
Antichain Algorithms for Finite Automata⋆

Laurent Doyen1 and Jean-François Raskin2

1LSV, ENS Cachan & CNRS, France
2 U.L.B., Université Libre de Bruxelles, Belgium

Abstract. We present a general theory that exploits simulation rela-
tions on transition systems to obtain antichain algorithms for solving
the reachability and repeated reachability problems. Antichains are more
succinct than the sets of states manipulated by the traditional fixpoint
algorithms. The theory justifies the correctness of the antichain algo-
rithms, and applications such as the universality problem for finite au-
tomata illustrate efficiency improvements. Finally, we show that new and
provably better antichain algorithms can be obtained for the emptiness
problem of alternating automata over finite and infinite words.

1 Introduction

Finite state-transition systems are useful for the design and verification of pro-
gram models. One of the essential model-checking questions is the reachability
problem which asks, given an initial state s and a final state s′, if there exists a
(finite) path from s to s′. For reactive (non-terminating) programs, the repeated
reachability problem asks, given an initial state s and a final state s′, if there
exists an infinite path from s that visits s′ infinitely often.

The (repeated) reachability problem underlies important verification ques-
tions. For example, in the automata-based approach to model-checking [26, 27],
the correctness of a program A with respect to a specification B (where A and B

are finite automata) is defined by the language inclusion L(A) ⊆ L(B), that is all
traces of the program (executions) should be traces of the specification. The lan-
guage inclusion problem is equivalent to the emptiness problem “is L(A)∩Lc(B)
empty ?” where Lc(B) is the complement of L(B). If G is a transition system
(or an automaton) defined as the product of A with an automaton Bc obtained
by complementation of B, then the emptiness problem can be viewed as a reach-
ability question on G for automata on finite words, and as a repeated reachabil-
ity question for Büchi automata on infinite words. Note that complementation
procedures resort to exponential subset constructions [18, 21, 17, 22]. Therefore,

⋆ This research was supported by the projects: (i) Quasimodo: “Quanti-
tative System Properties in Model-Driven-Design of Embedded Systems”,
http://www.quasimodo.aau.dk, (ii) Gasics: “Games for Analysis and Synthesis of
Interactive Computational Systems”, http://www.ulb.ac.be/di/gasics/, and (iii)
Moves: “Fundamental Issues in Modelling, Verification and Evolution of Software”,
http://moves.ulb.ac.be, a PAI program funded by the Federal Belgian Govern-
ment.

while the (repeated) reachability problem, which is NLogSpace-complete, can be
solved in linear time in the size of G, the language inclusion problem, which is
PSpace-complete, requires exponential time (in the size of B). In practice, im-
plementations for finite words give reasonably good results (see e.g. [24]), while
the complementation constructions for infinite words are difficult to implement
and automata with more than around ten states are intractable [15, 25].

Recently, dramatic performance improvements have been obtained by so-
called antichain algorithms for the reachability and repeated reachability prob-
lems on the subset construction and its variants for infinite words [8, 5, 11]. The
idea is always to exploit the special structure of the subset constructions. As an
example, consider the classical subset construction for the complementation of
automata on finite words. States of the complement automaton are sets of states
of the original automaton, that we call cells and denote by si. Set inclusion
between cells is a partial order that turns out to be a simulation relation for
the complement automaton: if s2 ⊆ s1 and there is a transition from s1 to s3,
then there exists a transition from s2 to some s4 ⊆ s3. This structural property
carries over to the sets of cells manipulated by reachability algorithms: if s2 ⊆ s1

and a final cell can be reached from s1, then a final cell can be reached from s2.
Therefore, in a breadth-first search algorithm with backward state traversal, if
s1 is visited by the algorithm, then s2 is visited simultaneously; the algorithm
manipulates ⊆-downward closed sets of cells that can be canonically and com-
pactly represented by the antichain of their ⊆-maximal elements. Antichains
serve as a symbolic data-structure on which efficient symbolic operations can
be defined. Antichain algorithms have been implemented for automata on finite
words [8], on finite trees [5], on infinite words [11, 14], and for other applications
where exponential constructions are involved such as model-checking of linear-
time logic [10], games of imperfect information [7, 4], and synthesis of linear-time
specifications [12]. They outperform explicit and BDD-based algorithms by or-
ders of magnitude [9, 3, 12].

In Section 3, we present an abstract theory to justify the correctness of
antichain algorithms. For backward state traversal algorithms, we first show
that forward simulation relations (such as set inclusion in the above example)
are required to maintain closed sets in the algorithms. This corresponds to view
antichains as a suitable symbolic data-structure to represent closed sets. Then,
we develop a new approach in which antichains are sets of promising states in
the (repeated) reachability analysis. This view is justified by mean of backward
simulation relations. In our example, it turns out that set inclusion is also a
backward simulation which implies that if s2 ⊆ s1 and s2 is reachable, then s1 is
reachable. Therefore, an algorithm which traverses the state space in a backward
fashion need not to explore the predecessors of s2 if s1 has been visited previously
by the algorithm. We say that s1 is more promising1 than s2. As a consequence,
the algorithms can safely drop non-⊆-maximal cells, hence keeping ⊆-maximal

1 Note that this is not a heuristic: if s1 is more promising that s2, then the exploration
of the predecessors of s2 can be omitted without spoiling the correctness of the
analysis.

cells only. While the two views coincide when set inclusion is used for finite
automata, we argue that the promising state view provides better algorithms in
general. This is illustrated on finite automata where algorithms in the symbolic
view remain unchanged when coarser (hence improved) simulation relations are
used, while in the promising state view, we obtain new antichain algorithms
that are provably better: fixed points can be reached in fewer iterations, and
the antichains that are manipulated are smaller. Dual results are obtained for
forward state traversal algorithms.

In Section 4, we revisit classical problems of automata theory: the universality
problem for nondeterministic automata, the emptiness problem for alternating
automata on finite and infinite words, and the emptiness of a product of au-
tomata. In such applications, the transition systems are of exponential size and
thus they are not constructed prior to the reachability analysis, but explored
on-the-fly. And consequently, simulation relations needed by the antichain algo-
rithms should be given without any computation on the transition system itself
(which is the case of set inclusion for the subset construction). However, we show
that by computing a simulation relation on the original automaton, coarser sim-
ulation relations can be induced on the exponential constructions. On the way,
we introduce a new notion of backward simulation for alternating automata.

2 Preliminaries

Relations A pre-order over a finite set V is a binary relation �⊆ V ×V which
is reflexive and transitive. If v1 � v2, we say that v1 is smaller than v2 (or
v2 is greater than v1). A pre-order �′ is coarser than � if for all v1, v2 ∈ V ,
if v1 � v2, then v1 �′ v2. The �-upward closure of a set S ⊆ V is the set
Up(�, S) = {v1 ∈ V | ∃v2 ∈ S : v2 � v1} of elements that are greater than some
element in S. A set S is �-upward-closed if it is equal to its �-upward closure,
and Min(�, S) = {v1 ∈ S | ∀v2 ∈ S : v2 � v1 → v1 � v2} denotes the minimal
elements of S. Note that Min(�, S) ⊆ S ⊆ Up(�, S). Analogously, define the
�-downward closure Down(�, S) = {v1 ∈ V | ∃v2 ∈ S : v1 � v2} of a set S, say
that S is �-downward-closed if S = Down(�, S), and let Max(�, S) = {v1 ∈ S |
∀v2 ∈ S : v1 � v2 → v2 � v1} be the set of maximal elements2 of S.

A set S ⊆ V is a quasi-antichain if for all v1, v2 ∈ S, either v1 and v2 are
�-incomparable, or v1 � v2 and v2 � v1. The sets Min(�, S) and Max(�, S)
are quasi-antichains. A partial order is a pre-order which is antisymmetric. For
partial orders, the sets Min(�, S) and Max(�, S) are antichains, i.e., sets of
pairwise �-incomparable elements. By abuse of language, we call antichains the
sets of minimal (or maximal) elements even if the pre-order is not a partial order,
and denote by A the set of antichains over 2V .

