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Abstract. We study observation-based strategies for two-player turn-based games on
graphs with omega-regular objectives. An observation-based strategy relies on imperfect
information about the history of a play, namely, on the past sequence of observations. Such
games occur in the synthesis of a controller that does not see the private state of the plant.
Our main results are twofold. First, we give a fixed-point algorithm for computing the set
of states from which a player can win with a deterministic observation-based strategy for
any omega-regular objective. The fixed point is computed in the lattice of antichains of
state sets. This algorithm has the advantages of being directed by the objective and of
avoiding an explicit subset construction on the game graph. Second, we give an algorithm
for computing the set of states from which a player can win with probability 1 with
a randomized observation-based strategy for a Büchi objective. This set is of interest
because in the absence of perfect information, randomized strategies are more powerful
than deterministic ones. We show that our algorithms are optimal by proving matching
lower bounds.
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1. Introduction

Two-player games on graphs play an important role in computer science. In particular,
the controller synthesis problem asks, given a model for a plant, to construct a model for a
controller such that the behaviors resulting from the parallel composition of the two models
respects a given specification (e.g., are included in an ω-regular set). Controllers can be
synthesized as winning strategies in a game graph whose vertices represent the plant states,
and whose players represent the plant and the controller [18, 17]. Other applications of
game graphs include realizability and compatibility checking, where the players represent
parallel processes of a system, or its environment [1, 11, 6].

Most results about two-player games played on graphs make the hypothesis of perfect
information. In this setting, the controller knows, during its interaction with the plant, the
exact state of the plant. In practice, this hypothesis is often not reasonable. For example,
in the context of hybrid systems, the controller acquires information about the state of
the plant using sensors with finite precision, which return imperfect information about the
state. Similarly, if the players represent individual processes, then a process has only access
to the public variables of the other processes, not to their private variables [19, 2].

Two-player games of imperfect information are considerably more complicated than
games of perfect information. First, decision problems for imperfect-information games
usually lie in higher complexity classes than their perfect-information counter-parts [19,
14, 2]. The algorithmic difference is often exponential, due to a subset construction that,
similar to the determinization of finite automata, turns an imperfect-information game
into an equivalent perfect-information game. Second, because of the determinization, no
symbolic algorithms are known to solve imperfect-information games. This is in contrast
to the perfect-information case, where (often) simple and elegant fixed-point algorithms
exist [12, 8]. Third, in the context of imperfect information, deterministic strategies are
sometimes insufficient. A game is turn-based if in every state one of the players chooses
a successor state. In turn-based games of perfect information the set of winning states
coincides with the set of states where the probability of winning is 1, and so deterministic
strategies suffice to win (and thus also to win with probability 1). In contrast, in turn-
based games of imperfect information the set of winning states is in general a strict subset
of the set of states where the probability of winning is 1, and so randomized strategies
are required to win with probability 1 (see Example 2.3). Fourth, winning strategies for
imperfect-information games need memory even for simple objectives such as safety and
reachability (see Example 4.4). This is again in contrast to the perfect-information case,
where turn-based safety and reachability games can be won with memoryless strategies.

The contributions of this paper are twofold. First, we provide a symbolic fixed-point
algorithm to compute winning states in games of imperfect information for arbitrary ω-
regular objectives. The novelty is that our algorithm is symbolic; it does not carry out an
explicit subset construction. Instead, we compute fixed points on the lattice of antichains of
state sets. Antichains of state sets can be seen as a symbolic and compact representation for
⊆-downward-closed sets of sets of states.1 This solution extends our recent result [10] from
safety objectives to all ω-regular objectives. To justify the correctness of the algorithm, we
transform games of imperfect information into games of perfect information while preserving

1We recently used this symbolic representation of ⊆-downward-closed sets of state sets to propose a new
algorithm for solving the universality problem of nondeterministic finite automata. First experiments show
a very promising performance; see [9] for details.
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the existence of winning strategies for every objective. The reduction is only part of the
proof, not part of the algorithm. For the special case of parity objectives, we obtain a
symbolic Exptime algorithm for solving parity games of imperfect information. This is
optimal, as the reachability problem for games of imperfect information is known to be
Exptime-hard [19].

Second, we study randomized strategies and winning with probability 1 for imperfect-
information games. To our knowledge, for these games no algorithms (symbolic or not) are
present in the literature. Following [7], we refer to winning with probability 1 as almost-sure
winning (almost winning, for short), in contrast to sure winning with deterministic strate-
gies. We provide a symbolic Exptime algorithm to compute the set of almost-winning
states for games of imperfect information with Büchi objectives (reachability objectives can
be obtained as a special case, and for safety objectives almost winning and sure winning
coincide). Our solution is again justified by a reduction to games of perfect information.
However, for randomized strategies the reduction is different, and considerably more compli-
cated. We prove our algorithm to be optimal, showing that computing the almost-winning
states for reachability games of imperfect information is Exptime-hard. The problem of
computing the almost-winning states for coBüchi objectives under imperfect information in
Exptime remains an open problem.

The paper is organized as follows. Section 2 presents the definitions; Section 3 gives the
algorithm for the case of sure winning with deterministic strategies; Section 4, for the case
of almost winning with randomized strategies; and Section 5 provides the lower bounds.

Related work. In [17], Pnueli and Rosner study the synthesis of reactive modules. In their
framework, there is no game graph; instead, the environment and the objective are specified
using an LTL formula. In [14], Kupferman and Vardi extend these results in two directions:
they consider CTL∗ objectives and imperfect information. Again, no game graph, but a
specification formula is given to the synthesis procedure. We believe that our setting,
where a game graph is given explicitly, is more suited to fully and uniformly understand
the role of imperfect information. For example, Kupferman and Vardi claim that imperfect
information comes at no cost, because if the specification is given as a CTL (or CTL∗)
formula, then the synthesis problem is complete for Exptime (resp. 2Exptime), just as in
the perfect-information case. These hardness results, however, depend on the fact that the
specification is given compactly as a formula. In our setting, with an explicit game graph,
reachability games of perfect information are Ptime-complete, whereas reachability games
of imperfect information are Exptime-complete [19]. None of the above papers provide
symbolic solutions, and none of them consider randomized strategies.

It is known that for Partially Observable Markov Decision Processes (POMDPs) with
boolean rewards and limit-average objectives the quantitative analysis (whether the value is
greater than a specified threshold) is Exptime-complete [15]. However, almost winning is
a qualitative question, and our hardness result for almost winning of imperfect-information
games does not follow from the known results on POMDPs. We give in Section 5 a detailed
proof of the hardness result of [19] for sure winning of imperfect-information games with
reachability objectives, and we show that this proof can be extended to almost winning
as well. To the best of our knowledge, this is the first hardness result that applies to the
qualitative analysis of almost winning in imperfect-information games.
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A class of semiperfect-information games, where one player has imperfect information
and the other player has perfect information, is studied in [4]. That class is simpler than
the games studied here; it can be solved in NP ∩ coNP for parity objectives.

2. Definitions

A game structure (of imperfect information) is a tuple G = 〈L, l0,Σ,∆,O, γ〉, where L is
a finite set of states, l0 ∈ L is the initial state, Σ is a finite alphabet, ∆ ⊆ L × Σ × L is
a set of labeled transitions, O is a finite set of observations, and γ : O → 2L\∅ maps each
observation to the set of states that it represents. We require the following two properties
on G: (i) for all ℓ ∈ L and all σ ∈ Σ, there exists ℓ′ ∈ L such that (ℓ, σ, ℓ′) ∈ ∆; and (ii) the
set {γ(o) | o ∈ O} partitions L. We say that G is a game structure of perfect information
if O = L and γ(ℓ) = {ℓ} for all ℓ ∈ L. We often omit (O, γ) in the description of games of
perfect information. For σ ∈ Σ and s ⊆ L, let PostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ ∆}.

Plays. In a game structure, in each turn, Player 1 chooses a letter in Σ, and Player 2 resolves
nondeterminism by choosing the successor state. A play in G is an infinite sequence π =
ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . such that (i) ℓ0 = l0, and (ii) for all i ≥ 0, we have (ℓi, σi, ℓi+1) ∈ ∆.
The prefix up to ℓn of the play π is denoted by π(n); its length is |π(n)| = n+1; and its last
element is Last(π(n)) = ℓn. The observation sequence of π is the unique infinite sequence
γ−1(π) = o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0, we have ℓi ∈ γ(oi). Similarly, the
observation sequence of π(n) is the prefix up to on of γ−1(π). The set of infinite plays in
G is denoted Plays(G), and the set of corresponding finite prefixes is denoted Prefs(G). A
state ℓ ∈ L is reachable in G if there exists a prefix ρ ∈ Prefs(G) such that Last(ρ) = ℓ.
For a prefix ρ ∈ Prefs(G), the cone Cone(ρ) = { π ∈ Plays(G) | ρ is a prefix of π } is the
set of plays that extend ρ. The knowledge associated with a finite observation sequence
τ = o0σ0o1σ1 . . . σn−1on is the set K(τ) of states in which a play can be after this sequence
of observations, that is, K(τ) = {Last(ρ) | ρ ∈ Prefs(G) and γ−1(ρ) = τ}.

Lemma 2.1. Let G = 〈L, l0,Σ,∆,O, γ〉 be a game structure of imperfect information. For
σ ∈ Σ, ℓ ∈ L, and ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · ℓ, let oℓ ∈ O be the unique observation
such that ℓ ∈ γ(oℓ). Then K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩ γ(oℓ).

