin-
ear number of symbolic steps. In Proceedings of SODA: ACM-SIAM Symposium on Discrete

Algorithms, pages 573–582, 2003.
[KV01] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. ACM Trans.

Comput. Log., 2(3):408–429, 2001.
[MH84] S. Miyano and T. Hayashi. Alternating finite automata on omega-words. In Proceedings of

CAAP: Int. Colloquium on Trees in Algebra and Programming, pages 195–210, 1984.
[Mic88] M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,

1988.
[RBS00] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms for the

computation of fair cycles. In Proceedings of FMCAD: Formal Methods in Computer-Aided

Design, Lecture Notes in Computer Science 1954, pages 143–160. Springer, 2000.
[RH04] T. C. Ruys and G. J. Holzmann. Advanced spin tutorial. In SPIN, Lecture Notes in Computer

Science 2989, pages 304–305. Springer-Verlag, 2004.
[Saf88] S. Safra. On the complexity of ω-automata. In Proceedings of FOCS: Foundations of Computer

Science, pages 319–327. IEEE, 1988.
[SVW87] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi automata

with applications to temporal logic. Theor. Comput. Sci., 49:217–237, 1987.
[TV05] D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata constructions. In

Proceedings of LPAR: Logic for Programming, Artificial Intelligence, and Reasoning, Lecture
Notes in Computer Science 3835, pages 396–411. Springer-Verlag, 2005.

[TV07] D. Tabakov and M. Y. Vardi. Model-checking Büchi specifications. In Pre-proceedings of LATA:

Language and Automata Theory and Applications, 2007.
[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification

(preliminary report). In Proceedings of LICS: Symposium on Logic in Computer Science, pages
332–344. IEEE Computer Society, 1986.

[VW94] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput., 115(1):1–37,
1994.

	1. Introduction
	2. Büchi Automata and Classical Algorithms
	3. Simulation Pre-Orders and Fixed Points
	4. Emptiness of ABW
	5. Universality of NBW
	6. Implementation and Practical Evaluation
	7. Language Inclusion for Büchi automata
	8. Conclusion
	References