Antichains can be used as a symbolic data-structure to represent �-upward-
closed sets. Note that the union and intersection of �-upward-closed sets is �-
upward-closed. The symbolic representation of an �-upward-closed set S is the

2 We also denote this set by Max(�, S) , and we equally say that a set is �-downward-
closed or �-downward-closed, etc.

antichain S̃ = Min(�, S). Operations on antichains are defined as follows. The

membership question “given v and S, is v ∈ S ?” becomes “given v and S̃, is there
ṽ ∈ S̃ such that ṽ � v ?”; the emptiness question is unchanged as S = ∅ if and
only if S̃ = ∅; the relation of set inclusion S1 ⊆ S2 becomes S̃1 ⊑ S̃2 defined by
∀v1 ∈ S̃1·∃v2 ∈ S̃2 : v2 � v1. If 〈V,�〉 is a semi-lattice with least upper bound lub,
then 〈A,⊑〉 is a complete lattice (the lattice of antichains) where the intersection

S1 ∩ S2 is represented by S̃1 ⊓ S̃2 = Min(�, {lub(v1, v2) | v1 ∈ S̃1 ∧ v2 ∈ S̃2}),

and the union S1 ∪ S2 by S̃1 ⊔ S̃2 = Min(�, S̃1 ∪ S̃2). Analogous definitions
exist for antichains of �-downward-closed sets if 〈V,�〉 is a semi-lattice with
greatest lower bound. Other operations mixing �-upward-closed sets and �-
downward-closed sets can be defined over antichains (such as mixed set inclusion,
or emptiness of mixed intersection).

Simulation relations Let G = (V, E, Init, Final) be a transition system with
finite set of states V , transition relation E ⊆ V × V , initial states Init ⊆ V , and
final states Final ⊆ V . We define two notions of simulation [19]:

– a pre-order �f over V is a forward simulation for G (“v2 �f v1” reads v2

forward simulates v1) if for all v1, v2, v3 ∈ V , if v2 �f v1 and E(v1, v3), then
there exists v4 ∈ V such that v4 �f v3 and E(v2, v4);

– a pre-order �b over V is a backward simulation for G, (“v2 �b v1” reads v2

backward simulates v1), if for all v1, v2, v3 ∈ V , if v2 �b v1 and E(v3, v1),
then there exists v4 ∈ V such that v4 �b v3 and E(v4, v2).

The notations �f and �b are inspired by the fact that in the subset con-
struction for finite automata, ⊆ is a forward simulation and ⊇ is a backward
simulation (see also Section 4.1). Note that a forward simulation for G is a
backward simulation for the transition system with transition relation E−1 =
{(v1, v2) | (v2, v1) ∈ E}.

We say that a simulation over V is compatible with a set S ⊆ V if for all
v1, v2 ∈ V , if v1 ∈ S and v2 (forward or backward) simulates v1, then v2 ∈ S.
Note that a forward simulation �f is compatible with S if and only if S is �f-
downward-closed, and a backward simulation �b is compatible with S if and
only if S is �b-upward-closed. In the sequel, we will be interested in simulation
relations that are compatible with Init, or Final, or with both.

Fixpoint algorithms Let G = (V, E, Init, Final) be a transition system and
let S, S′ ⊆ V be sets of states. The sets of predecessors and successors of S in
one step are denoted pre(S) = {v1 | ∃v2 ∈ S : E(v1, v2)} and post(S) = {v1 |
∃v2 ∈ S : E(v2, v1)} respectively. We denote by pre∗(S) the set

⋃
i≥0 prei(S)

where pre0(S) = S and prei(S) = pre(prei−1(S)) for all i ≥ 1, and by pre+(S)
the set

⋃
i≥1 prei(S). The operators post∗ and post+ are defined analogously. A

finite path in G is a sequence v0v1 . . . vn of states such that E(vi, vi+1) for all
0 ≤ i < n. Infinite paths are defined analogously. We say that S′ is reachable
from S if there exists a finite path v0v1 . . . vn with v0 ∈ S and vn ∈ S′.

The reachability problem for G asks if Final is reachable from Init, and the
repeated reachability problem for G asks if there exists an infinite path start-
ing from Init and passing through Final infinitely many times. To solve these
problems, we can use the following classical fixpoint algorithms:

1. The backward reachability algorithm computes the sequence of sets:

B(0) = Final and B(i) = B(i − 1) ∪ pre(B(i − 1)) for all i ≥ 1.

2. The backward repeated reachability algorithm computes the sequence of sets:

BB(0) = Final and BB(i) = pre+(BB(i − 1)) ∩ Final for all i ≥ 1.

3. The forward reachability algorithm computes the sequence of sets:

F(0) = Init and F(i) = F(i − 1) ∪ post(F(i − 1)) for all i ≥ 1.

4. The forward repeated reachability algorithm computes the sequence of sets:

FF(0) = Final∩ post∗(Init) and FF(i) = post+(FF(i− 1))∩ Final for all i ≥ 1.

The above sequences converge to a fixpoint because the operations involved
are monotone. We denote by B∗, BB

∗, F∗, and FF
∗ the respective fixpoints. Note

that B∗ = pre∗(Final) and F∗ = post∗(Init). Call recurrent the states that have
a cycle through them. The set BB

∗ contains the final states that can reach a
recurrent final state, and FF

∗ contains the final states that are reachable from a
reachable recurrent final state.

Theorem 1. Let G = (V, E, Init, Final) be a transition system. Then,

(a) the answer to the reachability problem for G is Yes if and only if B∗ ∩ Init

is nonempty if and only if F∗ ∩ Final is nonempty;
(b) the answer to the repeated reachability problem for G is Yes if and only if

BB
∗ is reachable from Init if and only if FF

∗ is nonempty.

3 Antichain fixpoint algorithms

In this section, we show that the sets in the sequences B, BB, F, and FF can be
replaced by antichains for well chosen pre-orders. Two views can be developed:
when backward algorithms are combined with forward simulation pre-orders (or
forward algorithms with backward simulations), antichains are symbolic repre-
sentations of closed sets; when backward algorithms are combined with back-
ward simulation pre-orders (or forward algorithms with forward simulations),
antichains are sets of promising states. It may be surprising to consider algo-
rithms for the reachability problem (which can be solved in linear time), based
on simulation relations (which can be computed in quadratic time). However,
such algorithms are useful for applications where the transition systems have
a special structure for which simulation relations need not to be computed. For
example, the relation of set inclusion is always a forward simulation in the subset
construction for finite automata (see Section 4 for details and other applications).
We develop these two views below.

3.1 Antichains as a symbolic representation

Backward reachability First, we show that the sets computed by the back-
ward algorithm B are �f-downward-closed for all forward simulations �f of the
transition system G compatible with Final.

Lemma 2. Let G = (V, E, Init, Final) be a transition system. A pre-order �f

over V is a forward simulation in G if and only if pre(S) is �f-downward-closed
for all �f-downward-closed sets S ⊆ V .

Proof. First, assume that �f is a forward simulation in G, and let S ⊆ V be a
�f-downward-closed set. We show that pre(S) is �f-downward-closed, i.e. that
if v1 ∈ pre(S) and v2 �f v1, then v2 ∈ pre(S). As v1 ∈ pre(S), there exists v3 ∈ S

such that E(v1, v3). By definition of forward simulation, there exists v4 such that
E(v2, v4) and v4 �f v3. Since S is �f-downward-closed and v3 ∈ S, we conclude
that v4 ∈ S, and thus v2 ∈ pre(S).

Second, assume that pre(S) is �f-downward-closed when S is �f-downward-
closed. We show that �f is a forward simulation in G. Let v1, v2, v3 ∈ V such that
v2 �f v1 and E(v1, v3). Let S = Down(�f , {v3}) so that pre(S) is �f-downward-
closed. Since v1 ∈ pre(S) and v2 �f v1, we have v2 ∈ pre(S) and thus there
exists v4 ∈ S (i.e., v4 �f v3) such that E(v2, v4). This shows that �f is a forward
simulation in G. ⊓⊔

Assume that we have a forward simulation �f in G compatible with Final,
and call this hypothesis H1.

