Antichains: A New Algorithm for Checking Universality of Finite Automata

Laurent Doyen Université Libre de Bruxelles

Joint work with Martin De Wulf, Tom Henzinger, Jean-François Raskin

CAV, Seattle, 17th August, 2006

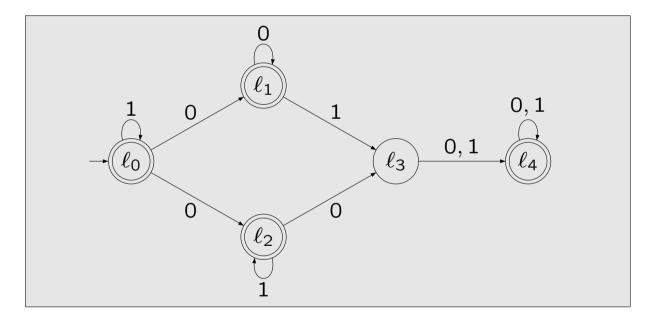
Outline of the talk

- Motivation
- Universality A Game Approach
- Example
- Experimental Results
- Conclusion

Finite State Automaton

Finite automaton: $\mathcal{A} = \langle Loc, \ell_I, \Sigma, \delta, F \rangle$

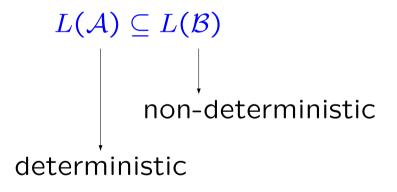
with δ : Loc $\times \Sigma \rightarrow 2^{\text{Loc}}$ (non-deterministic)



For $w \in \Sigma^*$, we have $\begin{cases} w \in L(\mathcal{A}) \text{ iff some path on } w \text{ accepts.} \\ w \notin L(\mathcal{A}) \text{ iff all paths on } w \text{ reject.} \end{cases}$

Language Inclusion and Universality

An implementation \mathcal{A} of a program is correct with regard to its specification \mathcal{B} if:



Language Inclusion and Universality

$L(\mathcal{A}) \subseteq L(\mathcal{B})$

iff $L(\mathcal{A} \cap \mathcal{B}^c)$ is empty

- Computing \mathcal{B}^c : hard (via determinization)
- Checking emptiness: easy

iff $L(\mathcal{A}^c \cup \mathcal{B})$ is universal

- Computing \mathcal{A}^c : easy
- Checking universality: hard

Language Inclusion and Universality

$L(\mathcal{A}) \subseteq L(\mathcal{B})$

iff $L(\mathcal{A} \cap \mathcal{B}^c)$ is empty

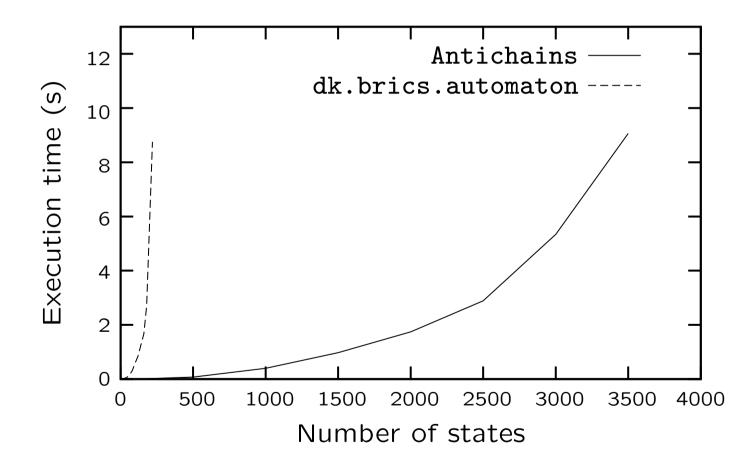
- Computing \mathcal{B}^c : hard (via determinization)
- Checking emptiness: easy

iff $L(\mathcal{A}^c \cup \mathcal{B})$ is universal

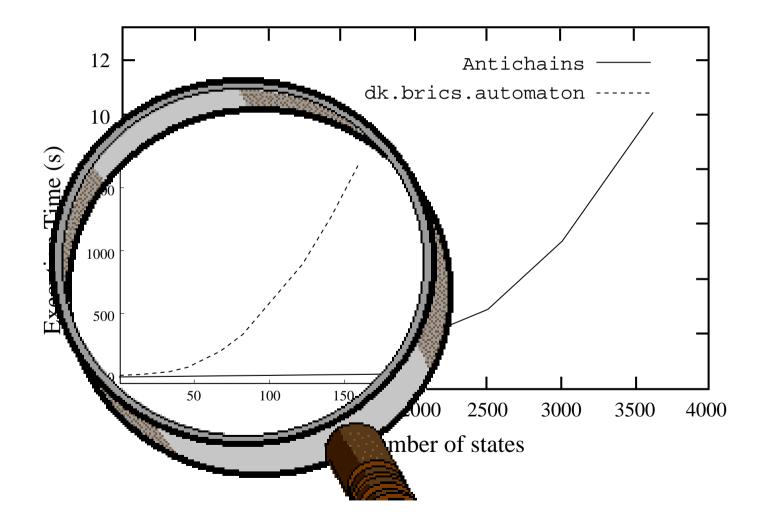
- Computing \mathcal{A}^c : easy
- Checking universality: hard

not so hard in practice with antichains.

