4.1. Observations and labeled game graphs. In partial-observation games, a coloring of the state space defines classes of indistinguishable states called observations. Player 1 does not see the current state of the game, but only its color. Edges of the game graph carry a label which is used by player 1 to select edges. Player 2 resolves the non-determinism.

A partial-observation game $G = (Q, \Sigma, \Delta)$ with weight function $w : \Delta \to \mathbb{Z}$ and observations $\text{Obs} \subseteq 2^Q$ consists of

- Q a finite set of states,
- Σ a finite alphabet of actions,
- $\Delta \subseteq Q \times \Sigma \times Q$ a set of labeled transitions such that for all $q \in Q$ and $\sigma \in \Sigma$, there exists (at least one) $q' \in Q$ such that $(q, \sigma, q') \in \Delta$,
- Obs a partition of Q, and for each $q \in Q$, let $\text{obs}(q)$ the unique observation $o \in \text{Obs}$ such that $q \in o$.

For $s \subseteq L$ and $\sigma \in \Sigma$, we denote by $\text{post}^G(s) = \{q' \in Q \mid \exists q \in s : (q, \sigma, q') \in \Delta\}$ the set of σ-successors of s. A game with perfect observation is such that $\text{Obs} = \{\{q\} \mid q \in Q\}$. A partial-observation game is blind if $\text{Obs} = \{Q\}$.

The game is played in rounds. In each round, if the current state is q, player 1 does not see the state q but gets the observation $\text{obs}(q)$. Player 1 selects an action $\sigma \in \Sigma$, and then player 2 chooses a state q' such that $(q, \sigma, q') \in \Delta$. The game proceeds to the next round in state q'.

4.2. Example. In the following (unweighted) partial-observation game, the observations are $o_1 = \{q_1\}$, $o_2 = \{q_2, q_2'\}$, $o_3 = \{q_3, q_3'\}$, and $o_4 = \{q_4\}$. From the initial state q_1, there is no winning strategy for player 1 to reach $T = \{q_4\}$. This is because no matter the observation-based strategy α for player 1, there exists a play ρ compatible with α that never visits q_3. The play ρ is of the form $(q_1, \Sigma, q_x, q_3, \Sigma)^{n}$ where $q_x = q_2$ if $\sigma_x = a$, and $q_x = q_2'$ if $\sigma_x = b$. Note that this definition has no circularity because the value of σ_x (chosen by α) is independent of $q_x \in \{q_2, q_2'\}$ since $\text{obs}(q_2) = \text{obs}(q_2')$.

4.3. Winning strategy. A strategy for player 1 is a function $\alpha : (Q \cdot \Sigma)^{n}Q \to \Sigma$ such that for all $\rho = q_0 \sigma_0 q_1 \sigma_1 q_2 \ldots q_n$ and $\rho' = q_0' \sigma_0 q_1' \sigma_1 q_2' \ldots q_n'$, if $\text{obs}(q_i) = \text{obs}(q_i')$ for all $0 \leq i \leq n$, then $\alpha(\rho) = \alpha(\rho')$. We say that strategies are observation-based.
An infinite play \(\rho = q_0 \sigma_0 q_1 \sigma_1 q_2 \ldots \) is compatible with a strategy \(\alpha \) if \(\sigma_i = \alpha(q_0 \sigma_0 q_1 \ldots q_i) \) and \((q_i, \sigma_i, q_{i+1}) \in \Delta\) for all \(i \geq 0 \).

Given an initial credit \(c_0 \in \mathbb{N} \), the energy level of a play \(\rho = q_0 \sigma_0 q_1 \sigma_1 q_2 \ldots \) at position \(k \geq 0 \) is \(\text{EL}(\rho, k) = \Sigma_{i=0}^{k-1} w(q_i, \sigma_i, q_{i+1}) \).

A strategy \(\alpha \) for player 1 is winning from state \(q \) with initial credit \(c_0 \) for the energy objective if for all plays \(\rho \) from \(q \) compatible with \(\alpha \), we have \(c_0 + \text{EL}(\rho, k) \geq 0 \) for all \(k \geq 0 \).