Lemma 3. Under H1, the sets B(i) and BB(i) are �f-downward-closed for all
i ≥ 0.

Proof. By induction, using Lemma 2 and the fact that B(0) = BB(0) = Final is
�f-downward-closed since �f is compatible with Final. ⊓⊔

Since the sets in the backward algorithms B and BB are �f-downward-closed,
we can use the antichain of their maximal elements as a symbolic representation,
and adapt the fixpoint algorithms accordingly. Given a forward simulation �f

in G compatible with Final, the antichain algorithm for backward reachability is
as follows:

– B̃(0) = Max(�f , Final);

– B̃(i) = Max(�f , B̃(i − 1) ∪ pre(Down(�f , B̃(i − 1)))), for all i ≥ 1.

Lemma 4. Under H1, B̃(i) = Max(�f , B(i)) and B(i) = Down(�f , B̃(i)) for all
i ≥ 0.

Corollary 5. Under H1, for all i ≥ 0, B(i + 1) = B(i) if and only if B̃(i + 1) =

B̃(i).

Theorem 6. Under H1, B∗ ∩ Init 6= ∅ if and only if Down(�f , B̃
∗) ∩ Init 6= ∅.

So the antichain algorithm for backward reachability computes exactly the
same information as the classical algorithm and the two algorithms reach their
fixpoint after exactly the same number of iterations. However, the antichain
algorithm can be more efficient in practice if the symbolic representation by an-
tichains is significantly more succinct and if the computations on the antichains
can be done efficiently. In particular, the predecessors of Down(�f , B̃(i − 1))

needed to obtain B̃(i) should be computed in a way that avoids constructing

Down(�f , B̃(i−1)). For applications of the antichain algorithm in automata the-
ory (see also Section 4), it can be shown that this operation can be computed
efficiently (see e.g. [8, 11]).

Remark 1. Antichains as a data-structure have been used previously for repre-
senting the sets of backward reachable states in well-structured transition sys-
tems [1, 13]. So, the sequence B̃ converges also when the underlying state space
is infinite and �f is a well-quasi order.

Backward repeated reachability Let �f be a forward simulation for G com-
patible with Final (H1). The antichain algorithm for repeated backward reach-
ability is defined as follows:

– B̃B(0) = Max(�f , Final);

– B̃B(i) = Max(�f , pre
+(Down(�f , B̃B(i − 1))) ∩ Final), for all i ≥ 1.

Note that a symbolic representation of pre+(Down(�f , B̃B(i − 1)) is computed

by the antichain algorithm B̃ with B̃(0) = Max(�f , pre(Down(�f , B̃B(i − 1)))).
Using Lemma 3, we get the following result and corollary.

Lemma 7. Under H1, B̃B(i) = Max(�f , BB(i)) and BB(i) = Down(�f , B̃B(i))
for all i ≥ 0.

Corollary 8. Under H1, for all i ≥ 0, BB(i + 1) = BB(i) if and only if B̃B(i +

1) = B̃B(i).

Theorem 9. Under H1, BB
∗ is reachable from Init if and only if Down(�f , B̃B

∗
)

is reachable from Init.

Forward algorithms We state the dual of Lemma 2 and Lemma 3 for the

forward algorithms F and FF, and obtain antichain algorithms F̃ and F̃F using
backward simulations. The proofs and details are omitted as they are analogous
to the backward algorithms.

Lemma 10. Let G = (V, E, Init, Final) be a transition system. A pre-order �b

over V is a backward simulation in G if and only if post(S) is �b-upward-closed
for all �b-upward-closed sets S ⊆ V .

Lemma 11. Let G = (V, E, Init, Final) be a transition system and let �b be a
backward simulation in G. If �b is compatible with Init, then F(i) is �b-upward-
closed for all i ≥ 0. If �b is compatible with Init and Final, then FF(i) is �b-
upward-closed for all i ≥ 0.

3.2 Antichains of promising states

Traditionally, the antichain approaches have been presented as symbolic algo-
rithms using forward simulations to justify backward algorithms, and vice versa
(see above and e.g., [8, 10, 11]). In this section, we develop an original theory
called antichains of promising states that uses backward simulations to justify
backward algorithms, and forward simulations to justify forward algorithms. We
obtain new antichain algorithms that do not compute the same information as
the classical algorithms. In particular, we show that convergence is reached at
least as soon as in the original algorithms, but it may be reached sooner. On this
basis, we define in Section 4 new antichain algorithms that are provably better
than the antichain algorithms of [8, 11].

Backward reachability Let �b be a backward simulation relation compatible
with Init (H2). The sequence of antichains of backward promising states is defined
as follows:

– B̂(0) = Max(�b, Final);

– B̂(i) = Max(�b, B̂(i − 1) ∪ pre(B̂(i − 1))), for all i ≥ 1.

Note that while in the sequence B̃ we took the �f-downward-closure of
B̃(i − 1) before computing pre, this is not necessary here. And note that the orig-

inal sets B(i) are �f-downward-closed (and represented symbolically by B̃(i)),

while they are not necessarily �b-downward-closed (here, B̂(i) ⊆ B(i) is a set of
most promising states in B(i)). The correctness of this algorithm is justified by
monotonicity properties. Define the pre-order ⊑b⊆ 2V × 2V as follows: S1 ⊑b S2

if ∀v1 ∈ S1 · ∃v2 ∈ S2 : v2 �b v1. We write S1 ≈b S2 if S1 ⊑b S2 and S2 ⊑b S1.

Lemma 12. Under H2, the operators pre, Max(�b, ·), and ∪ (and their com-
positions) are ⊑b-monotone.

Proof. First, assume that S1 ⊑b S2 and show that pre(S1) ⊑b pre(S2). For all
v3 ∈ pre(S1), there exists v1 ∈ S1 such that E(v3, v1) (by definition of pre). Since
S1 ⊑b S2 and v1 ∈ S1, there exists v2 ∈ S2 with v2 �b v1. By definition of �b,
there exists v4 �b v3 with E(v4, v2) hence v4 ∈ pre(S2).

Second, assume that S1 ⊑b S2 and show that Max(�b, S1) ⊑b Max(�b, S2).
For all v1 ∈ Max(�b, S1), we have v1 ∈ S1 and thus there exists v2 ∈ S2 such
that v2 �b v1. Hence there exists v′2 ∈ Max(�b, S2) such that v′2 �b v2 �b v1.

Third, assume that S1 ⊑b S2 and S3 ⊑b S4, and show that S1∪S3 ⊑b S2∪S4.
For all v13 ∈ S1 ∪ S3, either v13 ∈ S1 and then there exists v24 ∈ S2 such that
v24 �b v13, or v13 ∈ S3 and then there exists v24 ∈ S4 such that v24 �b v13. In
all cases, v24 ∈ S2 ∪ S4. ⊓⊔

Lemma 13. Under H2, B̂(i) ≈b B(i) for all i ≥ 0.

Proof. By induction, using the fact that B(0) = Final ≈b Max(�b, Final) = B̂(0)
(which holds trivially since S ≈b Max(�b, S) for all sets S) and Lemma 12. ⊓⊔

B(0) = {1} bB(0) = {1} = bB
♮

B(1) = {1, 2} bB(1) = {1, 2}

B(2) = {1, 2, 3} bB(2) = {1, 2}

.123n

0

�b

�b

�b�b�b

. . .

Fig. 1. Backward reachability with Final = {1}.

Corollary 14 (Early convergence). Under H2, for all i ≥ 0, (a) if B(i+1) =

B(i), then B̂(i+1) ≈b B̂(i), and (b) B(i)∩ Init 6= ∅ if and only if B̂(i)∩ Init 6= ∅.

Denote by B̂♮ the value B̂(i) for the smallest i ≥ 0 such that B̂(i) ≈b B̂(i+1).

Corollary 14 ensures that convergence (modulo ≈b) on the sequence B̂ occurs at
the latest when B converges. Also, as �b is compatible with Init, if B(i) intersects

Init then we know that B̂(i) also intersects Init. So, for both positive and negative
instances of the reachability problem, we never need to compute more iterations
in the sequence B̂ than in the sequence B. We establish the correctness of the
sequence B̂ to decide the reachability problem.