Universality - Experimental results



Universality - Experimental results



Universality - Execution times (in milliseconds)

Number of states	20	40	60	80	100	175	500
Determinization	23	50	141	309	583	2257	-
Antichains	1	2	2	3	5	14	76

Number of states	1000	1500	2000	2500	3000	3500	4000
Determinization	-	_	_	-	-	-	-
Antichains	400	973	1741	2886	5341	9063	13160

Outline of the talk

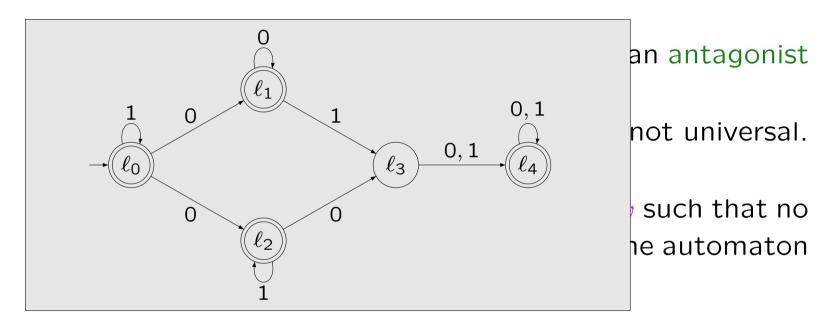
- Motivation
- Universality A Game Approach
- Example
- Experimental Results
- Conclusion

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that \mathcal{A} is not universal.

The protagonist has to provide a finite word w such that no matter how the antagonist reads it using A, the automaton ends up in a rejecting location.

 \implies This is a one-shot game.



Example: Protagonist: w = 101Antagonist: $\pi = \ell_0 \xrightarrow{1} \ell_0 \xrightarrow{0} \ell_2 \xrightarrow{1} \ell_2$

Antagonist wins the play since ℓ_2 is accepting.

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that \mathcal{A} is not universal.

The protagonist has to provide a finite word w such that no matter how the antagonist reads it using A, the automaton ends up in a rejecting location.

 \implies This is a one-shot game.

Protagonist has a strategy to win this game iff *A* is not universal

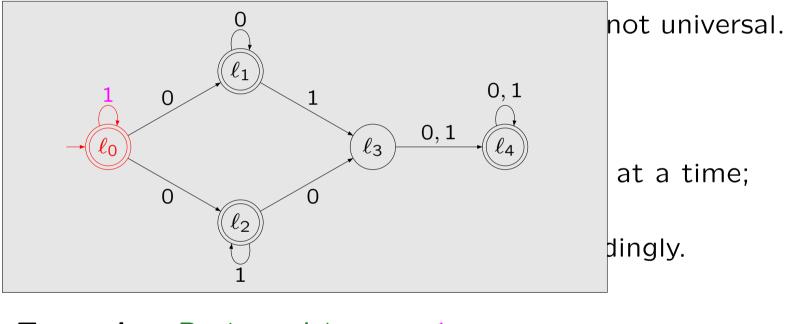
Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that \mathcal{A} is not universal.

The game is turn-based:

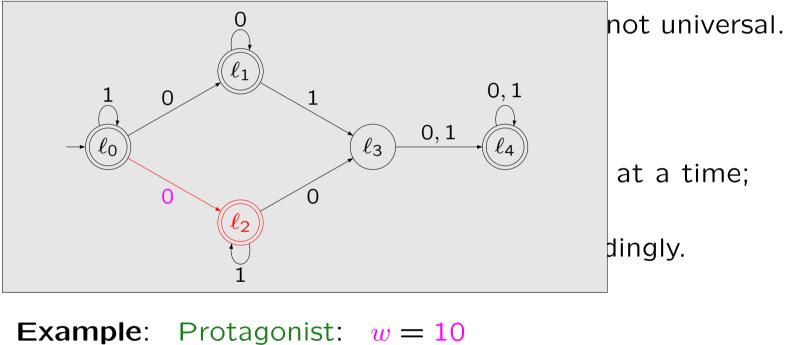
- Protagonist provides a word w one letter at a time;
- Antagonist updates the state of \mathcal{A} accordingly.

Consider a game played by a protagonist and an antagonist



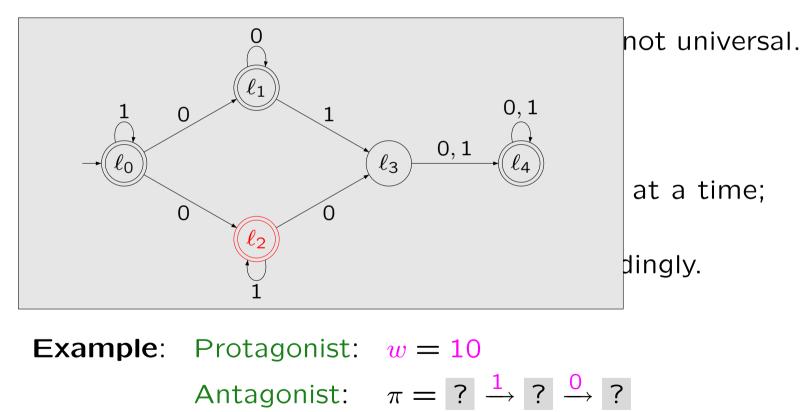
Example: Protagonist: w = 1Antagonist: $\pi = \ell_0 \xrightarrow{1}{\rightarrow} \ell_0$