Strategies. A deterministic strategy in G for Player 1 is a function α : Prefs(G) → Σ.
For a finite set A, a probability distribution on A is a function κ : A → [0, 1] such that
∑

a∈A κ(a) = 1. We denote the set of probability distributions on A by D(A). Given
a distribution κ ∈ D(A), let Supp(κ) = {a ∈ A | κ(a) > 0} be the support of κ. A
randomized strategy in G for Player 1 is a function α : Prefs(G) → D(Σ). A (deterministic
or randomized) strategy α for Player 1 is observation-based if for all prefixes ρ, ρ′ ∈ Prefs(G),
if γ−1(ρ) = γ−1(ρ′), then α(ρ) = α(ρ′). In the sequel, we are interested in the existence
of observation-based strategies for Player 1. A deterministic strategy in G for Player 2
is a function β : Prefs(G) × Σ → L such that for all ρ ∈ Prefs(G) and all σ ∈ Σ, we
have (Last(ρ), σ, β(ρ, σ)) ∈ ∆. A randomized strategy in G for Player 2 is a function β :
Prefs(G)×Σ→ D(L) such that for all ρ ∈ Prefs(G), all σ ∈ Σ, and all ℓ ∈ Supp(β(ρ, σ)), we
have (Last(ρ), σ, ℓ) ∈ ∆. We denote by AG, AO

G, and BG the set of all Player-1 strategies,
the set of all observation-based Player-1 strategies, and the set of all Player-2 strategies in
G, respectively. All results of this paper can be proved also if strategies depend on state
sequences only, and not on the past moves of a play.
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The outcome of two deterministic strategies α (for Player 1) and β (for Player 2) in
G is the play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . ∈ Plays(G) such that for all i ≥ 0, we have
σi = α(π(i)) and ℓi+1 = β(π(i), σi). This play is denoted outcome(G,α, β). The outcome
of two randomized strategies α (for Player 1) and β (for Player 2) in G is the set of plays
π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . ∈ Plays(G) such that for all i ≥ 0, we have α(π(i))(σi) > 0
and β(π(i), σi)(ℓi+1) > 0. This set is denoted outcome(G,α, β). The outcome set of the
deterministic (resp. randomized) strategy α for Player 1 in G is the set Outcomei(G,α) of
plays π such that there exists a deterministic (resp. randomized) strategy β for Player 2
with π = outcome(G,α, β) (resp. π ∈ outcome(G,α, β)). The outcome sets for Player 2 are
defined symmetrically.

Objectives. An objective for G is a set φ of infinite sequences of observations and input
letters, that is, φ ⊆ (O × Σ)ω. A play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . ∈ Plays(G) satisfies the
objective φ, denoted π |= φ, if γ−1(π) ∈ φ. Objectives are generally Borel measurable: a
Borel objective is a Borel set in the Cantor topology on (O × Σ)ω [13]. We specifically
consider reachability, safety, Büchi, coBüchi, and parity objectives, all of them Borel mea-
surable. The parity objectives are a canonical form to express all ω-regular objectives [21].
For a play π = ℓ0σ0ℓ1 . . . , we write Inf(π) for the set of observations that appear infinitely
often in γ−1(π), that is, Inf(π) = {o ∈ O | ℓi ∈ γ(o) for infinitely many i’s}.

• Reachability and safety objectives. Given a set T ⊆ O of target observations, the reach-
ability objective Reach(T ) requires that an observation in T be visited at least once,
that is, Reach(T ) = { ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) | ∃k ≥ 0 · ∃o ∈ T : ℓk ∈ γ(o) }. Dually,
the safety objective Safe(T ) requires that only observations in T be visited. Formally,
Safe(T ) = { ℓ0σ0ℓ1σ1 . . . ∈ Plays(G) | ∀k ≥ 0 · ∃o ∈ T : ℓk ∈ γ(o) }.
• Büchi and coBüchi objectives. The Büchi objective Buchi(T ) requires that an observation

in T be visited infinitely often, that is, Buchi(T ) = { π | Inf(π) ∩ T 6= ∅ }. Dually, the
coBüchi objective coBuchi(T ) requires that only observations in T be visited infinitely
often. Formally, coBuchi(T ) = { π | Inf(π) ⊆ T }.
• Parity objectives. For d ∈ N, let p : O → {0, 1, . . . , d} be a priority function, which maps

each observation to a nonnegative integer priority. The parity objective Parity(p) requires
that the minimum priority that appears infinitely often be even. Formally, Parity(p) =
{ π | min{ p(o) | o ∈ Inf(π) } is even }.

Observe that by definition, for all objectives φ, if π |= φ and γ−1(π) = γ−1(π′), then π′ |= φ.

Sure winning and almost winning. A strategy λi for Player i in G is sure winning for an
objective φ if for all π ∈ Outcomei(G,λi), we have π |= φ. Given a game structure G and
a state ℓ of G, we write Gℓ for the game structure that results from G by changing the
initial state to ℓ, that is, if G = 〈L, l0,Σ,∆,O, γ〉, then Gℓ = 〈L, ℓ,Σ,∆,O, γ〉. An event is
a measurable set of plays, and given strategies α and β for the two players, the probabilities

of events are uniquely defined [22]. For a Borel objective φ, we denote by Prα,β
ℓ (φ) the

probability that φ is satisfied in the game Gℓ given the strategies α and β. A strategy α

for Player 1 in G is almost winning for the objective φ if for all randomized strategies β

for Player 2, we have Prα,β
l0

(φ) = 1. The set of sure-winning (resp. almost-winning) states
of a game structure G for the objective φ is the set of states ℓ such that Player 1 has a
deterministic sure-winning (resp. randomized almost-winning) observation-based strategy
in Gℓ for the objective φ.
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Figure 1: Game structure G.

Theorem 2.2 (Determinacy). [16] For all perfect-information game structures G and all
Borel objectives φ, either there exists a deterministic sure-winning strategy for Player 1 for
the objective φ, or there exists a deterministic sure-winning strategy for Player 2 for the
complementary objective Plays(G) \ φ.

Notice that deterministic strategies suffice for sure winning a game: given a randomized
strategy α for Player 1, let αD be the deterministic strategy such that for all ρ ∈ Prefs(G),
the strategy αD(ρ) chooses an input letter from Supp(α(ρ)). Then Outcome1(G,αD) ⊆
Outcome1(G,α), and thus, if α is sure winning, then so is αD. The result also holds for
observation-based strategies. However, for almost winning, randomized strategies are more
powerful than deterministic strategies as shown by Example 2.3.

Example 2.3. Consider the game structure shown in Figure 1. The observations o1, o2, o3, o4

are such that γ(o1) = {ℓ1}, γ(o2) = {ℓ2, ℓ
′
2}, γ(o3) = {ℓ3, ℓ

′
3}, and γ(o4) = {ℓ4}. The tran-

sitions are shown as labeled edges in the figure, and the initial state is ℓ1. The objective
of Player 1 is Reach({o4}), to reach state ℓ4. We argue that the game is not sure winning
for Player 1. Let α be any deterministic strategy for Player 1. Consider the deterministic
strategy β for Player 2 as follows: for all ρ ∈ Prefs(G) such that Last(ρ) ∈ γ(o2), if α(ρ) = a,
then in the previous round β chooses the state ℓ2, and if α(ρ) = b, then in the previous
round β chooses the state ℓ′2. Given α and β, the play outcome(G,α, β) never reaches ℓ4.
Similarly, Player 2 has no sure winning strategy for the dual objective Safe({o1, o2, o3}).
Hence the game is not determined. However, the game G is almost winning for Player 1.
Consider the randomized strategy that plays a and b uniformly at random at all states.
Every time the game visits observation o2, for any strategy for Player 2, the game visits
ℓ3 and ℓ′3 with probability 1

2 , and hence also reaches ℓ4 with probability 1
2 . It follows that

against all Player 2 strategies the play eventually reaches ℓ4 with probability 1.

Spoiling strategies. To spoil a strategy of Player 1 (for sure-winning), Player 2 does not
need the full memory of the history of the play, he only needs counting strategies. We
say that a deterministic strategy β : Prefs(G) × Σ → L for Player 2 is counting if for all
prefixes ρ, ρ′ ∈ Prefs(G) such that |ρ| = |ρ′| and Last(ρ) = Last(ρ′), and for all σ ∈ Σ, we
have β(ρ, σ) = β(ρ′, σ). Let Bc

G be the set of counting strategies for Player 2. The memory
needed by a counting strategy is only the number of turns that have been played. This type
of strategy is sufficient to spoil the non-winning strategies of Player 1.

Proposition 2.4. Let G be a game structure of imperfect information and φ be an objective.
There exists an observation-based strategy αo ∈ AO

G such that for all β ∈ BG we have

outcome(G,αo, β) ∈ φ if and only if there exists an observation-based strategy αo ∈ AO
G

such that for all counting strategies βc ∈ Bc
G we have outcome(G,αo, βc) ∈ φ.
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Proof. We prove the equivalent statement that: ∀αo ∈ Ao
G ·∃β ∈ BG : outcome(G,αo, β) 6∈ φ

iff ∀αo ∈ Ao
G · ∃β

c ∈ Bc
G : outcome(G,αo, βc) 6∈ φ. The right implication (←) is trivial.

For the left implication (→), let αo ∈ Ao
G be an arbitrary observation-based strategy for

Player 1 in G. Let β ∈ BG be a strategy for Player 2 such that outcome(G,αo, β) 6∈ φ. Let
outcome(G,αo, β) = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . and define a counting strategy βc for Player 2
such that ∀ρ ∈ Prefs(G) · ∀σ ∈ Σ : if Last(ρ) = ℓn−1 and σ = σn−1 for n = |ρ|, then
βc(ρ, σ) = ℓn, and otherwise βc(ρ, σ) is fixed arbitrarily in the set PostGσ (Last(ρ)). Clearly,
βc is a counting strategy and we have outcome(G,αo, β) = outcome(G,αo, βc) and thus
outcome(G,αo, βc) 6∈ φ.

Remarks. First, the hypothesis that the observations form a partition of the state space
can be weakened to a covering of the state space, where observations can overlap [10]. In
that case, Player 2 chooses both the next state of the game ℓ and the next observation o

such that ℓ ∈ γ(o). The definitions related to plays, strategies, and objectives are adapted
accordingly. Such a game structure G with overlapping observations can be encoded by
an equivalent game structure G′ of imperfect information, whose state space is the set
of pairs (ℓ, o) such that ℓ ∈ γ(o). The set of labeled transitions ∆′ of G′ is defined by
∆′ = { ((ℓ, o), σ, (ℓ′, o′)) | (ℓ, σ, ℓ′) ∈ ∆ } and γ′−1(ℓ, o) = o. The games G and G′ are
equivalent in the sense that for every Borel objective φ, there exists a sure (resp. almost)
winning strategy for Player i in G for φ if and only if there exists such a winning strategy
for Player i in G′ for φ.

Second, it is essential that the objective is expressed in terms of the observations.
Indeed, the games of imperfect information with a nonobservable winning condition are
more complicated to solve. For instance, the universality problem for Büchi automata can
be reduced to such games, but the construction that we propose in Section 3 cannot be
used. More involved constructions à la Safra are needed [20].

3. Sure Winning

First, we show that a game structure G of imperfect information can be encoded by
a game structure GK of perfect information such that for every objective φ, there exists a
deterministic observation-based sure-winning strategy for Player 1 in G for φ if and only if
there exists a deterministic sure-winning strategy for Player 1 in GK for φ. We obtain GK

using a subset construction similar to Reif’s construction for safety objectives [19]. Each
state in GK is a set of states of G which represents the knowledge of Player 1. In the
worst case, the size of GK is exponentially larger than the size of G. Second, we present a
fixed-point algorithm based on antichains of set of states [10], whose correctness relies on
the subset construction, but avoids the explicit construction of GK.