Theorem 15 (Correctness). Under H2, B∗∩Init 6= ∅ if and only if B̂♮∩Init 6=
∅.

Proof. Assume that v ∈ B∗ = B(i) and v ∈ Init. Since B̂(i) ≈b B(i) by Lemma 13,

there exists v′ ∈ B̂(i) ∩ Init by Corollary 14(b). By Corollary 14(a), we have

B̂♮ ≈b B̂(j) for some j ≤ i, and by Lemma 12 all sets B̂(k) for k ≥ j are ≈b-

equivalent. In particular (for k = i), B(i) ≈b B̂(i) ≈b B̂♮, and thus there exists

v′′ ∈ B̂♮ such that v′′ �b v′, yielding v′′ ∈ Init since �b is compatible with Init.
Hence B̂♮ ∩ Init 6= ∅. For the other direction, we use the fact that B̂(i) ⊆ B(i)
for all i ≥ 0. ⊓⊔

Example 1. Consider the transition system in Fig. 1 where Final = {1} and
Init = {0}. The classical backward reachability algorithm computes the sequence
B(0) = {1}, B(1) = {1, 2}, . . . , B(i) = {1, 2, . . . , i+1} and converges to {1, . . . , n}
after O(n) iterations. Consider the backward simulation �b as depicted on Fig. 1.
States 1 and 2 are mutually simulated by each other, and i �b i + 1 for all
1 ≤ i < n. The antichain algorithm for backward reachability based on �b

computes the sequence B̂(0) = {1}, B̂(1) = {1, 2} and the algorithm halts since

B̂(0) ≈b B̂(1), i.e. B̂♮ = B̂(0). We get early convergence because state 1 is more
promising than all other states, yet is not reachable from Init.

Backward repeated reachability Let �b be a backward simulation relation
compatible with both Final and Init (H3). Using such a relation, we define the
sequence of antichains of backward repeated promising states as follows:

– B̂B(0) = Max(�b, Final);

– B̂B(i) = Max(�b, pre
+(B̂B(i − 1)) ∩ Final), for all i ≥ 1.

Note that the computation of Si = pre+(B̂B(i − 1)) can be replaced by

algorithm B̂ with B̂(0) = Max(�b, pre(B̂B(i − 1))). This yields B̂♮ ≈b Si which
is sufficient to ensure correctness of the algorithm. We have required that �b is
compatible with Final to have the following property.

Lemma 16. Under H3, the operator λS · S ∩ Final is ⊑b-monotone.

Proof. Assume that S1 ⊑b S2 and show that S1 ∩ Final ⊑b S2 ∩ Final. For all
v1 ∈ S1, there exists v2 ∈ S2 such that v2 �b v1. In particular, for v1 ∈ S1∩Final

there exists v2 ∈ S2 such that v2 �b v1, and v2 ∈ Final since �b is compatible
with Final, hence v2 ∈ S2 ∩ Final. ⊓⊔

Lemma 17. Under H3, for all i ≥ 0, B̂B(i) ≈b BB(i).

Proof. By induction, using Lemma 16, Lemma 12 (since H3 implies H2), and

the fact that BB(0) = Final ≈b Max(�b, Final) = B̂B(0). ⊓⊔

Corollary 18 (Early convergence). Under H3, for all i ≥ 0, if BB(i + 1) =

BB(i) then B̂B(i + 1) ≈b B̂B(i).

Denote by B̂B
♮

the value B̂B(i) for the smallest i ≥ 0 such that B̂B(i) ≈b

B̂B(i + 1).

Theorem 19 (Correctness). Under H3, BB
∗ is reachable from Init if and only

if B̂B
♮

is reachable from Init.

Proof. We know that BB
∗ ≈b B̂B

♮
. This is a consequence of Lemma 17 and

the fact that pre+, λS · S ∩ Final, and Max(�b, ·) are ⊑b-monotone operators
(by Lemma 12 and Lemma 16). Assume that BB

∗ is reachable from Init and let
v0v1 . . . vn be a path in G such that v0 ∈ Init, vn ∈ BB

∗. We show by induction
that there exists a path v′0v

′
1 . . . v′n in G such that v′i �b vi for all i, 0 ≤ i ≤ n.

Base case: i = n. By lemma 17, as vn ∈ BB
∗, there exists v′n ∈ B̂B

♮
such that

v′n �b vn. Inductive case 0 ≤ i < n. By induction hypothesis, we know that there
exists a path v′i+1 . . . v′n in G such that v′j �b vj for all j such that i+1 ≤ j ≤ n.
As v′i+1 �b vi+1, by properties of �b, we know that there exists v′ such that
v′ �b vi and E(v′, v′i+1), so we take v′i = v′. As �b is compatible with Init, we
conclude that as v0 ∈ Init, we have v′0 ∈ Init as well, and we are done. For the

other direction, we use the fact that B̂B(i) ⊆ BB(i) for all i ≥ 0. ⊓⊔

Forward reachability algorithm Let �f be a forward simulation relation
compatible with Final (H4). Using such a relation, we define the sequence of
antichains of forward reachable promising states as follows:

– F̂(0) = Min(�f , Init);

– F̂(i) = Min(�f , F̂(i − 1) ∪ post(F̂(i − 1))), for all i ≥ 1.

The following results are proved in an analogous way as the ones for the
backward algorithms in the previous paragraphs. Let S1, S2 ⊆ V , we define the
pre-order ⊑f⊆ 2V × 2V as follows: S1 ⊑f S2 if ∀v1 ∈ S1 · ∃v2 ∈ S2 : v2 �f v1. We
write S1 ≈f S2 if S1 ⊑f S2 and S2 ⊑f S1.

Lemma 20. Under H4, the operators post, Min(�f , ·), λS · S ∩ Final, and ∪
(and their compositions) are ⊑f-monotone.

Lemma 21. Under H4, F̂(i) ≈f F(i) for all i ≥ 0.

Corollary 22 (Early convergence). Under H4, for all i ≥ 0, (a) if F(i+1) =

F(i), then F̂(i+1) ≈f F̂(i), and (b) F(i)∩Final 6= ∅ if and only if F̂(i)∩Final 6= ∅.

Denote by F̂♮ the set F̂(i) for the smallest i ≥ 0 such that F̂(i) ≈b F̂(i + 1).

Theorem 23 (Correctness). Under H4, F∗ ∩ Final 6= ∅ if and only if F̂♮ ∩
Final 6= ∅.

Forward repeated reachability algorithm Let �f be a forward simulation
relation which is compatible with Final. The forward repeated reachability se-
quence of promising states is defined as follows:

– F̂F(0) = Final ∩ F̂♮;

– F̂F(i) = Min(�f , post+(F̂F(i − 1)) ∩ Final), for all i ≥ 1.

Lemma 24. Under H4, F̂F(i) ≈f FF(i) for all i ≥ 0,

Proof. By induction, using the fact that FF(0) = Final∩F∗ ≈f Final∩F♮ = F̂F(0)
because F∗ ≈f F♮ (using Lemma 21 and monotonicity of λS · S ∩ Final) and
Lemma 20. ⊓⊔

We denote by F̂F
♮
the set F̂F(i) for the smallest i ≥ 0 such that F̂F(i) ≈f F̂F(i+1).

Corollary 25 (Early convergence). Under H4, for all i ≥ 0, if FF(i + 1) =

FF(i) then F̂F(i + 1) ≈f F̂F(i).

Theorem 26 (Correctness). Under H4, FF
∗ is nonempty if and only if F̂F

♮

is nonempty.

Remark 2. Note that here the relation �f needs only to be compatible with Final

(and not with Init). This is in contrast with the relation �b that needs to be both
compatible with Init and Final to ensure correctness of the sequence of backward
repeated promising states.

Remark 3. In antichain algorithms of promising states, if �1 is coarser than �2,
then the induced relation ≈1 on sets of states is coarser than ≈2 which entails
that convergence modulo ≈1 occurs at the latest when convergence modulo ≈2

occurs, and possibly earlier. This is illustrated in the next section.