Consider a game played by a protagonist and an antagonist



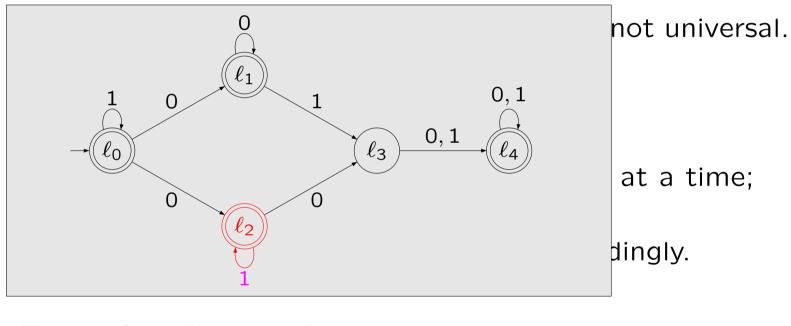
Antagonist: w = 10Antagonist: $\pi = \ell_0 \xrightarrow{1}{\rightarrow} \ell_0 \xrightarrow{0}{\rightarrow} \ell_2$

Consider a game played by a protagonist and an antagonist



 $\{\ell_0\} \quad \{\ell_0\} \quad \{\ell_1, \ell_2\}$

Consider a game played by a protagonist and an antagonist



Example: Protagonist: w = 101Antagonist: $\pi = ? \xrightarrow{1} ? \xrightarrow{0} ? \xrightarrow{1} \ell_2$

Antagonist wins the play since ℓ_2 is accepting.

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that \mathcal{A} is not universal.

The game is turn-based:

- Protagonist provides a word w one letter at a time;
- Antagonist updates the state of \mathcal{A} accordingly.

The protagonist cannot observe the state chosen by the antagonist.

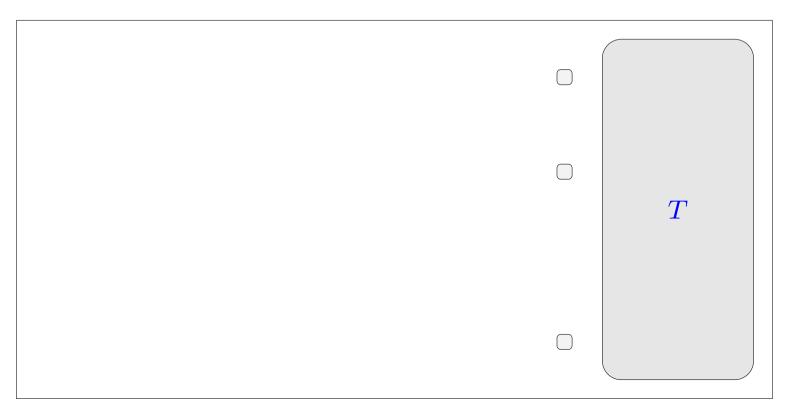
 \implies This is a blind game (or game of null information).

Let $\mathcal{A} = \langle \mathsf{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.

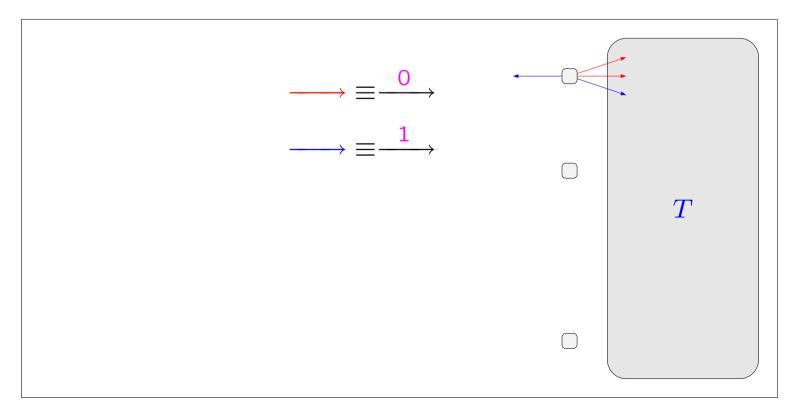
Let $\mathcal{A} = \langle \operatorname{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



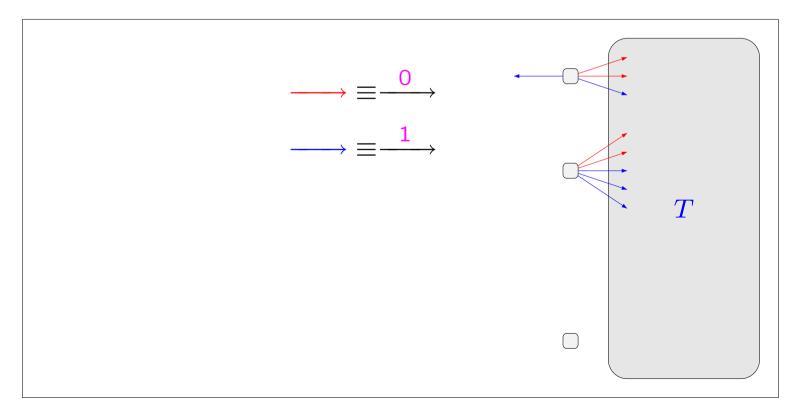
Let $\mathcal{A} = \langle \text{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