3.1. Subset construction for sure winning. Subset construction. Given a game struc-
ture of imperfect information G = 〈L, l0,Σ,∆,O, γ〉, we define the knowledge-based subset
construction of G as the following game structure of perfect information:

GK = 〈L, {l0},Σ,∆K〉,

where L = 2L\{∅}, and (s1, σ, s2) ∈ ∆K iff there exists an observation o ∈ O such that
s2 = PostGσ (s1)∩ γ(o) and s2 6= ∅. Notice that for all s ∈ L and all σ ∈ Σ, there exists a set
s′ ∈ L such that (s, σ, s′) ∈ ∆K.
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A (deterministic or randomized) strategy in GK is called a knowledge-based strategy.
To distinguish between a general strategy in G, an observation-based strategy in G, and a
knowledge-based strategy in GK, we often use the notations α,αo, and αK, respectively.

Lemma 3.1. For all sets s ∈ L that are reachable in GK, and all observations o ∈ O, either
s ⊆ γ(o) or s ∩ γ(o) = ∅.

Proof. First, the property holds for s = {l0}, the initial state in GK as it is a singleton.
Second, we show that the property holds for any successor s′ of any state s in GK. Assume
that (s, σ, s′) ∈ ∆K. Then we know that s′ = PostGσ (s) ∩ γ(o) for some o ∈ O. Hence,
s′ ⊆ γ(o) and s′ ∩ γ(o′) = ∅ for all o′ 6= o since the set {γ(o) | o ∈ O} partitions L.

Abusing the notation, for a play π = s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) we define its
observation sequence as the infinite sequence γ−1(π) = o0σ0o1 . . . σn−1onσn . . . of observa-
tions such that for all i ≥ 0, we have si ⊆ γ(oi). This sequence is unique by Lemma 3.1.
The play π satisfies an objective φ ⊆ (O × Σ)ω if γ−1(π) ∈ φ.

The correctness of the subset construction GK is established by the following two lem-
mas which generalize the result of [19] for safety objective to any kind of objective. For
Lemma 3.3, the proof of [19] is not sufficient, since violation of a safety objective can be
witnessed by a finite prefix of play, while general objectives need an infinite witness.

Lemma 3.2. If Player 1 has a deterministic sure-winning strategy in GK for an objective
φ, then he has a deterministic observation-based sure-winning strategy in G for φ.

Proof. Let αK be a deterministic sure-winning strategy for Player 1 in GK with the objective
φ. Define αo a strategy for Player 1 in G as follows: for every ρ ∈ Prefs(G), let αo(ρ) =
αK(ρK) where ρK is defined from ρ = ℓ0σ0ℓ1 . . . σn−1ℓn by ρK = s0σ0s1 . . . σn−1sn where
si = K(γ−1(ℓ0σ0ℓ1 . . . σi−1ℓi)) for each 0 ≤ i ≤ n. Clearly, αo is a deterministic observation-
based strategy as γ−1(ρ) = γ−1(ρ′) implies ρK = ρ′K.

By contradiction, assume that αo is not a sure-winning strategy for Player 1 in G

with the objective φ. Then there exists a play π ∈ Outcome1(G,αo) such that π 6|= φ.
Let π = ℓ0σ0ℓ1σ1 . . . and consider the infinite sequence πK = s0σ0s1σ1 . . . where si =
K(γ−1(π(i))) for each i ≥ 0. We show that πK ∈ Outcome1(G

K, αK). First, we have
s0 = K(γ−1(π(0))) = K(γ−1(ℓ0)) = {ℓ0}. Second, for any i ≥ 0, we have si = K(γ−1(π(i)))
and by Lemma 2.1 we have si+1 = PostGσi

(si) ∩ γ(o) where o is such that ℓi+1 ∈ γ(o) and

so (si, σi, si+1) ∈ ∆K. Third, by definition of αo, we have σi = αo(π(i)) = αK(πK(i)). This
entails that πK ∈ Outcome1(G

K, αK).
Now, observe that trivially ℓi ∈ K(γ−1(π(i))) for any i ≥ 0, that is ℓi ∈ si and so

si∩γ(oi) 6= ∅ where oi is the unique observation such that ℓi ∈ γ(oi). Hence, by Lemma 3.1,
we have si ⊆ γ(oi). Consequently, γ−1(πK) = γ−1(π) and thus πK 6|= φ which contradicts the
fact that αK is a sure-winning strategy for Player 1 in GK with the objective φ. Therefore,
αo is a sure-winning strategy for Player 1 in G with the objective φ.

Lemma 3.3. If Player 1 has a deterministic observation-based sure-winning strategy in G

for an objective φ, then Player 1 has a deterministic sure-winning strategy in GK for φ.

Proof. First, it is easy to show by induction that for every finite prefix of play ρK =
s0σ0s1 . . . σn−1sn in Prefs(GK), there exists a prefix of play ρ = ℓ0σ0ℓ1 . . . σn−1ℓn in Prefs(G)
that generates ρK, that is such that si = K(γ−1(ℓ0σ0ℓ1 . . . σi−1ℓi)) for each 0 ≤ i ≤ n; and
for all such prefix of play ρ′ that generates ρK, we have γ−1(ρ) = γ−1(ρ′) (by Lemma 2.1).
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Now, let αo be a deterministic observation-based sure-winning strategy for Player 1 in
G that is sure-winning for φ. We construct a deterministic strategy αK for Player 1 in GK as
follows: for every ρK ∈ Prefs(GK), let αK(ρK) = αo(ρ) where ρ generates ρK. By the above
remark, αK is well-defined (it is independent of the choice of ρ since αo is observation-based).

By contradiction, assume that αK is not sure-winning for Player 1 in GK with objective
φ. Then, there exists a play πK ∈ Outcome1(G

K, αK) with πK 6|= φ.
We construct the dag D = 〈V,E〉 where V = {(ℓ, i) | ℓ ∈ Last(πK(i))} and E =

{((ℓ, i), (ℓ′, i+1)) | (ℓ, σi, ℓ
′) ∈ ∆}. By definition of GK, for all i ≥ 0, we have Last(πK(i)) 6= ∅

and for all ℓ ∈ Last(πK(i)), there is a path in D from (ℓ0, 0) to (ℓ, i). Therefore, V is infinite
and by König’s Lemma, there exists an infinite path (ℓ0, 0)(ℓ1, 1) . . . in D and thus a play
π = ℓ0σ0ℓ1σ1 . . . in G such that π ∈ Outcome1(G,αo) and π 6|= φ. This is in contradiction
with the assumption that αo is sure-winning in G for φ. Hence αK is sure-winning for
Player 1 in GK with objective φ.

Lemma 3.2 and Lemma 3.3 yield Theorem 3.4.

Theorem 3.4 (Sure-winning reduction). Player 1 has a deterministic observation-based
sure-winning strategy in a game structure G of imperfect information for an objective φ if
and only if Player 1 has a deterministic sure-winning strategy in the game structure GK of
perfect information for φ.

3.2. Two interpretations of the µ-calculus. From the results of Section 3.1, we can
solve a game G of imperfect information with objective φ by constructing the knowledge-
based subset construction GK and solving the resulting game of perfect information for the
objective φ using standard methods. For the important class of ω-regular objectives, there
exists a fixed-point theory —the µ-calculus— for this purpose [8]. When run on GK, these
fixed-point algorithms compute sets of sets of states of the game G. An important property
of those sets is that they are downward closed with respect to set inclusion: if Player 1 has
a deterministic strategy to win the game G when her knowledge is a set s, then she also
has a deterministic strategy to win the game when her knowledge is s′ with s′ ⊆ s. And
thus, if s is a sure-winning state of GK, then so is s′. Based on this property, we devise a
new algorithm for solving games of perfect information.

An antichain of nonempty sets of states is a set q ⊆ 2L \ {∅} such that for all s, s′ ∈ q,
we have s 6⊂ s′. Let A be the set of antichains of nonempty subsets of L, and consider
the following partial order on A: for all q, q′ ∈ A, let q ⊑ q′ iff ∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′.
For q ⊆ 2L, define the set of maximal elements of q by ⌈q⌉ = {s ∈ q | s 6= ∅ and ∀s′ ∈
q : s 6⊂ s′}. Clearly, ⌈q⌉ is an antichain. The least upper bound of q, q′ ∈ A is q ⊔ q′ =
⌈{s | s ∈ q or s ∈ q′}⌉, and their greatest lower bound is q⊓q′ = ⌈{s ∩ s′ | s ∈ q and s′ ∈ q′}
⌉. The definition of these two operators extends naturally to sets of antichains, and the
greatest element of A is ⊤ = {L} and the least element is ⊥ = ∅. The partially ordered set
〈A,⊑,⊔,⊓,⊤,⊥〉 forms a complete lattice. We view antichains of state sets as a symbolic
representation of ⊆-downward-closed sets of state sets.

A game lattice is a complete lattice V together with a predecessor operator CPre :
V → V . Given a game structure G = 〈L, l0,Σ,∆,O, γ〉 of imperfect information, and its
knowledge-based subset construction GK = 〈L, {l0},Σ,∆K〉, we consider two game lattices:
the lattice of subsets 〈S,⊆,∪,∩,L, ∅〉, where S = 2L and CPre : S → S is defined by
CPre(q) = {s ∈ L | ∃σ ∈ Σ · ∀s′ ∈ L : if (s, σ, s′) ∈ ∆K, then s′ ∈ q}; and the lattice of
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Lattice of subsets

[[o]]S
E
= {s ∈ L | s ⊆ γ(o)}

[[x]]S
E
= E(x)

[[ϕ1

{

∨
∧

}

ϕ2]]
S
E
=[[ϕ1]]

S
E

{

∪
∩

}

[[ϕ2]]
S
E

[[pre(ϕ)]]S
E
= CPre([[ϕ]]S

E
)

[[
{

µ
ν

}

x.ϕ]]S
E
=

{

∩
∪

}

{q | q =[[ϕ]]S
E[x 7→q]}

Lattice of antichains

[[o]]A
E

= {γ(o)}

[[x]]AE = E(x)

[[ϕ1

{

∨
∧

}

ϕ2]]
A
E

=[[ϕ1]]
A
E

{

⊔
⊓

}

[[ϕ2]]
A
E

[[pre(ϕ)]]A
E

= ⌈CPre⌉([[ϕ]]A
E

)

[[
{

µ
ν

}

x.ϕ]]A
E

=
{

⊓
⊔

}

{q | q =[[ϕ]]A
E[x 7→q]}

antichains 〈A,⊑,⊔,⊓, {L}, ∅〉, with the operator ⌈CPre⌉ : A → A defined by ⌈CPre⌉(q) =
⌈{s ∈ L | ∃σ ∈ Σ · ∀o ∈ O · ∃s′ ∈ q : Postσ(s) ∩ γ(o) ⊆ s′}⌉.