4 Applications

In this section, we present applications of the antichain algorithms to solve clas-
sical (and computationally hard) problems in automata theory. We consider
automata running on finite and infinite words.

An alternating automaton [6] is a tuple A = (Q, qι, Σ, δ, α) where:

– Q is a finite set of states;
– qι ∈ Q is the initial state;
– Σ is a finite alphabet;

– δ : Q×Σ → 22Q

is the transition relation that maps each state q and letter σ

to a set {C1, . . . , Cn} where each Ci ⊆ Q is a choice;
– α ⊆ Q is the set of accepting states.

In an alternating automaton, the (finite or infinite) input word w = σ0σ1 . . .

over Σ is processed by two players in a turn-based game played in rounds. Each
round starts in a state of the automaton, and the first round starts in qι. In
round i, the first player makes a choice C ∈ δ(qi, σi) where qi is the state in
round i and σi is the ith letter of the input word. Then, the second player
chooses a state qi+1 ∈ C, and the next round starts in qi+1. A finite input word
is accepted by A if the first player has a strategy to force an accepting state of A

in the last round; an infinite input word is accepted by A if the first player has a
strategy to force infinitely many rounds to be in an accepting state of A. A run
of an alternating automaton corresponds to a fixed strategy of the first player.

Formally, a run of A over a (finite or infinite) word w = σ0σ1 . . . is a tree
〈Tw, r〉 where Tw ⊆ N

∗ is a prefix-closed subset of N, and r : Tw → Q is a labelling
function such that r(ǫ) = qι and for all x ∈ Tw, there exists C = {q1, . . . , qc} ∈
δ(r(x), σ|x|) such that x · i ∈ Tw and r(x · i) = qi for each i = 1, . . . , k.

A run 〈Tw, r〉 of A on an a finite word w is accepting if r(x) ∈ α for all nodes
x ∈ Tw of length |w| reachable from ǫ; and a run 〈Tw, r〉 of A on an infinite word
w is accepting if all paths from ǫ visit nodes labeled by accepting states infinitely
often (i.e., all paths satisfy a Büchi condition). A (finite or infinite) word w is
accepted by A if there exists an accepting run on w. Alternating automata on
finite words are called AFA, and alternating automata on infinite words are
called ABW. The language of an AFA (resp., ABW) A is the set L(A) of finite
(resp., infinite) words accepted by A.

The emptiness problem for alternating automata is to decide if the language of
a given alternating automaton (AFA or ABW) is empty. This problem is PSpace-
complete for both AFA and ABW [18, 23]. For finite words, we also consider the
universality problem which is to decide if the language of a given AFA with
alphabet Σ is equal to Σ∗, which is PSpace-complete even for the special case
of nondeterministic automata. A nondeterministic automaton (NFA) is an AFA
such that δ(q, σ) is a set of singletons for all states q and letters σ.

We use antichain algorithms to solve the emptiness problem of AFA and
ABW, as well as the universality problem for NFA, and the emptiness problem
for NFA specified by a product of automata. In the case of NFA, it is more

convenient to represent the transition relation as a function δ : Q × Σ → 2Q

where δ(q, σ) = {q1, . . . , qn} represents the set of singletons {{q1}, . . . , {qn}}.

4.1 Universality problem for NFA

Let A = (Q, qι, Σ, δ, α) be an NFA, and define the subset construction G(A) =
(V, E, Init, Final) as follows: V = 2Q, Init = {v ∈ V | qι ∈ v}, Final = {v ∈ V |
v ⊆ Q \ α}, and E(v1, v2) if there exists σ ∈ Σ such that δ(q, σ) ⊆ v2 for all
q ∈ v1. A classical result shows that L(A) 6= Σ∗ if and only if Final is reachable
from Init in G(A), and thus we can solve the universality problem for A using
antichain algorithms for the reachability problem on G(A).

Antichains as symbolic representation Consider the relation �F on the
states of G(A) defined by v2 �F v1 if and only if v2 ⊆ v1. Note that �F is a
partial order.

Lemma 27. �F is a forward simulation in G(A) compatible with Final.

Proof. First, if v1 ∈ Final and v2 �F v1, then v2 ⊆ v1 ⊆ Q \ α i.e., v2 ∈ Final.
Second, if v2 �F v1 and E(v1, v3), then for some σ ∈ Σ, we have δ(q, σ) ⊆ v3 for
all q ∈ v1, and thus also for all q ∈ v2 i.e., E(v2, v4) for v4 = v3, and trivially
v4 �F v3. ⊓⊔

The antichain algorithm for backward reachability is instantiated as follows:

– B̃(0) = Max(⊆, Final) = {Q \ α};

– B̃(i) = Max(⊆, B̃(i − 1) ∪ pre(Down(⊆, B̃(i − 1)))), for all i ≥ 1.

Details about efficient computation of this sequence as well as experimental
comparison with the classical algorithm based on determinization can be found
in [8].

Antichains of promising states Consider the relation �B such that v2 �B v1

if v2 ⊇ v1. Note that v2 �B v1 if and only if v1 �F v2.

Lemma 28. �B is a backward simulation in G(A) compatible with Init.

Proof. First, if v1 ∈ Init and v2 �B v1, then qι ∈ v1 ⊆ v2 i.e., v2 ∈ Init. Second,
if v2 �B v1 and E(v3, v1), then for some σ ∈ Σ, we have δ(q, σ) ⊆ v1 ⊆ v2 for all
q ∈ v3, and thus E(v4, v2) for v4 = v3, and trivially v4 �B v3. ⊓⊔

The corresponding antichain algorithm for backward reachability is instanti-
ated as follows:

– B̂(0) = Max(⊇, Final) = {Q \ α};

– B̂(i) = Max(⊇, B̂(i − 1) ∪ pre(B̂(i − 1))), for all i ≥ 1.

It should be noted that B̃(i) = B̂(i), for all i ≥ 0. In this particular case, the
two views coincide due to the special structure of the transition system G(A)
(namely ⊆ is a forward simulation and its inverse ⊇ is a backward simulation).

In the rest of the paper, we establish the existence of simulation relations for
various constructions in automata theory, and we omit the instantiation of the
corresponding antichain algorithms in the promising state view.

Coarser simulations We show that the algorithms based on antichains of
promising states can be improved using coarser simulations (obtained by ex-
ploiting the structure of the NFA before subset construction). We illustrate this
below for backward algorithms and coarser backward simulations. Then we show
that coarser forward simulations do not improve the backward antichain algo-
rithms (in the symbolic view).

We construct a backward simulation coarser than �B, using a pre-order ≫b⊆
Q × Q on the state space of A such that for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if
q2 ≫b q1, then

(i) if q1 = qι, then q2 = qι, and
(ii) if q1 ∈ δ(q3, σ), then there exists q4 ∈ Q such that q2 ∈ δ(q4, σ) and q4 ≫b q3.

Such a relation ≫b is usually called a backward simulation relation for the
NFA A, and a maximal backward simulation relation (which is unique) can be
computed in polynomial time (see e.g. [16]). Given ≫b, define the relation �B+

on G(A) as follows: v2 �B+ v1 if ∀q2 6∈ v2 · ∃q1 6∈ v1 : q1 ≫b q2.

Lemma 29. �B+ is a backward simulation for G(A) compatible with Init.