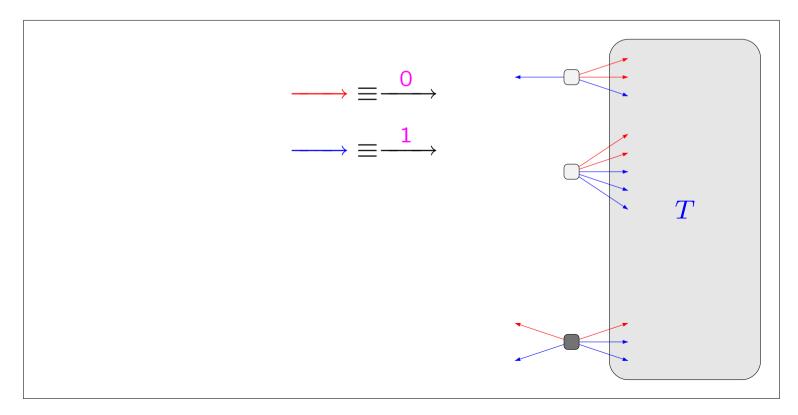
Let $\mathcal{A} = \langle \text{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



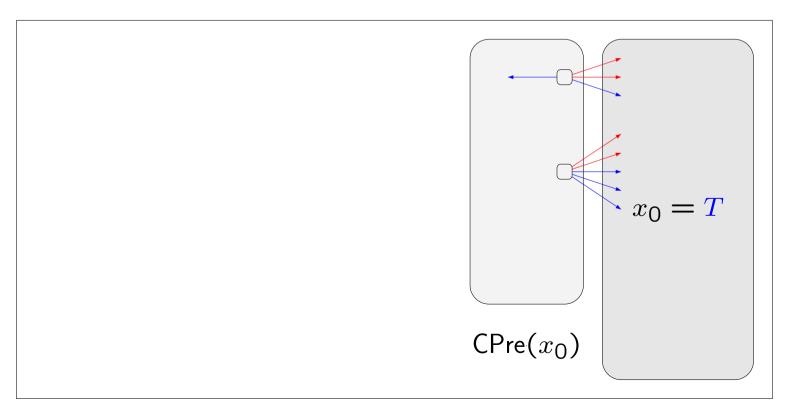
Let $\mathcal{A} = \langle \text{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



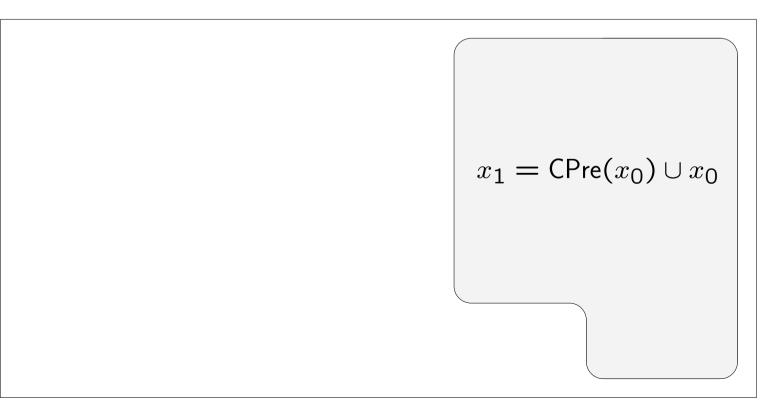
Let $\mathcal{A} = \langle \operatorname{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



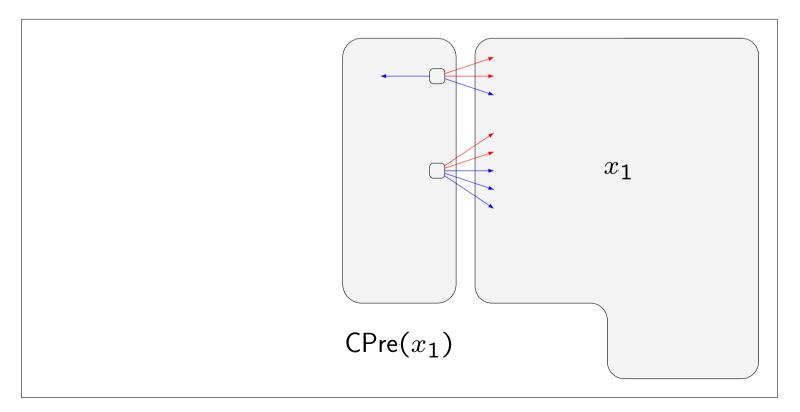
Let $\mathcal{A} = \langle \text{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



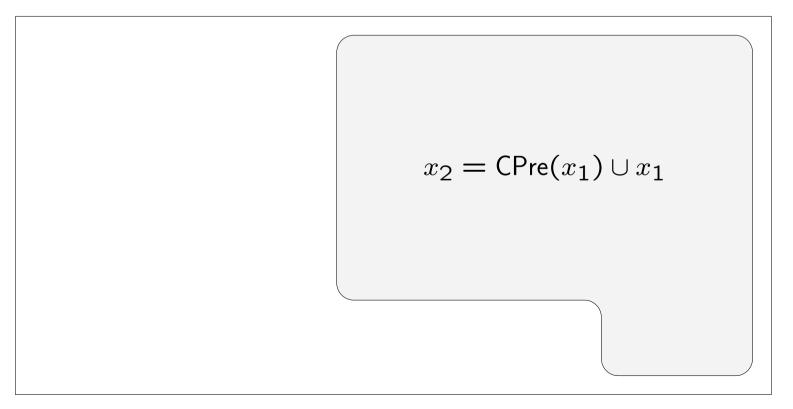
Let $\mathcal{A} = \langle \text{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