The µ-calculus formulas are generated by the grammar

ϕ ::= o | x | ϕ ∨ ϕ | ϕ ∧ ϕ | pre(ϕ) | µx.ϕ | νx.ϕ

for atomic propositions o ∈ O and variables x. We can define ¬o as a shortcut for
∨

o′∈O\{o} o′. A variable is free in a formula ϕ if it is not in the scope of a quantifier

µx or νx. A formula ϕ is closed if it contains no free variable. Given a game lattice V , a
valuation E for the variables is a function that maps every variable x to an element in V .
For q ∈ V , we write E [x 7→ q] for the valuation that agrees with E on all variables, except
that x is mapped to q. Given a game lattice V and a valuation E , each µ-calculus formula ϕ

specifies an element [[ϕ]]VE of V , which is defined inductively by the equations shown in the

two tables below. If ϕ is a closed formula, then [[ϕ]]V =[[ϕ]]VE for any valuation E . The follow-
ing theorem recalls that perfect-information games can be solved by evaluating fixed-point
formulas in the lattice of subsets.

Theorem 3.5 (Symbolic solution of perfect-information games). [8] For every ω-regular
objective φ, there exists a closed µ-calculus formula µForm(φ), called the characteristic
formula of φ, such that for all game structures G of perfect information, the set of sure-
winning states of G for φ is [[µForm(φ)]]S .

Downward closure. Given a set q ∈ S, the downward closure of q is the set q↓ = {s ∈ L |
∃s′ ∈ q : s ⊆ s′}. Observe that in particular, for all q ∈ S, we have ∅ 6∈ q↓ and ⌈q⌉↓ = q↓.
The sets q↓, for q ∈ S, are the downward-closed sets. A valuation E for the variables in the
lattice S of subsets is downward closed if every variable x is mapped to a downward-closed
set, that is, E(x) = E(x)↓.

Lemma 3.6. All downward-closed sets q, q′ ∈ S satisfy ⌈q ∩ q′⌉ = ⌈q⌉ ⊓ ⌈q′⌉ and ⌈q ∪ q′⌉ =
⌈q⌉ ⊔ ⌈q′⌉.
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Lemma 3.7. For all µ-calculus formulas ϕ and all downward-closed valuations E in the
lattice of subsets, the set [[ϕ]]SE is downward closed.

Proof. We prove this lemma by induction on the structure of ϕ.

• if ϕ ≡ o for o ∈ O. It is immediate to show that [[ϕ]]SE= [[ϕ]]SE↓.
• if ϕ ≡ x for a variable x. We have [[ϕ]]SE= E(x) which is downward closed by hypothesis.

• if ϕ ≡ ϕ1

{

∨
∧

}

ϕ2 and both [[ϕ1]]
S
E and [[ϕ2]]

S
E are downward closed. Then we have

[[ϕ]]SE = [[ϕ1]]
S
E

{

∪
∩

}

[[ϕ2]]
S
E and the result follows from the fact that union and intersection

of downward closed sets are downward closed.
• if ϕ ≡ pre(ϕ1) and [[ϕ1]]

S
E is downward closed. We show that [[ϕ]]SE is downward closed. Let

s1 ∈[[ϕ]]SE and let s2 ∈ L such that s2 ⊆ s1. Let us show that s2 ∈[[ϕ]]SE . By definition of

CPre, since s1 ∈[[pre(ϕ1)]]
S
E , there exists σ ∈ Σ such that for any s′1, if (s1, σ, s′1) ∈ ∆K then

s′1 ∈[[ϕ1]]
S
E . Consider any s′2 such that (s2, σ, s′2) ∈ ∆K. According to the definition of GK,

we have s′2 = Postσ(s2) ∩ γ(o) 6= ∅ for some o ∈ O. Now, let s′1 = Postσ(s1) ∩ γ(o). Since
s2 ⊆ s1, we have s′2 ⊆ s′1 and thus s′1 6= ∅. Therefore (s1, σ, s′1) ∈ ∆K and so s′1 ∈[[ϕ1]]

S
E .

As the latter set is downward closed, we also have s′2 ∈[[ϕ1]]
S
E and thus s2 ∈[[pre(ϕ1)]]

S
E .

• if ϕ ≡ νx.ϕ1 and [[ϕ1]]
S
E ′ is downward closed for any downward closed valuation E ′. By

Tarski’s theorem, [[ϕ]]SE is one of the set in the infinite sequence q0, q1, . . . defined by q0 = L
and for every i ≥ 1, qi =[[ϕ]]SE[x 7→qi−1]

. Since q0 is downward closed, every qi (i ≥ 1) is also

downward closed by the induction hypothesis.
• if ϕ ≡ µx.ϕ1 and [[ϕ1]]

S
E ′ is downward closed for any downward closed valuation E ′. The

proof is similar to the previous case.

Lemma 3.8. For all µ-calculus formulas ϕ, and all downward-closed valuations E in the
lattice of subsets, we have

⌈

[[ϕ]]SE
⌉

=[[ϕ]]A⌈E⌉, where ⌈E⌉ is a valuation in the lattice of

antichains defined by ⌈E⌉(x) = ⌈E(x)⌉ for all variables x.

Proof. We prove this by induction on the structure of ϕ.

• if ϕ ≡ o for o ∈ O. The claim is immediate.
• if ϕ ≡ x for a variable x. We have

⌈

[[ϕ]]SE
⌉

= ⌈E(x)⌉ =[[ϕ]]A⌈E⌉.

• if ϕ ≡ ϕ1

{

∨
∧

}

ϕ2 and both
⌈

[[ϕ1]]
S
E

⌉

=[[ϕ1]]
A
⌈E⌉ and

⌈

[[ϕ2]]
S
E

⌉

=[[ϕ2]]
A
⌈E⌉. Using Lemma 3.6

and Lemma 3.7, we have successively:
⌈

[[ϕ]]SE
⌉

=
⌈

[[ϕ1]]
S
E

{

∪
∩

}

[[ϕ2]]
S
E

⌉

=

⌈

[[ϕ1]]
S
E

⌉

{

⊔
⊓

}

⌈

[[ϕ2]]
S
E

⌉

=[[ϕ1]]
A
⌈E⌉

{

⊔
⊓

}

[[ϕ2]]
A
⌈E⌉ .

• if ϕ ≡ pre(ϕ1) and
⌈

[[ϕ1]]
S
E

⌉

=[[ϕ1]]
A
⌈E⌉.

(1) We prove the inclusion [[ϕ]]A⌈E⌉⊆
⌈

[[ϕ]]SE
⌉

. First, let s ∈ ⌈CPre⌉([[ϕ1]]
A
⌈E⌉). We know

that there exists σ ∈ Σ such that ∀o ∈ O · ∃s′′ ∈[[ϕ1]]
A
⌈E⌉: Postσ(s) ∩ γ(o) ⊆ s′′. Since

⌈

[[ϕ1]]
S
E

⌉

=[[ϕ1]]
A
⌈E⌉ (induction hypothesis), it is clear that for such σ, if (s, σ, s′) ∈ ∆K,

then there exists s′′ ∈
⌈

[[ϕ1]]
S
E

⌉

such that s′ ⊆ s′′. And since [[ϕ1]]
S
E is downward closed

(by Lemma 3.7) we have s′ ∈[[ϕ1]]
S
E , so that s ∈ CPre([[ϕ1]]

S
E ) (and thus s ∈[[ϕ]]SE ).

Second, we show that s is maximal in [[ϕ]]SE . By contradiction, assume that there

exists s1 ∈[[ϕ]]SE with s ⊂ s1. Then, by the same argument as in the first part of the
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proof of the inclusion
⌈

[[ϕ]]SE
⌉

⊆[[ϕ]]A⌈E⌉ below, we have that s1 satisfies the definition

of ⌈CPre⌉([[ϕ1]]
A
⌈E⌉) up to the operator ⌈·⌉. This means that s is not maximal in

⌈CPre⌉([[ϕ1]]
A
⌈E⌉), a contradiction.

(2) We prove the inclusion
⌈

[[ϕ]]SE
⌉

⊆[[ϕ]]A⌈E⌉. This is trivial if
⌈

[[ϕ]]SE
⌉

= ∅. Otherwise, let

us first show that [[ϕ1]]
A
⌈E⌉ 6= ∅. Let s ∈

⌈

[[ϕ]]SE
⌉

. Then, there exists σ ∈ Σ such that

for any s′, if (s, σ, s′) ∈ ∆K then s′ ∈[[ϕ1]]
S
E . Since the transition relation of G is total

and the observations partition the state space, we have Postσ(s) ∩ γ(o) 6= ∅ for some
o ∈ O. Therefore, [[ϕ1]]

S
E is nonempty and so is [[ϕ1]]

A
⌈E⌉.

Now, we proceed with the proof of inclusion. Let s ∈
⌈

[[ϕ]]SE
⌉

, and let σ ∈ Σ such that

such that for any s′, if (s, σ, s′) ∈ ∆K then s′ ∈[[ϕ1]]
S
E . Let us show that s ∈ ⌈CPre

⌉([[ϕ1]]
A
⌈E⌉). First, consider an arbitrary observation o ∈ O and let s′ = Postσ(s)∩γ(o).

We must show that there exists s′′ ∈[[ϕ1]]
A
⌈E⌉ such that s′ ⊆ s′′. This is obvious if s′ = ∅

since [[ϕ1]]
A
⌈E⌉ is nonempty. Otherwise, by the definition of GK, we have (s, σ, s′) ∈ ∆K

and therefore s′ ∈[[ϕ1]]
S
E . Since [[ϕ1]]

A
⌈E⌉=

⌈

[[ϕ1]]
S
E

⌉

(induction hypothesis), there exists

s′′ ∈[[ϕ1]]
A
⌈E⌉ such that s′ ⊆ s′′, and thus s′ satisfies the definition of ⌈CPre⌉([[ϕ1]]

A
⌈E⌉)

up to the operator ⌈·⌉.
Second, let us show that s is maximal in ⌈CPre⌉([[ϕ1]]

A
⌈E⌉). By contradiction, assume

that there exists s1 ∈ ⌈CPre⌉([[ϕ1]]
A
⌈E⌉) with s ⊂ s1. Then, by the same argument as

in the first part of the proof of the inclusion [[ϕ]]A⌈E⌉⊆
⌈

[[ϕ]]SE
⌉

, we have s1 ∈[[ϕ]]SE . This

implies that s 6∈
⌈

[[ϕ]]SE
⌉

, a contradiction.