Proof. Let v2 �B+ v1. First, if v2 6∈ Init, then qι 6∈ v2 and by definition of �B+ ,
there exists q 6∈ v1 such that q ≫b qι, thus q = qι. Therefore qι 6∈ v1 and thus
v1 6∈ Init. Second, if E(v3, v1), then for some σ ∈ Σ, we have δ(q, σ) ⊆ v1 for all
q ∈ v3. Let v4 = {q ∈ Q | δ(q, σ) ⊆ v2}. We have E(v4, v2) and we show that
v4 �B+ v3 i.e., for all q4 6∈ v4, there exists q3 6∈ v3 such that q3 ≫b q4. If q4 6∈ v4,
then there exists q2 ∈ δ(q4, σ) with q2 6∈ v2. Since v2 �B+ v1, there exists q1 6∈ v1

such that q1 ≫b q2. Then, by definition of ≫b there exists q3 ∈ Q such that
q1 ∈ δ(q3, σ) and q3 ≫b q4. Since q1 6∈ v1, we have q3 6∈ v3. ⊓⊔

Note that �B+ is coarser than �B because v2 ⊇ v1 is equivalent to say that for
all q2 6∈ v2, there exists q1 6∈ v1 such that q1 = q2 (which implies that q1 ≫b q2

since ≫b is a pre-order). Therefore, the antichains in the antichain algorithm
based on �B+ are subsets of those based on �B. By Corollary 14, the number of
iterations of the algorithms based on �B+ and �B is the same when L(A) 6= Σ∗,
and Example 2 below shows that the algorithm based on �B+ may converge
faster when L(A) = Σ∗.

Example 2. Consider the nondeterministic finite automaton A with alphabet
Σ = {a, b} in Fig. 2. Note that every word is accepted by A i.e., L(A) = Σ∗ (it
suffices to always go to state 3 from state 4). The backward antichain algorithm
applied to the subset construction G(A) (using �B) converges after 3 iterations,

and the intersection of B̂♮ = {{1, 2}} with the initial states of G(A) is empty.
Now, let ≫b be the maximal backward simulation relation for A. We have 3 ≫b 2,
3 ≫b 1, and q ≫b q for all q ∈ {1, 2, 3, 4}. The induced relation �B+ is such
that {1} �B+ {1, 2} and {1, 2} �B+ {1}. Therefore, using the relation �B+ , we

get B̂(0) ≈b B̂(1) and the backward antichain algorithm based on �B+ converges
faster, namely after 2 iterations.

using �B using �B+

B̂(0) =
{
{1}

} {
{1}

}

B̂(1) =
{
{1, 2}

} {
{1}, {1, 2}

}

B̂(2) =
{
{1, 2}

}
end

end

4

3

2 1

b

a a, b

a, b

a

b
b

Fig. 2. Improved antichain algorithm for the universality problem of NFA (Example 2).

Now, we consider coarser forward simulations (induced by pre-orders on the
original NFA as above) and we show that they do not improve the algorithm
based on antichains as symbolic data-structure. We prove this surprising result
as follows. A forward simulation relation ≪f⊆ Q × Q for A is a pre-order such
that for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if q2 ≪f q1, then

(i) if q1 ∈ α, then q2 ∈ α, and
(ii) if q3 ∈ δ(q1, σ), then there exists q4 ∈ δ(q2, σ) such that q4 ≪f q3.

Given a forward simulation relation ≪f for A, define the relation �F+ on G(A)
as follows: v2 �F+ v1 if ∀q2 ∈ v2 · ∃q1 ∈ v1 : q1 ≪f q2.

Lemma 30. �F+ is a forward simulation for G(A) compatible with Final.

Proof. Let v2 �F+ v1. First, if v2 6∈ Final, then v2 ∩ α 6= ∅ and let q2 ∈ v2 ∩ α.
By definition of �F+ , there exists q1 ∈ v1 such that q1 ≪f q2, thus q1 ∈ α.
Therefore v1 ∩ α 6= ∅ and v1 6∈ Final. Second, if E(v1, v3), then for some σ ∈ Σ,
we have δ(q, σ) ⊆ v3 for all q ∈ v1. Let v4 =

⋃
q∈v2

δ(q, σ). We have E(v2, v4)
and we show that v4 �F+ v3 i.e., for all q4 ∈ v4, there exists q3 ∈ v3 such that
q3 ≪f q4. If q4 ∈ v4, then there exists q2 ∈ δ(q4, σ) with q2 ∈ v2. Since v2 �F+ v1,
there exists q1 ∈ v1 such that q1 ≪f q2. Then, by definition of ≪f there exists
q3 ∈ δ(q1, σ) (such that q3 ≪f q4). Since q1 ∈ v1, we have q3 ∈ v3. ⊓⊔

Lemma 31. For all i ≥ 0, all sets v ∈ B̃(i) are ≪f -upward-closed (where B̃ is
computed using �F+).

Proof. First, for B̃(0) = {Q \ α} we show that Q \ α is ≪f-upward-closed. Let
q1 ∈ Q \ α and q1 ≪f q2. Then q2 6∈ α (as if q2 ∈ α, then we would have q1 ∈ α)

and thus q2 ∈ Q \ α. Second, by induction assume that all sets v ∈ B̃(i) are ≪f-

upward-closed, and let v ∈ B̃(i + 1). Either v ∈ B̃(i) and then v is ≪f-upward-

closed, or v ∈ pre(Down(⊆, B̃(i))) and for some σ ∈ Σ and v′ ∈ Down(⊆, B̃(i)),
we have δ(q, σ) ⊆ v′ for all q ∈ v. Without loss of generality, we can assume

that v′ ∈ B̃(i) and thus v′ is ≪f -upward-closed (by induction hypothesis). In

this case, assume towards contradiction that v is not ≪f -upward-closed i.e.,
there exist q2 ∈ v and q1 6∈ v such that q2 ≪f q1. We consider two cases: (i) if

δ(q1, σ) ⊆ v′, then v ∪ {q1} ∈ pre(Down(⊆, B̃(i − 1))) and v is a strict subset of

v ∪ {q1} showing that v is not ⊆-maximal in B̃(i), a contradiction; (ii) if there
exists q3 ∈ δ(q1, σ) with q3 6∈ v′, then since q2 ≪f q1 there exists q4 ∈ δ(q2, σ)
such that q4 ≪f q3. Since q2 ∈ v, we have δ(q2, σ) ⊆ v′ and q4 ∈ v′. Hence q4 ∈ v′,
q3 6∈ v′ and q4 ≪f q3 i.e., v′ is not ≪f -upward-closed, a contradiction. ⊓⊔

Lemma 32. For all ≪f -upward-closed sets v1, v2, we have v2 �F+ v1 if and only
if v2 �F v1.

Proof. Let v1, v2 be ≪f-upward-closed sets. First, if v2 �F v1, then v2 ⊆ v1 and
for all q2 ∈ v2 there exists q1 ∈ v1 such that q2 = q1, and thus q1 ≪f q2. Hence
v2 �F+ v1. Second, if v2 �F+ v1, then for all q2 ∈ v2 there exists q1 ∈ v1 such
that q1 ≪f q2. Since v1 is ≪f-upward-closed, q1 ∈ v1 implies q2 ∈ v1. Hence, for
all q2 ∈ v2 we have q2 ∈ v1 i.e., v2 ⊆ v1 and v2 �F v1. ⊓⊔

Corollary 33. The antichain algorithms for backward reachability B̃ based on
�F+ and �F compute exactly the same sequences of sets.

4.2 Emptiness problem for AFA

In this section, we use a new definition of backward simulation for alternating
automata on finite words to construct an induced backward simulation on the
subset construction for AFA.

Let A = (Q, qι, Σ, δ, α) be an AFA. Define the subset construction G(A) =
(V, E, Init, Final) where V = 2Q, E = {(v1, v2) ∈ V × V | ∃σ ∈ Σ · ∀q ∈ v1 · ∃C ∈
δ(q, σ) : C ⊆ v2}, Init = {v ∈ V | qι ∈ v}, and Final = {v ∈ V | v ⊆ α}.

As before, it is easy to see that L(A) 6= ∅ if and only if Final is reachable
from Init in G(A), and the emptiness problem for A can be solved using antichain
algorithms for the reachability problem in G(A) e.g., using the relation �B such
that v2 �B v1 if v2 ⊇ v1 which is a backward simulation in G(A) compatible
with Init.

As in the case of the universality problem for NFA, the relation �B can be
improved using an appropriate notion of backward simulation relation defined on
the AFA A. We introduce such a new notion as follows. A backward alternating
simulation relation for an alternating automaton A = (Q, qι, Σ, δ, α) is a pre-
order ≫b which is the reflexive closure of a relation >b such that for all σ ∈ Σ,
for all q1, q2, q3 ∈ Q, if q2 >b q1, then

(i) if q1 = qι, then q2 = qι, and
(ii) if there exists C ∈ δ(q3, σ) such that q1 ∈ C, then there exists q4 ∈ Q such

that (a) q2 ∈ C′ for all C′ ∈ δ(q4, σ), and (b) q4 >b q3.