The unknown initial credit problem asks to decide, given a partial-observation energy game, an initial state \(q \) and initial credit \(c_0 \), whether there exists a winning strategy for player 1 for the energy objective.

4.4. Fixed initial credit.

For an initial state \(q \in Q \) and a fixed initial credit \(c_0 \in \mathbb{N} \), we solve energy games by a reduction to safety games of perfect observation.

Let \(F \) be the set of functions \(f : Q \to \mathbb{Z} \cup \{ \bot \} \). The support of \(f \) is \(\text{supp}(f) = \{ q \in Q \mid f(q) \neq \bot \} \). A function \(f \in F \) stores the possible current states of the game \(G \) together with their worst-case energy level.

We say that a function \(f \) is nonnegative if \(f(q) \geq 0 \) for all \(q \in \text{supp}(f) \). Initially, we set \(f_{c_0}(q_0) = c_0 \) and \(f_{c_0}(q) = \bot \) for all \(q \neq q_0 \). The set \(F \) is ordered by the relation \(\preceq \) such that \(f_1 \preceq f_2 \) if \(\text{supp}(f_1) = \text{supp}(f_2) \) and \(f_1(q) \leq f_2(q) \) for all \(q \in \text{supp}(f_1) \).

For \(\sigma \in \Sigma \), we say that \(f_2 \in F \) is a \(\sigma \)-successor of \(f_1 \in F \) if there exists an observation \(o \in \text{Obs} \) such that \(\text{supp}(f_2) = \text{post}_G^o(\text{supp}(f_1)) \cap o \) and \(f_2(q) = \min \{ f_1(q') + w(q', \sigma, q) \mid q' \in \text{supp}(f_1) \land (q', \sigma, q) \in \Delta \} \) for all \(q \in \text{supp}(f_2) \). Given a sequence \(x = f_0 \sigma_0 f_1 \sigma_1 \ldots f_n \), let \(f_x = f_n \) be the last function in \(x \). Define the safety game \(H = (Q^H, \Sigma, \Delta^H) \) with initial state \(f_{c_0} \) where \(Q^H \) is the smallest subset of \((F \times \Sigma)^* \cdot F\) such that

1. \(f_{c_0} \in Q^H \), and

2. for each sequence \(x \in Q^H \), if (i) \(f_x \) is nonnegative, and (ii) there is no strict prefix \(y \) of \(x \) such that \(f_y \preceq f_x \), then \(x \cdot \sigma \cdot f_2 \in Q^H \) for all \(\sigma \)-successors \(f_2 \) of \(f_x \).

The transition relation \(\Delta^H \) contains the corresponding triples \((x, \sigma, x \cdot \sigma \cdot f_2) \), and the game is made total by adding self-loops \((x, \sigma, x) \) to sequences \(x \) without outgoing transitions. We call such sequences the leaves of \(H \). Note that the game \(H \) is acyclic, except for the self-loops on the leaves.

Since the relation \(\preceq \) on nonnegative functions is a well quasi order, the state space \(Q^H \) is finite by König’s Lemma.

Define the safety objective \(\text{Safe}(T) \) in \(H \) where \(T = \{ x \in Q^H \mid f_x \) is nonnegative \} \). Intuitively, a winning strategy in the safety game \(H \) can be extended to an observation-based winning strategy in the energy game \(G \) because whenever a leaf of \(H \) is reached, there exists a \(\preceq \)-smaller ancestor that Player 1 can use to go on in \(G \) using the strategy played from the ancestor in \(H \). The correctness argument is based on the fact that if Player 1 is winning from state \(f \) in \(H \), then he is also winning from all \(f' \preceq f \).

Theorem 4A. Let \(G \) be an energy game with partial observation, and let \(c_0 \in \mathbb{N} \) be an initial credit. There exists a winning observation-based strategy in \(G \) for the energy objective with initial credit \(c_0 \) if and only if there exists a winning strategy in \(H \) for the objective \(\text{Safe}(T) \). Hence the fixed initial credit problem is decidable.