• if ϕ ≡ νx.ϕ1 and
⌈

[[ϕ1]]
S
E ′

⌉

=[[ϕ1]]
A
⌈E ′⌉ for any downward closed valuation E ′. By Tarski’s

theorem, [[ϕ]]SE is one of the set in the infinite sequence q0, q1, . . . defined by q0 = L and
for every i ≥ 1, qi =[[ϕ]]SE[x 7→qi−1]

; and similarly, [[ϕ]]A⌈E⌉ is one of the set in the infinite

sequence q′0, q
′
1, . . . defined by q′0 = {L} and for all i ≥ 1, qi =[[ϕ]]A⌈E⌉[x 7→q′

i−1
]. Observe

that q′0 = ⌈q0⌉. By induction, assume that q′i−1 = ⌈qi−1⌉ for some i ≥ 1. Then q′i = ⌈qi⌉

as ⌈E⌉[x 7→ q′i−1] =
⌈

E [x 7→ qi−1]
⌉

.

• if ϕ ≡ µx.ϕ1 and
⌈

[[ϕ1]]
S
E ′

⌉

=[[ϕ1]]
A
⌈E ′⌉ for any downward closed valuation E ′. The proof is

similar to the previous case.

Consider a game structure G of imperfect information and a parity objective φ. From
Theorems 3.4 and 3.5 and Lemma 3.8, we can decide the existence of a deterministic
observation-based sure-winning strategy for Player 1 in G for φ without explicitly con-
structing the knowledge-based subset construction GK, by instead evaluating a fixed-point
formula in the lattice of antichains.

Theorem 3.9 (Symbolic solution of imperfect-information games). Let G be a game struc-
ture of imperfect information with initial state l0. For every ω-regular objective φ, Player 1
has a deterministic observation-based strategy in G for φ if and only if {l0} ⊑[[µForm(φ)]]A.

Corollary 3.10. Let G be a game structure of imperfect information, let p be a priority
function, and let ℓ be a state of G. Whether ℓ is a sure-winning state in G for the parity
objective Parity(p) can be decided in Exptime.
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Corollary 3.10 is proved as follows: for a parity objective φ, an equivalent µ-calculus for-
mula ϕ can be obtained, where the size and the fixed-point quantifier alternations of ϕ is
polynomial in φ. Thus given G and φ, we can evaluate ϕ in GK in Exptime.

4. Almost Winning

Given a game structure G of imperfect information, we first construct a game struc-
ture H in which the knowledge of Player 1 is made explicit. However, the construction
is different from the one used for sure winning. Then, we establish certain equivalences
between randomized strategies in G and H. Finally, we show how the reduction can be
used to obtain a symbolic Exptime algorithm for computing almost-winning states in G

for Büchi objectives. An Exptime algorithm for almost winning for coBüchi objectives
under imperfect information remains unknown.

4.1. Subset construction for almost winning. Given a game structure of imperfect
information G = 〈L, l0,Σ,∆,O, γ〉, we construct the game structure H = Knw(G) =
〈Q, q0,Σ,∆H〉 as follows: Q = { (s, ℓ) | ∃o ∈ O : s ⊆ γ(o) and ℓ ∈ s }; the initial state is
q0 = ({ l0 }, l0); the transition relation ∆H ⊆ Q×Σ×Q is defined by ((s, ℓ), σ, (s′, ℓ′)) ∈ ∆H

iff there is an observation o ∈ O such that s′ = PostGσ (s)∩γ(o) and (ℓ, σ, ℓ′) ∈ ∆. Intuitively,
when H is in state (s, ℓ), it corresponds to G being in state ℓ and the knowledge of Player
1 being s. Two states q = (s, ℓ) and q′ = (s′, ℓ′) of H are equivalent, written q ≈ q′, if
s = s′, that is when the knowledge of Player 1 is the same in the two states. Two prefixes
ρ = q0σ0q1 . . . σn−1qn and ρ′ = q′0σ

′
0q

′
1 . . . σ′

n−1q
′
n of H are equivalent, written ρ ≈ ρ, if for

all 0 ≤ i ≤ n, we have qi ≈ q′i, and for all 0 ≤ i ≤ n − 1, we have σi = σ′
i. Two plays

π, π′ ∈ Plays(H) are equivalent, written π ≈ π′, if for all i ≥ 0, we have π(i) ≈ π′(i). For
a state q ∈ Q, we denote by [q]≈ = { q′ ∈ Q | q ≈ q′ } the ≈-equivalence class of q. We
define equivalence classes for prefixes and plays similarly. We cannot reuse the results of
Section 3 to compute almost-winning states of G, as the randomized strategies in H should
not distinguish equivalent states.

Equivalence-preserving strategies and objectives. A strategy α for Player 1 in H is positional
if it is independent of the prefix of plays and depends only on the last state, that is, for
all ρ, ρ′ ∈ Prefs(H) with Last(ρ) = Last(ρ′), we have α(ρ) = α(ρ′). A positional strategy α

can be viewed as a function α : Q→ D(Σ). A strategy α for Player 1 in H is equivalence-
preserving if for all ρ, ρ′ ∈ Prefs(H) with ρ ≈ ρ′, we have α(ρ) = α(ρ′). We denote by AH ,
AP

H , and A≈
H the set of all Player-1 strategies, the set of all positional Player-1 strategies,

and the set of all equivalence-preserving Player-1 strategies in H, respectively. We write

A
≈(P )
H = A≈

H ∩ A
P
H for the set of equivalence-preserving positional strategies.

An objective φ for H is a subset of (Q× Σ)ω, that is, the objective φ is a set of plays.
The objective φ is equivalence-preserving if for all plays π ∈ φ, we have [π]≈ ⊆ φ.

Relating prefixes and plays. We define a mapping h : Prefs(G) → Prefs(H) that maps
prefixes in G to prefixes in H as follows: given ρ = ℓ0σ0ℓ1σ1 . . . σn−1ℓn, let h(ρ) =
q0σ0q1σ1 . . . σn−1qn, where for all 0 ≤ i ≤ n, we have qi = (si, ℓi), and for all 0 ≤ i ≤ n− 1,
we have si = K(γ−1(ρ(i))). The following properties hold: (i) for all ρ, ρ′ ∈ Prefs(G), if
γ−1(ρ) = γ−1(ρ′), then h(ρ) ≈ h(ρ′); and (ii) for all ρ, ρ′ ∈ Prefs(H), if ρ ≈ ρ′, then
γ−1(h−1(ρ)) = γ−1(h−1(ρ′)). The mapping h : Plays(G) → Plays(H) for plays is defined
similarly, and has similar properties.



14 K. CHATTERJEE, L.DOYEN, T. A. HENZINGER, AND J.-F. RASKIN

Relating strategies for Player 1. We define two strategy mappings g : AH → AG and
h : AG → AH . Given a Player-1 strategy αH in H, we construct a Player-1 strategy
αG = g(αH) in G as follows: for all ρ ∈ Prefs(G), let αG(ρ) = αH(h(ρ)). Similarly, given a
Player-1 strategy αG in G, we construct a Player-1 strategy αH = h(αG) in H as follows:
for all ρ ∈ Prefs(H), let αH(ρ) = αG(h−1(ρ)). The following properties hold: (i) for all
strategies αH ∈ AH , if αH is equivalence-preserving, then g(αH) is observation-based; and
(ii) for all strategies αG ∈ AG, if αG is observation-based, then h(αG) is equivalence-
preserving.

Relating strategies for Player 2. Observe that for all q ∈ Q, all σ ∈ Σ, and all ℓ′ ∈ L,
we have |{ s′ | (q, σ, q′) ∈ ∆H ∧ q′ = (s′, ℓ′) }| ≤ 1. Given a Player-2 strategy βH in H,
we construct a Player-2 strategy βG = g(βH) as follows: for all ρ ∈ Prefs(G), σ ∈ Σ,
and ℓ′ ∈ L, let βG(ρ, σ)(ℓ′) = βH(h(ρ), σ)(s′, ℓ′) if for s = K(γ−1(ρ)) and ℓ = Last(ρ), we
have ((s, ℓ), σ, (s′, ℓ′)) ∈ ∆H for some (and then unique) s′, and βG(ρ, σ)(ℓ′) = 0 otherwise.
Similarly, given a Player-2 strategy βG in G, we construct a Player-2 strategy βH = h(βG)
in H as follows: for all ρ ∈ Prefs(H), all σ ∈ Σ, and all (s, ℓ), let βH(ρ, σ)((s, ℓ)) =
βG(h−1(ρ), σ)(ℓ).

Lemma 4.1. The following assertions hold.

(1) For all ρH ∈ Prefs(H), for every equivalence preserving strategy αH , for every strategy
βH we have

PrαH ,βH
q0

(Cone(ρH)) = Pr
g(αH),g(βH)
l0

(h−1(Cone(ρH))).

(2) For all ρG ∈ Prefs(G), for every observation-based strategy αG, for every strategy βG

we have
PrαG,βG

l0
(Cone(ρG)) = Prh(αG),h(βG)

q0
(h(Cone(ρG))).

Proof. The following properties follow from the construction of strategies in Section 4.1.

(1) For all ρH ∈ Prefs(H), for every equivalence preserving strategy αH , for every strategy
βH and for all ρ′H such that |ρ′H | = |ρH |+ 1, we have PrαH ,βH

q0

(

Cone(ρ′H) | Cone(ρH)
)

=

Pr
g(αH ),g(βH)
l0

(

h−1(Cone(ρ′H)) | h−1(Cone(ρH))
)

.

(2) For all ρG ∈ Prefs(G), for every observation-based strategy αG, for every strategy βG

and for all ρ′G such that |ρ′G| = |ρG| + 1, we have PrαG,βG

l0

(

Cone(ρ′G) | Cone(ρG)
)

=

Pr
h(αG),h(βG)
q0

(

h(Cone(ρ′G)) | h(Cone(ρG))
)

.

The proof for the first part is as follows: observe that

PrαH ,βH
q0

(Cone(q0)) = Pr
g(αH ),g(βH)
l0

(h−1(Cone(q0)))

= Pr
g(αH ),g(βH)
l0

(Cone(l0)) = 1.

The result follows from the above property and induction. The second part follows analo-
gously.