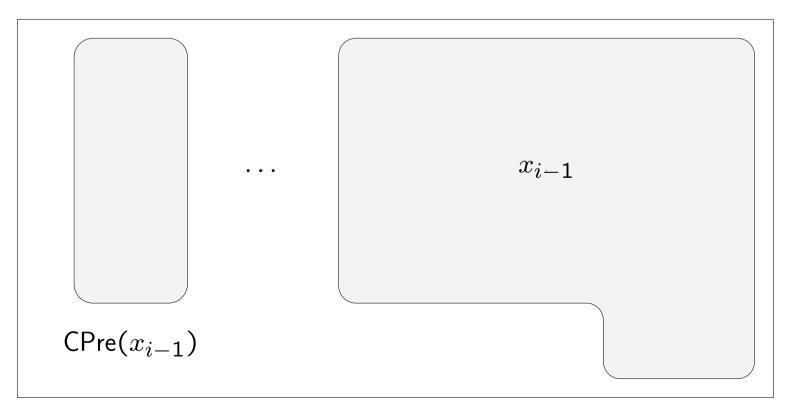
Let $\mathcal{A} = \langle \text{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



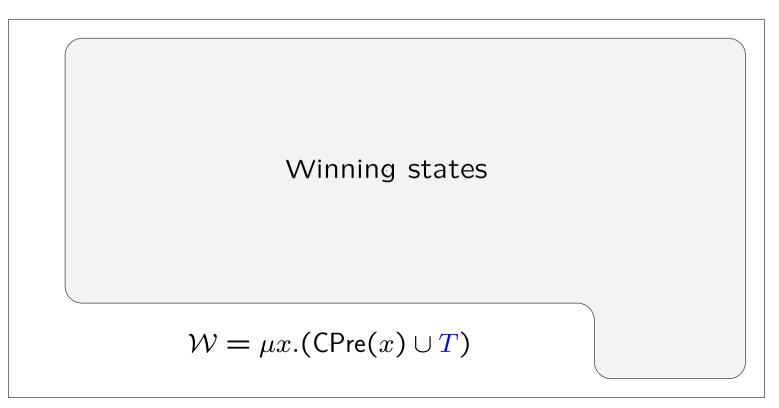
Let $\mathcal{A} = \langle \text{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



Let $\mathcal{A} = \langle \text{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Checking universality of \mathcal{A} is equivalent to solving a blind reachability game G_T with target $T = \text{Loc} \setminus F$.



Let $\mathcal{A} = \langle \mathsf{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

Universality of \mathcal{A} is equivalent to a blind reachability game G_T with target $T = \text{Loc} \setminus F$.

- 1. Compute the set of states that are winning in one move: CPre(T)
- 2. Iterate $CPre(\cdot)$: compute $\mathcal{W} = \mu x.(CPre(x) \cup T)$
- 3. Check whether $\ell_I \in \mathcal{W}$

Universality - Controllable predecessor operator

Let $\mathcal{A} = \langle \mathsf{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

- CPre(·) should encode the blindness of the game:
 "The knowledge of the protagonist is a set of states."
- CPre(T) contains all the set of states s such that: there exists $\sigma \in \Sigma$ such that: if protagonist plays σ from s, then the set T is reached no matter the antagonist's move.

$$\exists \sigma \in \Sigma \cdot \underbrace{\forall \ell \in s : \delta_A(\ell, \sigma) \subseteq T}_{\mathsf{post}_{\sigma}(s) \subseteq T}$$

Universality - Controllable predecessor operator

Let $\mathcal{A} = \langle \operatorname{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.

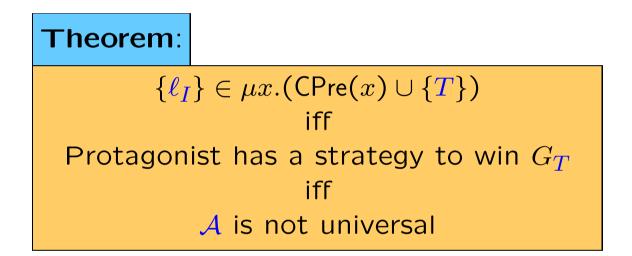
Consider the following controllable predecessor operator over sets of sets of locations. For $q \subseteq 2^{\text{Loc}}$, let:

$$\mathsf{CPre}(q) = \left\{ s \mid \exists s' \in q \cdot \exists \sigma \in \mathbf{\Sigma} : \mathsf{post}_{\sigma}(s) \subseteq s' \right\}$$

So $s \in CPre(q)$ if there is a set $s' \in q$ that is reached from any location in s, reading input letter σ .

 \implies CPre encodes the blindness of the game.

Let $\mathcal{A} = \langle \mathsf{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$.



Claim: For
$$s_1 \subseteq s_2$$
, if $\underbrace{\text{post}_{\sigma}(s_2) \subseteq s'}_{s_2 \in \text{CPre}(\cdot)}$ then $\underbrace{\text{post}_{\sigma}(s_1) \subseteq s'}_{s_1 \in \text{CPre}(\cdot)}$

Hence, we compute \subseteq -downward-closed sets of state sets.

Idea: Keep in CPre(x) only the maximal elements.

Let
$$\mathcal{A} = \langle \mathsf{Loc}, \ell_I, \Sigma, \delta_A, F \rangle$$
.