4.5. Unknown initial credit.

We show that the unknown initial credit problem is undecidable using a reduction from the halting problem for deterministic 2-counter Minsky machines.

Theorem 4B. The unknown initial credit problem for energy games with partial observation is undecidable, even for blind games.

Given a (deterministic) 2-counter machine \(M \), we construct a blind energy game \(G_M \) such that \(M \) has an accepting run if and only if there exists an initial credit \(c_0 \in \mathbb{N} \) such that Player 1 has a winning strategy
in G_M for the energy objective. In particular, a strategy that plays a sequence $\bar{\pi}_0 \bar{\pi}_1 \ldots$ (where $\bar{\pi}_i$’s are run traces of M) is winning in G_M if and only if all but finitely many $\bar{\pi}_i$’s are accepting run traces of M.

The alphabet of G_M is $\Sigma = \delta_M \cup \{\#\}$. The game G_M consists of an initial nondeterministic choice between several gadgets described below. Each gadget checks one property of the sequence of actions played in order to ensure that a trace of an accepting run in M is eventually played. Since the game is blind, it is not possible for player 1 to see which gadget is executed, and therefore the strategy has to fulfill all properties simultaneously.

The gadget in Figure 1 with $\sigma_1 = \#$ checks that the first symbol is a #. If the first symbol is not #, then the energy level drops below 0 no matter the initial credit. The gadget in Figure 2 checks that a certain symbol σ_1 is always followed by a symbol σ_2, and it is used to ensure that # is followed by an instruction $(q_I, \cdot, \cdot, \cdot)$, and that every instruction (q, \cdot, \cdot, q') is followed by an instruction (q', \cdot, \cdot, q''), or by # if $q' = q_F$.

The gadget in Figure 3 ensures that # is played infinitely often (and a bit more). If # is played only finitely many times, then the gadget can guess the last # and jump to the middle state where no initial credit would allow to survive.

Finally, we use the gadget in Figure 4 to check that the tests on counter c are correctly executed. It can accumulate in the energy level the increments and decrements of a counter c between the start of a run (i.e., when # occurs) and a zero test on c. A **positive cheat** occurs when $(\cdot, 0?, c, \cdot)$ is played while the counter c has positive value. Likewise, a **negative cheat** occurs when $(\cdot, \text{dec}, c, \cdot)$ is played while the counter c has value 0. On reading the symbol #, the gadget can guess that there will be a positive or negative cheat by moving to the states q_1 and q_2, respectively. In q_1, the energy level simulates the operations on the counter c but with opposite effect, thus accumulating the opposite of the counter value. When a positive cheat occurs, the gadget returns to the initial state, thus decrementing the energy level. The state q_2 of the gadget is symmetric. A negative cheat costs one unit of energy. Note that the gadget has to go back to its initial state before the next #, as otherwise Player 1 wins. This ensures that the gadget does not monitor a zero-test across two different runs.

The game G_M has such gadgets for each counter. Thus, a strategy in G_M which cheats infinitely often on a counter would not survive no matter the value of the initial credit.

The correctness of this construction is established as follows. First, assume that M has an accepting run.
Figure 4: Gadget to check the zero tests on counter c (assuming σ ranges over $\Sigma \setminus \{\#\}$).

π with trace $\bar{\pi}$. Then, the strategy playing $(\#\bar{\pi})^\omega$ is winning for the energy objective with initial credit $|\bar{\pi}|$ because an initial credit $|\bar{\pi}|$ is sufficient to survive in the “∞-many $\#$” gadget of Figure 3, as well as in the zero-test gadget of Figure 4 because all zero tests are correct in π and the counter values are bounded by $|\bar{\pi}|$.

Second, if there exists a winning strategy in G_M with some finite initial credit, then the sequence played by this strategy can be decomposed into run traces separated by $\#$, and since the strategy survived in the gadget of Figure 4, there must be a point where all run traces played correspond to faithful simulation of M with respect to counter values, thus M has an accepting run. \hfill \Box