Theorem 4.2 (Almost-winning reduction). Let G be a game structure of imperfect in-
formation, and let H = Knw(G). For all Borel objectives φ for G, all observation-based

Player-1 strategies αG in G, and all Player-2 strategies βG in G, we have PrαG,βG

l0
(φ) =

Pr
h(αG),h(βG)
q0

(h(φ)). Dually, for all equivalence-preserving Borel objectives φ for H, all
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Figure 2: Memory and randomization are necessary to almost win the objective Buchi({o4}).

equivalence-preserving Player-1 strategies αH in H, and all Player-2 strategies βH in H,

we have PrαH ,βH
q0

(φ) = Pr
g(αH),g(βH)
l0

(h−1(φ)).

Proof. By the Caratheódary unique-extension theorem, a probability measure defined on
cones has a unique extension to all Borel objectives. The theorem then follows from
Lemma 4.1.

Corollary 4.3 follows from Theorem 4.2.

Corollary 4.3. For every Borel objective ΦG for G, we have

sup
αG∈AO

G

inf
βG∈BG

PrαG,βG

l0
(ΦG) = sup

αH∈A≈
H

inf
βH∈BH

PrαH ,βH
q0

(h(ΦG));

∃αG ∈ A
O
G. ∀βG ∈ BG : PrαG,βG

l0
(ΦG) = 1

iff ∃αH ∈ A
≈
H . ∀βH ∈ BH : PrαH ,βH

q0
(h(ΦG)) = 1.

4.2. Almost winning for Büchi objectives. We first illustrate the need of memory and
randomization for almost-winning in imperfect information games with Büchi objectives.

Example 4.4 (Memory is needed to almost-win). Consider the example of Figure 2. The
objective of Player 1 is to reach a state with observation o4.

We show that Player 1 has no observation-based sure-winning strategy in this game.
This is because when we fix an observation-based strategy for Player 1, Player 2 has a
spoiling strategy to maintain the game into the states {ℓ0, ℓ1, ℓ2}. Indeed, at ℓ0, the only
reasonable choice for Player 1 is to play a. Then Player 2 can choose to go either in ℓ1 or
ℓ2. In both cases, the observation will be the same for Player 1. After seeing o1ao2, if the
strategy of Player 1 is to play a then Player 2 chooses ℓ2, otherwise, if Player 1 strategy
is to play b then Player 2 chooses ℓ1. This can be repeated and so Player 2 has a spoiling
strategy against any observation-based strategy of Player 1.

We now show that almost-winning strategies exist for Player 1. Consider that Player 1
plays an observation-based randomized strategy α as follows: after a sequence of observa-
tions τ ,

• if Last(τ) = o1, then α(τ)(a) = 1 and α(τ)(b) = 0,
• if Last(τ) = o2, then α(τ)(a) = 0.5 and α(τ)(b) = 0.5,
• if τ = τ ′ · o1 · σ · o3, then α(τ)(a) = 0 and α(τ)(b) = 1,
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• if τ = τ ′ · o2 · σ · o3, then α(τ)(a) = 1 and α(τ)(b) = 0,
• otherwise take, arbitrarily, α(τ)(a) = 1 and α(τ)(b) = 0.

The strategy α is almost-winning against any randomized strategy of Player 2. Note
that the strategy α uses memory and this is necessary because when receiving observation
o3, Player 1 has to play a if the previous state satisfied observation o1 and b if the previous
state satisfied o2.

Given a game structure G of imperfect information, let H = Knw(G). Given a set
T ⊆ O of target observations, let BT = { (s, ℓ) ∈ Q | ∃o ∈ T : s ⊆ γ(o) }. Then
h(Buchi(T )) = Buchi(BT ) = {πH ∈ Plays(H) | Inf(πH)∩BT 6= ∅}. We first show that almost
winning in H for the Büchi objective Buchi(BT ) with respect to equivalence-preserving
strategies is equivalent to almost winning with respect to equivalence-preserving positional
strategies. Formally, for BT ⊆ Q, let Q≈

AS
= { q ∈ Q | ∃αH ∈ A

≈
H · ∀βH ∈ BH · ∀q

′ ∈ [q]≈ :

PrαH ,βH

q′ (Buchi(BT )) = 1 }, and Q
≈(P )
AS

= { q ∈ Q | ∃αH ∈ A
≈(P )
H · ∀βH ∈ BH · ∀q

′ ∈ [q]≈ :

PrαH ,βH

q′ (Buchi(BT )) = 1 }. We will prove that Q≈
AS

= Q
≈(P )
AS

. Lemma 4.5 follows from the

construction of H from G, and yields Lemma 4.6.

Lemma 4.5. For all q1 ∈ Q, and all σ ∈ Σ, if (q1, σ, q′1) ∈ ∆H , then for all q′2 ∈ [q′1]≈,
there exists q2 ∈ [q1]≈ such that (q2, σ, q′2) ∈ ∆H .

Lemma 4.6. Given an equivalence-preserving Player-1 strategy αH ∈ AH , a prefix ρ ∈
Prefs(H), and a state q ∈ Q, if there exists a Player-2 strategy βH ∈ BH such that
PrαH ,βH

q (Cone(ρ)) > 0, then for every prefix ρ′ ∈ Prefs(H) with ρ ≈ ρ′, there exist a

Player-2 strategy β′
H ∈ BH and a state q′ ∈ [q]≈ such that Pr

αH ,β′
H

q′ (Cone(ρ′)) > 0.

Observe that Q\Q≈
AS

= {q ∈ Q | ∀αH ∈ A
≈
H ·∃βH ∈ BH ·∃q

′ ∈ [q]≈ : PrαH ,βH

q′ (Buchi(BT )) <

1}. It follows from Lemma 4.6 that if a play starts in Q≈
AS

and reaches Q\Q≈
AS

with positive
probability, then for all equivalence-preserving strategies for Player 1, there is a Player 2
strategy that ensures that the Büchi objective Buchi(BT ) is satisfied with probability strictly
lower than 1.

Notation. For a state q ∈ Q and Y ⊆ Q, let Allow(q, Y ) = { σ ∈ Σ | PostHσ (q) ⊆ Y }. For a
state q ∈ Q and Y ⊆ Q, let Allow([q]≈, Y ) =

⋂

q′∈[q]≈
Allow(q′, Y ).

Lemma 4.7. For all q ∈ Q≈
AS

, we have Allow([q]≈, Q≈
AS

) 6= ∅.

Proof. Assume towards contradiction that there exists q ∈ Q≈
AS

such that Allow([q]≈, Q≈
AS

) =

∅. Then for all σ ∈ Σ there exists q′ ∈ [q]≈ such that PostHσ (q′) ∩ (Q \Q≈
AS

) 6= ∅. Hence for
every equivalence preserving strategy αH there exists q′ ∈ [q]≈ such that αH(q′)(σ) > 0 and
PostHσ (q′)∩ (Q\Q≈

AS
) 6= ∅. Hence for every equivalence strategy αH there is a state q′ ∈ [q]≈

and a strategy βH for Player 2 such that Q \Q≈
AS

is reached with positive probability. This
contradicts that [q]≈ ⊆ Q≈

AS
.

Lemma 4.8. Given a state q ∈ Q≈
AS

, let αH ∈ AH be an equivalence-preserving Player-1
strategy such that for all Player-2 strategies βH ∈ BH and all states q′ ∈ [q]≈, we have

PrαH ,βH

q′ (Buchi(BT )) = 1. Let ρ = q0σ0q1 . . . σn−1qn be a prefix in Prefs(H) such that for all

0 ≤ i ≤ n, we have qi ∈ Q≈
AS

. If there is a Player-2 strategy βH ∈ BH and a state q′ ∈ [q]≈
such that PrαH ,βH

q′ (Cone(ρ)) > 0, then Supp(αH(ρ)) ⊆ Allow([qn]≈, Q≈
AS

).
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Figure 3: Game structure H = Knw(G) (for G of Figure 1).

Proof. Fix an almost-winning strategy αH . Assume towards contradiction for a history ρH

satisfying the conditions of the lemma that there exists σ ∈ Supp(αH(ρH))\Allow([qn], Q≈
AS

).

Then there exists q′n ∈ [qn]≈ such that PostHσ (q′n) ∩ (Q \ Q≈
AS

) 6= ∅. Then there exists ρ′H
such that ρH ≈ ρ′H and Last(ρ′H) = q′n. Then by Lemma 4.6 there exists a strategy β′

H and

q′ ∈ [q]≈ such that Pr
αH ,β′

H

q′ (Cone(ρ′H)) > 0. Then given ρ′H and the strategy αH there exists

a Player 2 strategy such that Q \Q≈
AS

is reached with positive probability. This contradicts
that αH is an almost-winning strategy.

Notation. We inductively define the ranks of states in Q≈
AS

as follows: let Rank(0) =
BT ∩Q≈

AS
, and for all j ≥ 0, let Rank(j + 1) = Rank(j)∪{ q ∈ Q≈

AS
| ∃σ ∈ Allow([q]≈, Q≈

AS
) :

PostHσ (q) ⊆ Rank(j)}. Let j∗ = min{j ≥ 0 | Rank(j) = Rank(j+1)}, and let Q∗ = Rank(j∗).
We say that the set Rank(j + 1) \ Rank(j) contains the states of rank j + 1, for all j ≥ 0.

Example 4.9. Given the game structure G of imperfect information from Figure 1, the
game structure H = Knw(G) is shown in Figure 3. All states are almost winning for the
Büchi objective Buchi({ ({ℓ4}, ℓ4) }). The ranks of the states are shown next to the states.
The positional strategy that plays both a and b with equal probability is almost winning
at all states. For the states q with ranks 1, 3, and 4, if the rank of q is j, then PostHa (q) ⊆
Rank(j − 1) and PostHb (q) ⊆ Rank(j − 1). For the states with rank 2, if q = ({ ℓ2, ℓ

′
2 }, ℓ2),

then PostHb (q) ⊆ Rank(1); and if q = ({ ℓ2, ℓ
′
2 }, ℓ

′
2), then PostHa (q) ⊆ Rank(1).

Lemma 4.10. Q∗ = Q≈
AS

.