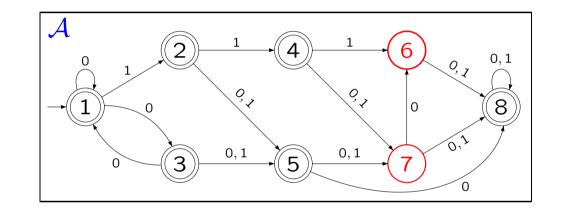
Definition:

For $q \subseteq 2^{\text{Loc}}$, let: $CPre(q) = MaximalSets(\{s \mid \exists s' \in q \cdot \exists \sigma \in \Sigma : \text{post}_{\sigma}(s) \subseteq s'\})$ $= \left[\{s \mid \exists s' \in q \cdot \exists \sigma \in \Sigma : \text{post}_{\sigma}(s) \subseteq s'\}\right]$

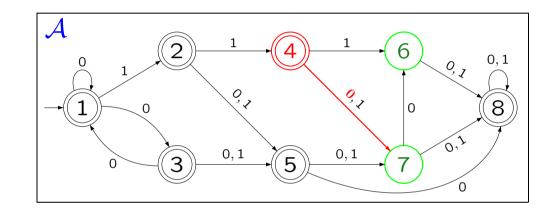
where $\lceil q \rceil = \{s \in q \mid \nexists s' \in q : s \subset s'\}$ is an antichain of sets of locations (containing only pairwise \subseteq -incomparable elements).

Outline of the talk

- Motivation
- Universality A Game Approach
- Example
- Experimental Results
- Conclusion

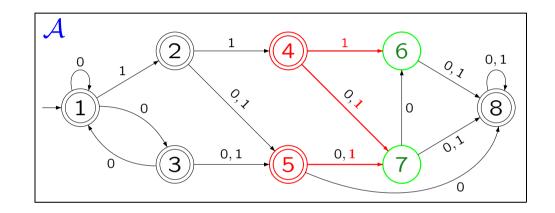


 $x_0 = T = \{\{6, 7\}\}$



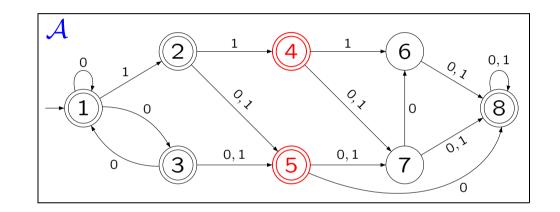
$$x_{0} = T = \{\{6,7\}\}\$$

$$x_{1} = CPre(x_{0}) \cup T = \left[\{\{4\}_{0},$$



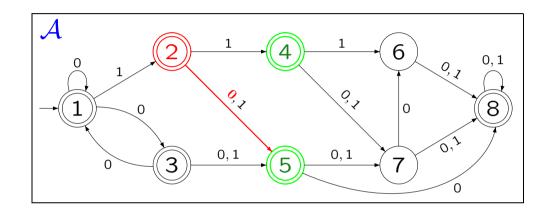
$$x_{0} = T = \{\{6,7\}\}$$

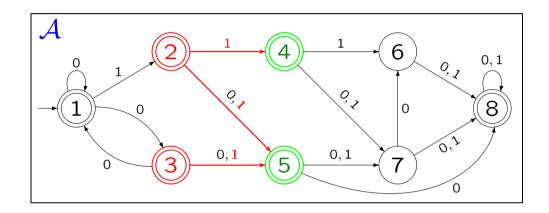
$$x_{1} = \mathsf{CPre}(x_{0}) \cup \{T\} = \left[\{\{4\}_{0,1}, \{4,5\}_{1}, \{5\}_{1}, \emptyset\}\right] \cup \{\{6,7\}\}$$



$$x_0 = T = \{\{6,7\}\}\$$

$$x_1 = CPre(x_0) \cup \{T\} = \{\{6,7\},\{4,5\}\}\$$

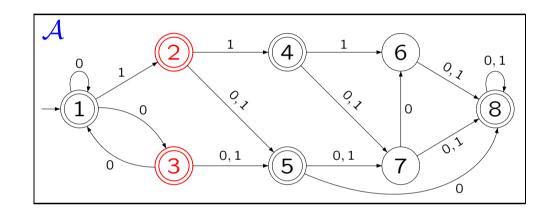




$$x_{0} = T = \{\{6,7\}\}\$$

$$x_{1} = \mathsf{CPre}(x_{0}) \cup \{T\} = \{\{6,7\},\{4,5\}\}\$$

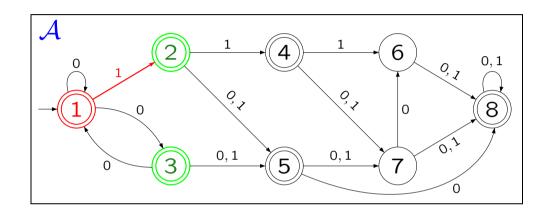
$$x_{2} = \mathsf{CPre}(x_{1}) \cup \{T\} = \left\{\{4,5\},\{2\}_{0,1},\{2,3\}_{1},\{3\}_{1},\emptyset\}\right\} \cup \{\{6,7\}\}\$$