It can be shown that a unique maximal backward simulation relation exists
for AFA (because the union of two backward simulation relations is again a
backward simulation relation), and it can be computed in polynomial time using

analogous fixpoint algorithms for computing standard simulation relations [16],
e.g. the fixpoint iterations defined by R0 = {(q1, q2) ∈ Q×Q | q1 = qι → q2 = qι}
and Ri = {(q1, q2) ∈ Ri−1 | ∀q3 ∈ Q : (∃C ∈ δ(q3, σ) : q1 ∈ C) → ∃q4 ∈ Q :
(∀C′ ∈ δ(q4, σ) : q2 ∈ C′) ∧ (q3, q4) ∈ Ri−1} for all i ≥ 1. Note that for so-called
universal finite automata (UFA) which are AFA where δ(q, σ) is a singleton for
all q ∈ Q and σ ∈ Σ, our definition of backward alternating simulation coincides
with ordinary backward simulation for the dual of the UFA (which is an NFA
with transition relation δ′(q, σ) =

{
q ∈ C | δ(q, σ) = {C}

}
).

As before, given a backward alternating simulation relation ≫b for A, we
define the relation �B+ on G(A) as follows: v2 �B+ v1 if ∀q2 6∈ v2 · ∃q1 6∈ v1 :
q1 ≫b q2.

Lemma 34. �B+ is a backward simulation in G(A) compatible with Init.

Proof. Let v2 �B+ v1. First, if v2 6∈ Init, then qι 6∈ v2 and there exists q1 6∈ v1

such that q1 ≫b qι, hence either q1 = qι, or q1 >b qι implying q1 = qι. In
both cases qι = q1 6∈ v1 i.e., v1 6∈ Init. Second, assume E(v3, v1) and σ ∈ Σ

is such that for all q ∈ v3, there exists C ∈ δ(q, σ) such that C ⊆ v1. Let
v4 = {q | ∃C′ ∈ δ(q, σ) : C′ ⊆ v2}. By definition of G(A), we have E(v4, v2). We
show that v4 �B+ v3. To do this, pick an arbitrary q4 6∈ v4 and show that there
exists q3 6∈ v3 such that q3 ≫b q4. Note that if q4 6∈ v3, then we take q3 = q4 and
we are done. So, we can assume that q4 ∈ v3. Hence there exists C ∈ δ(q4, σ) such
that C ⊆ v1. And since q4 6∈ v4, there exist q2 ∈ C and q2 6∈ v2. As v2 �B+ v1, we
know that there exists q1 6∈ v1 such that q1 ≫b q2. Since q2 ∈ C and C ⊆ v1, we
have q2 ∈ v1 and therefore we cannot have q2 = q1, thus we have q1 >b q2. Since
q2 ∈ C ∈ δ(q4, σ), and by definition of >b, there exists q3 such that q3 >b q4

(and thus q3 ≫b q4) and q1 ∈ C′ for all C′ ∈ δ(q3, σ). Since q1 6∈ v1, this implies
that q3 6∈ v3. ⊓⊔

4.3 Emptiness problem for ABW

The emptiness problem for ABW can be solved using a subset construction due
to Miyano and Hayashi [20, 10, 11].

Given an ABW A = (Q, qι, Σ, δ, α), define the Miyano-Hayashi transition
system MH(A) = (V, E, Init, Final) where V = 2Q × 2Q, and

– Init = {〈s, ∅〉 | qι ∈ s ⊆ V },
– Final = 2Q × {∅}, and
– for all v1 = 〈s1, o1〉, and v2 = 〈s2, o2〉, we have E(v1, v2) if there exists

σ ∈ Σ such that ∀q ∈ s1 · ∃C ∈ δ(q, σ) : C ⊆ s2, and either (i) o1 6= ∅ and
∀q ∈ o1 · ∃C ∈ δ(q, σ) : C ⊆ o2 ∪ (s2 ∩ α), or (ii) o1 = ∅ and o2 = s2 \ α.

A classical result shows that L(A) 6= ∅ if and only if there exists an infi-
nite path from Init in MH(A) that visits Final infinitely many times. Therefore,
the emptiness problem for ABW can be reduced to the repeated reachability
problem, and we can use an antichain algorithm (e.g., based on forward simu-
lation) for repeated reachability to solve it. We construct a forward simulation
for MH(A) using a classical notion of alternating simulation.

A pre-order ≪f⊆ Q × Q is an alternating forward simulation relation [2] for
an alternating automaton A if for all σ ∈ Σ, for all q1, q2, q3 ∈ Q, if q2 ≪f q1,
then

(i) if q1 ∈ α, then q2 ∈ α, and
(ii) for all C1 ∈ δ(q1, σ), there exists C2 ∈ δ(q2, σ) such that for all q4 ∈ C2,

there exists q3 ∈ C1 such that q4 ≪f q3.

Given a forward alternating simulation relation ≪f for A, define the relation
�F+ on MH(A) such that 〈s2, o2〉 �F+ 〈s1, o1〉 if the following conditions hold:
(a) ∀q2 ∈ s2 · ∃q1 ∈ s1 : q2 ≪f q1, (b) ∀q2 ∈ o2 · ∃q1 ∈ o1 : q2 ≪f q1, and (c)
o1 = ∅ if and only if o2 = ∅.

Lemma 35. �F+ is a forward simulation in MH(A) compatible with Final.

Proof. Let 〈s2, o2〉 �F+ 〈s1, o1〉. First, if 〈s1, o1〉 ∈ Final, then o1 = ∅ and
thus o2 = ∅ by definition of �F+ . Hence 〈s2, o2〉 ∈ Final. Second, assume
E(〈s1, o1〉, 〈s3, o3〉) and σ ∈ Σ is such that for all q ∈ s1, there exists C ∈ δ(q, σ)
such that C ⊆ s3, and either (i) o1 6= ∅ and ∀q ∈ o1 · ∃C ∈ δ(q, σ) : C ⊆
o3 ∪ (s3 ∩ α), or (ii) o1 = ∅ and o3 = s3 \ α.

In the first case (i), we construct 〈s4, o4〉 such that E(〈s2, o2〉, 〈s4, o4〉) and
〈s4, o4〉 �F+ 〈s3, o3〉, using the following intermediate constructions.

(1) For each q2 ∈ s2, we construct a set succ(q2) as follows. By definition of �F+ ,
for q2 ∈ s2, there exists q1 ∈ s1 such that q2 ≪f q1. Since q1 ∈ s1, there exists
C1 ∈ δ(q1, σ) with C1 ⊆ s3, and since q2 ≪f q1, there exists C2 ∈ δ(q2, σ)
such that for all q4 ∈ C2, there exists q3 ∈ C1 such that q4 ≪f q1. We take
succ(q2) = C2.

(2) For each q2 ∈ o2, we construct two sets succα(q2) and succ¬α(q2) as follows.
By definition of �F+ , for q2 ∈ o2, there exists q1 ∈ o1 such that q2 ≪f q1.
Since q1 ∈ o1, there exists C1 ∈ δ(q1, σ) with C1 ⊆ o3 ∪ (s3 ∩ α), and since
q2 ≪f q1, there exists C2 ∈ δ(q2, σ) such that for all q4 ∈ C2, there exists
q3 ∈ C1 such that q4 ≪f q3. We take succα(q2) = {q ∈ C2 ∩ α | ∃q′ ∈ s3 :
q ≪f q′} and succ¬α(q2) = C2 \ succα(q2).

Let s4 =
⋃

q2∈s2
succ(q2)∪

⋃
q2∈o2

succα(q2), and o4 = o3∪
⋃

q2∈o2
succ¬α(q2).