Proof. By definition, Q∗ ⊆ Q≈
AS

. We now prove that Q≈
AS
⊆ Q∗. Assume towards a

contradiction that X = Q≈
AS
\Q∗ 6= ∅. For all states q ∈ X and all σ ∈ Allow([q]≈, Q≈

AS
), we

have PostHσ (q) ∩X 6= ∅, because otherwise q would have been in Q∗. Hence, for all q ∈ X

and all σ ∈ Allow([q]≈, Q≈
AS

), there exists a q′ ∈ X such that (q, σ, q′) ∈ ∆H . Fix a strategy
βH for Player 2 as follows: for a state q ∈ X and the input letter σ ∈ Allow([q]≈, Q≈

AS
),

choose a successor q′ ∈ X such that (q, σ, q′) ∈ ∆H . Consider a state q ∈ X and an
equivalence-preserving almost-winning strategy αH for Player 1 from q for the objective
Buchi(BT ). By Lemma 4.8, for every prefix ρ satisfying the condition of Lemma 4.8, we
have Supp(αH(ρ)) ⊆ Allow([Last(ρ)]≈, Q≈

AS
). It follows that PrαH ,βH

q (Safe(X)) = 1. Since

BT ∩Q≈
AS
⊆ Q∗, it follows that BT ∩X = ∅. Hence PrαH ,βH

q (Reach(BT )) = 0, and therefore

PrαH ,βH
q (Buchi(BT )) = 0. This contradicts the fact that αH is an almost-winning strategy.
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Equivalence-preserving positional strategy. Consider the equivalence-preserving positional
strategy α

p
H for Player 1 in H, which is defined as follows: for a state q ∈ Q≈

AS
, choose all

moves in Allow([q]≈, Q≈
AS

) uniformly at random.

Lemma 4.11. For all states q ∈ Q≈
AS

and all Player-2 strategies βH in H, we have

Pr
α

p

H
,βH

q (Safe(Q≈
AS

)) = 1 and Pr
α

p

H
,βH

q (Reach(BT ∩Q≈
AS

)) = 1.

Proof. By Lemma 4.10, we have Q∗ = Q≈
AS

. Let z = |Q∗|.

• For a state q ∈ Q≈
AS

, we have PostHσ (q) ⊆ Q≈
AS

for all σ ∈ Allow([q]≈, Q≈
AS

). It follows for

all states q ∈ Q≈
AS

and all strategies βH for Player 2, we have Pr
α

p

H
,βH

q (Safe(Q≈
AS

)) = 1.
• For a state q ∈ (Rank(j + 1) \ Rank(j)), there exists σ ∈ Allow([q]≈, Q≈

AS
) such that

PostHσ (q) ⊆ Rank(j). For a set Y ⊆ Q, let ♦j(Y ) denote the set of prefixes that reach Y

after at most j steps. It follows that for all states q ∈ Rank(j + 1) and all strategies βH

for Player 2, we have

Pr
α

p

H
,βH

q (♦1(Rank(j))) ≥
1

|Σ|
.

Let B = BT ∩ Q≈
AS

. By induction on the ranks it follows that for all states q ∈ Q∗ and
all strategies β for Player 2:

Pr
α

p

H
,βH

q (♦z(Rank(0))) = Pr
α

p

H
,βH

q (♦z(B)) ≥
( 1

|Σ|

)z

= r > 0.

For m > 0, we have Pr
α

p
H

,βH
q (♦m·z(B)) ≥ 1− (1− r)m. Thus:

Pr
α

p
H

,βH

q (Reach(B)) = lim
m→∞

Pr
α

p
H

,βH

q (♦m·z(B)) ≥ lim
m→∞

1− (1− r)m = 1.

The lemma follows.

Lemma 4.11 implies that, given the Player-1 strategy α
p
H , the set Q≈

AS
is never left, and

the states in BT ∩Q≈
AS

are reached with probability 1. Since this happens for every state in
Q≈

AS
, it follows that the set BT ∩Q≈

AS
is visited infinitely often with probability 1, that is,

the Büchi objective Buchi(BT ) is satisfied with probability 1. This analysis, together with

the fact that [q0]≈ is a singleton and Corollary 4.3, proves that Q≈
AS

= Q
≈(P )
AS

. Theorem 4.12
follows.

Theorem 4.12 (Positional almost winning for Büchi objectives under imperfect informa-
tion). Let G be a game structure of imperfect information, and let H = Knw(G). For
all sets T of observations, there exists an observation-based almost-winning strategy for
Player 1 in G for the objective Buchi(T ) iff there exists an equivalence-preserving positional
almost-winning strategy for Player 1 in H for the objective Buchi(BT ).

Symbolic algorithm. We present a symbolic quadratic-time (in the size of H) algorithm
to compute the set Q≈

AS
. For Y ⊆ Q and X ⊆ Y , let Apre(Y,X) = { q ∈ Y | ∃σ ∈

Allow([q]≈, Y ) : PostHσ (q) ⊆ X }; and Spre(Y ) = { q ∈ Y | Allow([q]≈, Y ) 6= ∅ }. Note that
Spre(Y ) = Apre(Y, Y ). Let

φ = νY.µX.
(

Apre(Y,X) ∨ (BT ∧ Spre(Y )
)

and let Z =[[φ]].

Lemma 4.13. Z = Q≈
AS

.
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Proof [of Lemma 4.13]. We prove Z = Q≈
AS

by proving inclusion in both directions. We
have Z =[[φ]] and φ = νY.µX.

(

Apre(Y,X) ∨ (BT ∧ Spre(Y ))
)

(1) We first show that Z ⊆ Q≈
AS

. Since Z is a fixed-point of φ we have

Z =[[µX.
(

Apre(Z,X) ∨ (BT ∧ Spre(Z))
)

]] .

We analyze the evaluation of Z as the fixed-point as follows: let X0 = ∅ and Xi+1 =
Apre(Z,Xi)∨ (BT ∧ Spre(Z)). Observe that since X0 = ∅ we have Apre(Z,X0) = ∅ and
hence X1 = BT ∩ Spre(Z) ⊆ BT . Let j∗ = min{ i | Xi+1 = Xi } and we have Z = Xj∗ .
Consider the equivalence preserving strategy α

p
H for Player 1 that at a state q ∈ Z plays

all moves in Allow([q]≈, Z) uniformly at random. For all q ∈ Z, for all q′ ∈ [q]≈, and

for all σ ∈ Allow([q]≈, Z), we have PostHσ (q′) ⊆ Z. It follows that for all strategies βH

for Player 2 and for all states q ∈ Z we have Pr
α

p

H
,βH

q (Safe(Z)) = 1. Also for a state

q ∈ (Xi+1 \Xi) \ BT we have there exists σ ∈ Allow([q]≈, Z) such that PostHσ (q) ⊆ Xi,
i.e., for a state q ∈ (Xi+1 \Xi)\BT , given α

p
H against all strategies βH the next state is

in Xi with probability at least 1
|Σ| . Arguments similar to Lemma 4.11 establishes that

α
p
H is an almost-winning strategy for all states q ∈ Z. Hence we have Z ⊆ Q≈

AS
.

(2) We now show that Q≈
AS
⊆ Z. We first show that Q≈

AS
satisfies that

Q≈
AS =[[µX.

(

Apre(Q≈
AS,X) ∨ (BT ∧ Spre(Q≈

AS))
)

]] .

Observe that Q≈
AS

= Spre(Q≈
AS

). We now analyze the evaluation of Q≈
AS

as the fixed-
point Q∗ as shown in Lemma 4.10. Let X0 = ∅, then Apre(Q≈

AS
,X0) = ∅. Hence X1 =

Apre(Q≈
AS

)∨ (BT ∧ Spre(Q≈
AS

)) = BT ∧Q≈
AS

= Rank(0) (as defined before Lemma 4.10).
By the definition of Rank(j +1) from Rank(j) and the definition of Apre(·, ·) and Spre(·)
it follows that for all i > 0, given Rank(i − 1) = Xi, we have Rank(i) = Xi+1 =
Apre(Q≈

AS
,Xi) ∨ (BT ∧ Spre(Q≈

AS
)). By induction we have

Q∗ =[[µX.
(

Apre(Q≈
AS,X) ∨ (BT ∧ Spre(Q≈

AS))
)

]] .

Since Q∗ = Q≈
AS

(by Lemma 4.10) we obtain the desired result. Since Z is the greatest
fixed-point we have Q≈

AS
⊆ Z.

The result follows.

Theorem 4.14 (Complexity of almost winning for Büchi objectives under imperfect infor-
mation). Let G be a game structure of imperfect information, let T be a set of observations,
and let ℓ be a state of G. Whether ℓ is an almost-winning state in G for the Büchi objective
Buchi(T ) can be decided in Exptime.

The facts that Z = Q≈
AS

and that H is exponential in the size of G yield Theorem 4.14.
The arguments for the proofs of Theorem 4.12 and 4.14 do not directly extend to coBüchi
or parity objectives. In fact, Theorem 4.12 does not hold for parity objectives in general,
for the following reason: in concurrent games with parity objectives with more than two
priorities, almost-winning strategies may require infinite memory; for an example, see [5].
Such concurrent games are reducible to semiperfect-information games [4], and semiperfect-
information games are reducible to the imperfect-information games we study. Hence a
reduction to finite game structures of perfect information in order to obtain randomized
positional strategies is not possible with respect to almost winning for general parity objec-
tives. Theorem 4.12 and Theorem 4.14 may hold for coBüchi objectives, but there does not
seem to be a simple extension of our arguments for Büchi objectives to the coBüchi case.
The results that correspond to Theorems 4.12 and 4.14 for coBüchi objectives are open.
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Direct symbolic algorithm. As in Section 3.2, the subset structure H does not have to
be constructed explicitly. Instead, we can evaluate a fixed-point formula on a well-chosen
lattice. The fixed-point formula to compute the set Q≈

AS
is evaluated on the lattice 〈2Q,⊆

,∪,∩, Q, ∅〉. It is easy to show that the sets computed by the fixed-point algorithm are
downward closed for the following order on Q: for (s, ℓ), (s′, ℓ′) ∈ Q, let (s, ℓ) � (s′, ℓ′)
iff ℓ = ℓ′ and s ⊆ s′. Then, we can define an antichain over Q as a set of pairwise �-
incomparable elements of Q, and compute the almost-sure winning states in the lattice of
antichains over Q, without explicitly constructing the exponential game structure H.

5. Lower Bounds

We show that deciding the existence of a deterministic (resp. randomized) observation-
based sure-winning (resp. almost-winning) strategy for Player 1 in games of imperfect infor-
mation is Exptime-hard already for reachability objectives. A first proof for sure-winning
was given in [19]. We give all the details of the reduction used in the proof and show that
it extends to almost winning as well.

Sure winning. To show the lower bound result, we use a reduction of the membership
problem for polynomial space Alternating Turing Machine. An alternating Turing machine
(ATM) is a tuple M = 〈Q, q0, g,Σi,Σt, δ, F 〉 where:

• Q is a finite set of control states;
• q0 ∈ Q is the initial state;
• g : Q→ {∧,∨};
• Σi = {0, 1} is the input alphabet;
• Σt = {0, 1, 2} is the tape alphabet and 2 is the blank symbol;
• δ ⊆ Q× Σt ×Q× Σt × {−1, 1} is a transition relation; and
• F ⊆ Q is the set of accepting states.