$$x_{0} = T = \{\{6,7\}\}\$$

$$x_{1} = CPre(x_{0}) \cup \{T\} = \{\{6,7\},\{4,5\}\}\$$

$$x_{2} = CPre(x_{1}) \cup \{T\} = \{\{6,7\},\{4,5\},\{2,3\}\}\$$

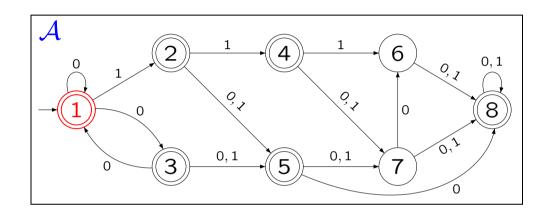


$$x_{0} = T = \{\{6,7\}\}\$$

$$x_{1} = \mathsf{CPre}(x_{0}) \cup \{T\} = \{\{6,7\},\{4,5\}\}\$$

$$x_{2} = \mathsf{CPre}(x_{1}) \cup \{T\} = \{\{6,7\},\{4,5\},\{2,3\}\}\$$

$$x_{3} = \mathsf{CPre}(x_{2}) \cup \{T\} = \left\{\{\{4,5\},\{2,3\},\{1\},\emptyset\}\right\} \cup \{\{6,7\}\}\$$

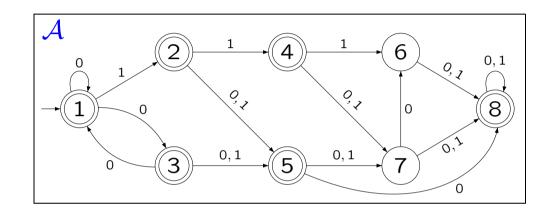


$$x_{0} = T = \{\{6,7\}\}\$$

$$x_{1} = CPre(x_{0}) \cup \{T\} = \{\{6,7\},\{4,5\}\}\$$

$$x_{2} = CPre(x_{1}) \cup \{T\} = \{\{6,7\},\{4,5\},\{2,3\}\}\$$

$$x_{3} = CPre(x_{2}) \cup \{T\} = \{\{6,7\},\{4,5\},\{2,3\},\{1\}\}\$$



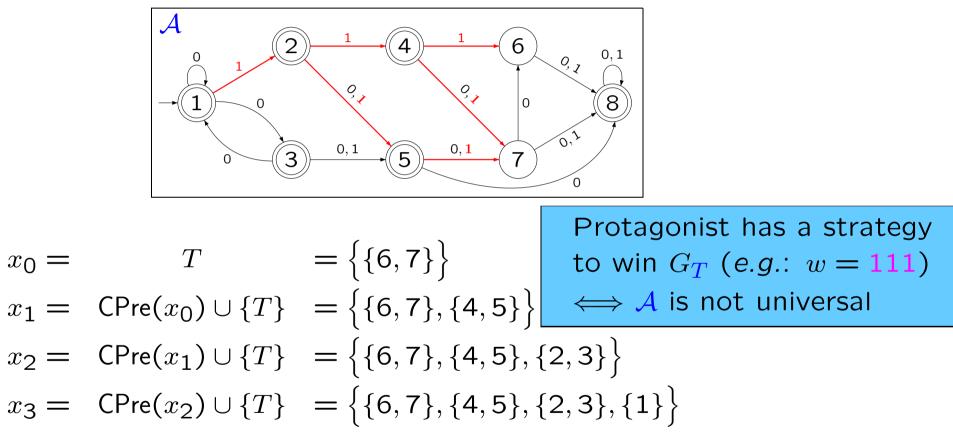
$$x_{0} = T = \{\{6,7\}\}\$$

$$x_{1} = CPre(x_{0}) \cup \{T\} = \{\{6,7\},\{4,5\}\}\$$

$$x_{2} = CPre(x_{1}) \cup \{T\} = \{\{6,7\},\{4,5\},\{2,3\}\}\$$

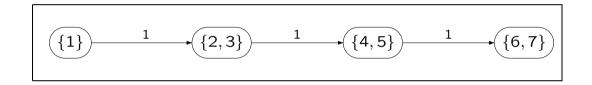
$$x_{3} = CPre(x_{2}) \cup \{T\} = \{\{6,7\},\{4,5\},\{2,3\},\{1\}\}\$$

$$x_{4} = CPre(x_{3}) \cup \{T\} = x_{3}$$

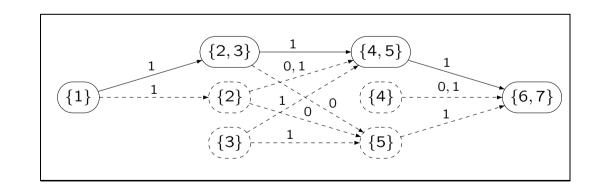


 $x_4 = CPre(x_3) \cup \{T\} = x_3$

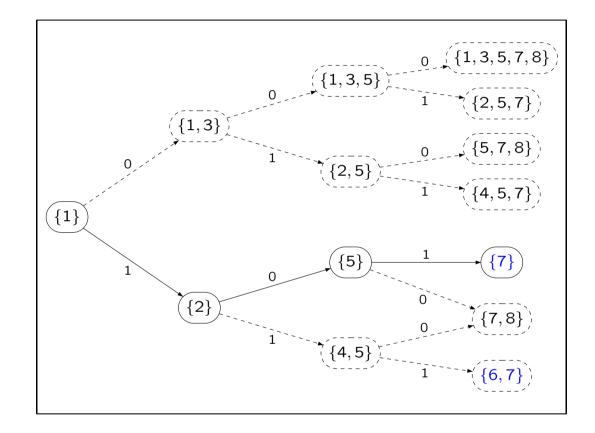
We have explored/constructed



instead of



Universality - Determinization



Outline of the talk

- Motivation
- Universality A Game Approach
- Example
- Experimental Results
- Conclusion