To prove that E(〈s2, o2〉, 〈s4, o4〉), we can check that for all q2 ∈ s2 there exists
C2 ∈ δ(q2, σ) such that C2 = succ(q2) ⊆ s4, and that o2 6= ∅ (because o1 6= ∅

and 〈s2, o2〉 �F+ 〈s1, o1〉) and for all q2 ∈ o2 there exists C2 ∈ δ(q2, σ) such that
C2 ⊆ o4 ∪ (s4 ∩ α) (because succ¬α(q2) ⊆ o4 and succα(q2) ⊆ s4 ∩ α). To prove
that 〈s4, o4〉 �F+ 〈s3, o3〉, we can check that

(a) for all q4 ∈ s4, there exists q3 ∈ s3 such that q4 ≪f q3. This holds since
either q4 ∈ succ(q2) for some q2 ∈ s2 and by part (1) of the construction,
there exists q3 ∈ s3 such that q4 ≪f q3, or q4 ∈ succα(q2) for some q2 ∈ o2

and by definition of succα there exists q′ ∈ s3 such that q4 ≪f q′;
(b) for all q4 ∈ o4, there exists q3 ∈ o3 such that q4 ≪f q3. This holds since

either q4 ∈ o3 and we can take q3 = q4, or q4 ∈ succ¬α(q2) for some q2 ∈ o2

and by part (2) of the construction, there exists q3 ∈ o3 ∪ (s3 ∩α) such that
q4 ≪f q3. Now, either q4 ∈ α and then q3 6∈ s3 by definition of succ¬α, thus
q3 ∈ o3; or q4 6∈ α and then q3 6∈ α by definition of ≪f , thus again q3 ∈ o3;

(c) if o3 6= ∅, then o4 6= ∅ since o3 ⊆ o4. And by (ii), if o4 6= ∅, then o3 6= ∅.
Hence o3 = ∅ if and only if o4 = ∅.

In the second case (ii), we construct the sets succ(q2) for each q2 ∈ s2 as
in part (1) of the construction above, and define s4 = s3 ∪

⋃
q2∈s2

succ(q2) and
o4 = s4 \ α. We can check that E(〈s2, o2〉, 〈s4, o4〉) since for all q2 ∈ s2 there
exists C2 ∈ δ(q2, σ) such that C2 = succ(q2) ⊆ s4, and that o2 = ∅ (since o1 = ∅

and 〈s2, o2〉 �F+ 〈s1, o1〉) and o4 = s4 \ α. We prove that 〈s4, o4〉 �F+ 〈s3, o3〉
as follows: first, as in (i) above, we have for all q4 ∈ s4, there exists q3 ∈ s3

such that q4 ≪f q3; second, by definition of ≪f if q4 6∈ α, then q3 6∈ α thus for
all q4 ∈ o4, there exists q3 ∈ o3 such that q4 ≪f q3; third, this implies that if
o4 6= ∅, then o3 6= ∅. And since o3 ⊆ o4, if o3 6= ∅, then o4 6= ∅. Hence o3 = ∅

if and only if o4 = ∅. ⊓⊔

4.4 Emptiness problem for a product of NFA

Consider NFAs Ai = (Qi, q
i
ι, Σ ∪ {τi}, δi, αi) for 1 ≤ i ≤ n where τ1, . . . , τn are

internal actions, and Σ is a shared alphabet. The synchronized product A1 ⊗
A2 ⊗ · · · ⊗ An is the transition system (V, E, Init, Final) where

– V = Q1 × Q2 × · · · × Qn;
– E(v1, v2) if v1 = (q1

1 , q2
1 , . . . , q

n
1), v2 = (q1

2 , q
2
2 , . . . , q

n
2) and either qi

2 ∈ δi(q
i
1, τi)

for all 1 ≤ i ≤ n, or there exists σ ∈ Σ such that qi
2 ∈ δi(q

i
1, σ) for all

1 ≤ i ≤ n;
– Init = {(q1

ι , q2
ι , . . . , qn

ι)};
– Final = α1 × α2 × · · · × αn.

For each i = 1 . . . n, let ≪i
f
⊆ Qi×Qi be a forward simulation relation for Ai.

Define the relation �F+ such that (q1
2 , q

2
2 , . . . , qn

2) �F+ (q1
1 , q

2
1 , . . . , q

n
1) if qi

2 ≪i
f
qi
1

for all 1 ≤ i ≤ n.

Lemma 36. �F+ is a forward simulation in A1⊗· · ·⊗An compatible with Final.

Acknowledgements We would like to warmly thank T. Brihaye, V. Bruyère,
and M. Ducobu for giving helpful comments on a draft of this paper.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In LICS, pages 313–321. IEEE Comp. Soc., 1996.

2. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement
relations. In Proc. of CONCUR, LNCS 1466, pages 163–178. Springer, 1998.

3. D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. A. Henzinger. Alpaga:
A tool for solving parity games with imperfect information. In Proc. of TACAS,
LNCS 5505, pages 58–61. Springer, 2009.

4. D. Berwanger, K. Chatterjee, L. Doyen, T. A. Henzinger, and S. Raje. Strategy
construction for parity games with imperfect information. In Proc. of CONCUR:

Concurrency Theory, LNCS 5201, pages 325–339. Springer, 2008.
5. A. Bouajjani, P. Habermehl, L. Hoĺık, T. Touili, and T. Vojnar. Antichain-based

universality and inclusion testing over nondeterministic finite tree automata. In
Proc. of CIAA, LNCS 5148, pages 57–67. Springer, 2008.

6. A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981.

7. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-
regular games of incomplete information. Logical Meth. in Comp. Sc., 3(3:4), 2007.

8. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In Proc. of CAV: Computer-

Aided Verification, LNCS 4144, pages 17–30. Springer, 2006.
9. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Alaska: Antichains for logic,

automata and symbolic kripke structures analysis. In Proc. of ATVA: Automated

Tech. for Verification and Analysis, LNCS 5311, pages 240–245. Springer, 2008.
10. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative

algorithms for LTL satisfiability and model-checking. In Proc. of TACAS, LNCS
4963, pages 63–77. Springer, 2008.

11. L. Doyen and J.-F. Raskin. Antichains for the automata-based approach to model-
checking. Logical Methods in Computer Science, 5(1:5), 2009.

12. E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL realizability.
In Proc. of CAV, LNCS 5643, pages 263–277. Springer, 2009.

13. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

14. S. Fogarty and M. Y. Vardi. Büchi complementation and size-change termination.
In Proc. of TACAS, LNCS 5505, pages 16–30. Springer, 2009.

15. S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing
nondeterministic Büchi automata. In Proc. of CHARME: Correct Hardware Design

and Verification Methods, LNCS 2860, pages 96–110. Springer, 2003.
16. M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on

finite and infinite graphs. In Proc. of FOCS, pages 453–462. IEEE, 1995.
17. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.

ACM Trans. Comput. Log., 2(3):408–429, 2001.
18. A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions

with squaring requires exponential space. In FOCS, pages 125–129. IEEE, 1972.
19. R. Milner. An algebraic definition of simulation between programs. In Proc. of

IJCAI, pages 481–489. British Computer Society, 1971.
20. S. Miyano and T. Hayashi. Alternating finite automata on omega-words. In Proc.

of CAAP, pages 195–210. Cambridge University Press, 1984.
21. S. Safra. On the complexity of ω-automata. In Proc. of FOCS: Foundations of

Computer Science, pages 319–327. IEEE, 1988.
22. S. Schewe. Tighter bounds for the determinisation of Büchi automata. In Proc. of

FOSSACS, LNCS 5504, pages 167–181. Springer, 2009.
23. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi

automata with applications to temporal logic. Th. Comp. Sci., 49:217–237, 1987.
24. D. Tabakov and M. Y. Vardi. Experimental evaluation of classical automata con-

structions. In Proc. of LPAR, LNCS 3835, pages 396–411. Springer, 2005.

25. D. Tabakov and M. Y. Vardi. Model-checking Büchi specifications. In Pre-

proceedings of LATA: Language and Automata Theory and Applications, 2007.
26. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification (preliminary report). In LICS, pages 332–344. IEEE, 1986.
27. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput.,

115(1):1–37, 1994.