We say that M is a polynomial space ATM if for some polynomial p(·), the space used by
M on any input word w is bounded by p(|w|).

Without loss of generality, we make the hypothesis that the initial control state of the
machine is a ∨-state and that transitions link ∨-state to ∧-state and vice versa. A word
w is accepted by an ATM M if there exists a run tree of M on w whose all leaf nodes are
accepting configurations (see [3] for details). The AND-OR graph of the polynomial space
ATM (M,p) on the input word w ∈ Σ∗ is G(M,p) = 〈S∨, S∧, s0,⇒, R〉 where

• S∨ = {(q, h, t) | q ∈ Q, g(q) = ∨, 1 ≤ h ≤ p(|w|) and t ∈ Σ
p(|w|)
t };

• S∧ = {(q, h, t) | q ∈ Q, g(q) = ∧, 1 ≤ h ≤ p(|w|) and t ∈ Σ
p(|w|)
t };

• s0 = (q0, 1, t) where t = w.Σ
p(|w|)−|w|
t ;

• ((q1, h1, t1), (q2, h2, t2)) ∈⇒ iff there exists (q1, t1(h1), q, γ, d) ∈ δ such that q2 = q, h2 =
h1 + d, t2(h1) = γ and t2(i) = t1(i) for all i 6= h1;
• R = {(q, h, t) ∈ S∨ ∪ S∧ | q ∈ F}.

A word w is accepted by (M,p) iff R is reachable in G(M,p). The membership problem
is to decide if a given word w is accepted by a given polynomial space ATM (M,p). This
problem is known to be ExpTime-hard [3].

Idea of the reduction. Given a polynomial space ATM M and a word w, we construct a
game of size polynomial in the size of (M,w) to simulate the execution of M on w. Player 1
makes choices in ∨-states and Player 2 makes choices in ∧-states. Furthermore, Player 1 is
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responsible for maintaining the symbol under the tape head. The objective is to reach an
accepting configuration of the ATM.

Each turn proceeds as follows. In an ∨-state, by choosing a letter (t, a) in the alphabet
of the game, Player 1 reveals (i) the transition t of the ATM that he has chosen (this way
he also reveals the symbol that is currently under the tape head) and (ii) the symbol a

under the next position of the tape head. If Player 1 lies about the current or the next
symbol under the tape head, he should loose the game, otherwise the game proceeds. The
machine is now in an ∧-state and Player 1 has no choice: he announces a special symbol ǫ

and Player 2, by resolving nondeterminism on ǫ, chooses a transition of the Turing machine
which is compatible with the current symbol under the tape head revealed by Player 1 at
the previous turn. The state of the ATM is updated and the game proceeds. The transition
chosen by Player 2 is visible in the next state of the game and so Player 1 can update
his knowledge about the configuration of the ATM. Player 1 wins whenever an accepting
configuration of the ATM is reached, that is w is accepted.

The difficulty is to ensure that Player 1 looses when he announces a wrong content of
the cell under the tape head. As the number of configurations of the polynomial ATM is
exponential, we cannot directly encode the full configuration of the ATM in the states of
the game. To overcome this difficulty, we use the power of imperfect information as follows.
Initially, Player 2 chooses a position k, 1 ≤ k ≤ p(|w|), on the tape: this number as well
as the symbol σ ∈ {0, 1, 2} that lies in the tape cell number k is maintained all along the
game in the non-observable portion of the game states. The pair (σ, k) is thus private to
Player 2 and invisible to Player 1. Hence, at any point in the game, Player 2 can check
whether Player 1 is lying when announcing the content of cell number k, and go to a sink
state if Player 1 cheats (no other states can be reached from there). Since Player 1 does
not know which cell is monitored by Player 2 (k is private), to avoid loosing, he should not
lie about any of the tape cells and thus he should faithfully simulate the machine. Then,
he wins the game if and only if the ATM accepts the words w.

Almost winning. To establish lower bound for almost-winning, we can use the same reduc-
tion. Randomization can not help Player I in this game. Indeed, at any point of the game,
if Player I takes a chance in either not faithfully simulating the ATM or lying about the
symbol under the tape head, the sink state is reached. In those case, the probability to
reach the sink state is positive and so the probability to win the game is strictly less than
one. We now present the details of the reduction of the hardness proof.

Reduction. Given a polynomial space ATM (M,p), with M = 〈Q, q0, g,Σi,Σt, δ, F 〉 and a
word w, we construct the following game structure GM,p,w = 〈L, l0,Σ,∆,O, γ〉, where:

• The set of positions L = {init} ∪ {sink} ∪ L1 ∪ L2 where: L1 = (δ ∪ {−}) × Q ×
{1, . . . , p(|w|)} × {1, . . . , p(|w|)} × Σt. A state (t, q, h, k, σ) consists of a transition t ∈ δ

of the ATM chosen by Player 2 at the previous round or − if this is the first round where
Player 1 plays, the current control state q of M , the position h of the tape head, the pair
(k, σ) such that the k-th symbol of the tape is σ, this pair (k, σ) will be kept invisible
for Player 1. L2 = Q× {1, . . . , p(|w|)} × Σt × {1, . . . , p(|w|)} × Σt. A state (q, h, γ, k, σ)
consists of q, h, k, σ as in L1 and γ is the symbol that Player 1 claims to be under the
tape head. The objective for Player 1 will be to reach a state ℓ ∈ L associated with an
accepting control state of M .
• l0 = init.
• Σ = {ǫ} ∪ (δ × Σt).
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• The transition relation ∆ contains the following sets of transitions:
- I1 that contains transitions (init, ǫ, (−, q0, 1, k, σ)) where (i) 1 ≤ k ≤ p(|w|) and (ii) σ =

w(k) if 1 ≤ k ≤ |w| and σ = 2 otherwise. I2 that contains transitions (init, (t, γ), sink)
where (t, γ) ∈ δ × Σt. So, at the initial state init, Player 1 has to play ǫ in order to
avoid entering sink. By resolving nondeterminism on ǫ, Player 2 chooses a tape cell to
monitor.

- S that contains transitions (sink, σ, sink) for all σ ∈ Σ. When the sink state is entered,
the game stays there forever.

- L1.1 that contains transitions (ℓ1, ǫ, sink) for all ℓ1 ∈ L1; L1.2 that contains transitions
((t, q, h, k, σ), ((q1 , γ1, q2, γ2, d), γ3), sink) where q1 6= q or ¬(1 ≤ h+d ≤ p(|w|)); L1.3 con-
tains the transitions ((t, q, h, k, σ), ((q1 , γ1, q2, γ2, d), γ3), sink) where h = k∧γ1 6= σ or h+
d = k∧γ3 6= σ; L1.4 contains the transitions ((t, q, h, k, σ), ((q1 , γ1, q2, γ2, d), γ3), (q2, h+
d, γ3, k, σ′)) such that q = q1, 1 ≤ h + d ≤ p(|w|), h = k → (γ1 = σ ∧ σ′ = γ2),
and h 6= k → σ′ = σ. Those transitions are associated with states of the game where
Player 1 chooses a transition of the ATM to execute (if he proposes ǫ, the game evolves
to the sink state, see L1.1). The transition proposed by Player 1 should be valid for
the current control state of the ATM and the head should not exit the bounded tape
after execution of the transition by the ATM, otherwise the game evolves to the sink

state, see L1.2. When choosing a letter, Player 1 also reveals the current letter under
the tape head (given by the transition) as well as the letter under the next position of
the tape head. If one of those positions is the one that is monitored by Player 2, the
game evolves to the sink state in case Player 1 lies, see L1.3, L1.4.

- L2.1 contains the transitions ((q, h, γ1, k, σ), ǫ, ((q1, γ2, q2, γ3, d), q3, h+d, k, σ′)) such that
q = q1, q2 = q3, γ1 = γ2, 1 ≤ h + d ≤ p(|w|), h = k → σ′ = γ3, and h 6= k → σ′ = σ;
L2.2 contains the transitions ((q, h, γ1, k, σ), ǫ, sink) such that there does not exist a
transition (q, γ1, q1, γ2, d) ∈ δ with 1 ≤ h + d ≤ p(|w|); L2.3 contains the transitions
((q, h, γ1, k, σ), (t, γ), sink) where (t, γ) ∈ Σ \ {ǫ}. Those transitions are associated with
states of the game where Player 2 chooses the next transition of the ATM to execute.
Player 1 should play ǫ otherwise the game goes to the sink state (see L2.3). Also the
game goes to the sink state if there is no valid transition to execute in the ATM (see
L2.2). In the other cases, when Player 1 proposes ǫ, Player 2 chooses a valid transition
by resolving nondeterminism. The copy of the monitored cell is updated if necessary.

• O = {init, sink}∪O1∪O2 where O1 = {(t, q, h) | ∃(t, q, h, k, σ) ∈ L1} and O1 = {(q, h, γ) |
∃(q, h, γ, k, σ) ∈ L2}.
• γ is defined as follows: γ(init) = {init}, γ(sink) = {sink}, for all (t, q, h) ∈ O1, γ(t, q, h) =
{(t, q, h, k, σ) ∈ L1}, for all (q, h, γ) ∈ O2, γ(q, h, γ) = {(q, h, γ, k, σ) ∈ L2}.

Finally, the objective φ of this game for Player 1 is to reach a state where the associated
control state of the ATM is accepting, i.e. φ = {o1o2 . . . on · · · ∈ O

ω | ∃i ≥ 0 : (oi =
(t, q, h) ∈ O1 ∨ oi = (q, h, γ) ∈ O2) ∧ q ∈ F}.

It follows that Player 1 has an observation-based sure-winning (or almost-winning)
strategy in the game GM,p,w for the objective φ iff the word w is accepted by the polynomial
space ATM (M,p). This gives us Lemma 5.1 and Theorem 5.2 follows from the lemma.

Lemma 5.1. Player 1 has a deterministic (resp. randomized) observation-based sure-
winning (resp. almost-winning) strategy in the game GM,p,w for the objective φ iff the
word w is accepted by the polynomial space ATM (M,p).
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Theorem 5.2 (Lower bounds). Let G be a game structure of imperfect information, let T
be a set of observations, and let ℓ be a state of G. Deciding whether ℓ is a sure-winning
state in G for the reachability objective Reach(T ) is Exptime-hard. Deciding whether ℓ is
an almost-winning state in G for Reach(T ) is also Exptime-hard.
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