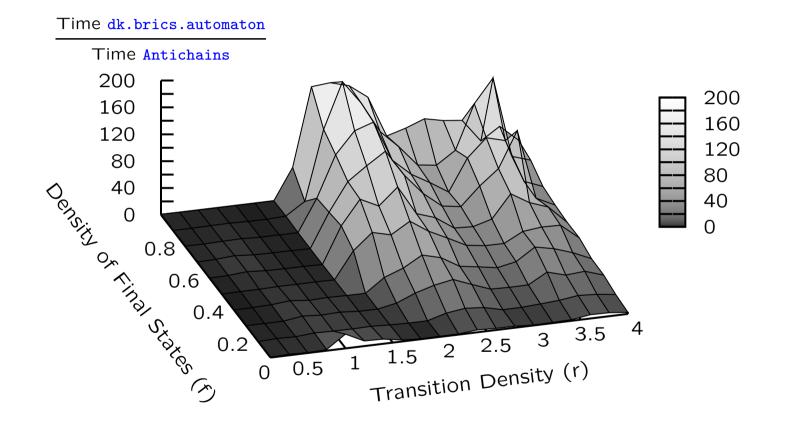
Universality - Experimental results (1)

• We compare our algorithm Antichains with the best⁽¹⁾ known algorithm dk.brics.automaton by Anders Møller.

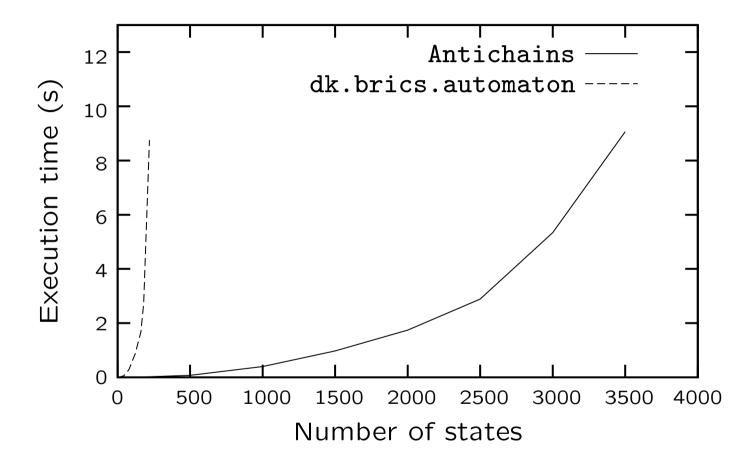
⁽¹⁾ According to "D. Tabakov, M. Y. Vardi. Experimental Evaluation of Classical Automata Constructions. LPAR 2005".

- We use a randomized model to generate the instances (automata of 175 locations). Two parameters:
 - Transition density: $r \ge 0$
 - Density of accepting states: $0 \le f \le 1$

Universality - Experimental results (2)



Each sample point: 100 automata with |Loc| = 175, $\Sigma = \{0, 1\}$.



- Transition density: r = 2.
- Density of accepting states: f = 1.

Determinization - Average Number of sets (100 instances)

# states	20	40	60	80	100	120	140	160
All instances	71	176	415	713	1120	1404	1750	2084
Univ. inst.	116	388	826	1563	2364	2805	3850	4758
¬Univ. inst.	11	28	64	98	61	162	32	67

Antichains - Average Number of sets (same 100 instances)

# states	20	40	60	80	100	120	140	160
All instances	3	4	6	7	9	9	9	12
Univ. inst.	3	6	7	9	12	13	14	19
¬Univ. inst.	3	3	4	6	6	6	5	7

Outline of the talk

- Motivation
- Universality A Game Approach
- Example
- Experimental Results
- Conclusion

Beyond Universality

• Universality $(L(\mathcal{A}) = \Sigma^*)$: antichains over 2^{Loc_A} .

$$\mathsf{CPre}(q) = \left[\{ s \mid \exists s' \in q \cdot \exists \sigma \in \Sigma : \mathsf{post}_{\sigma}(s) \subseteq s' \} \right]$$

- Language inclusion $(L(\mathcal{A}) \subseteq L(\mathcal{B}))$: antichains over $\operatorname{Loc}_A \times 2^{\operatorname{Loc}_B}$. $\operatorname{CPre}(q) = \left[\{(\ell, s) \mid \exists (\ell', s') \in q \cdot \exists \sigma \in \Sigma : \ell' \in \delta^A(\ell, \sigma) \land \operatorname{post}_{\sigma}^B(s) \subseteq s' \} \right]$
- Emptiness of AFA $(L(\mathcal{A}) = \emptyset)$: antichains over 2^{Loc_A} .

$$\mathsf{CPre}(q) = \left[\{ s \mid \exists s' \in q \cdot \exists \sigma \in \Sigma \cdot \forall \ell \in s : s' \models \delta(\ell, \sigma) \} \right]$$

Conclusion and perspectives

The antichains algorithms apply to:

- Universality of FSA,
- Language inclusion of FSA,
- Emptiness of finite alternating automata.
- ... and soon to automata over infinite words (Büchi)? (work in progress)

Thank you

Questions ???