Improved Algorithms for the Automata-based Approach to Model-Checking

L. Doyen (EPFL) and J.-F. Raskin (ULB)

TACAS 2007 Braga - Portugal March 28, 2007

Automata-based approach to model-checking

- Programs and properties are formalized as regular languages of infinite words;
- Any regular language of infinite words is accepted by a nondeterministic Büchi automaton (NBW);
- The verification problem: given a NBW A (that formalizes Prg) and a NBW B (that formalizes Prop), check if L(A) ⊆ L(B).

Automata-based approach to model-checking

- The language inclusion problem for NBW is PSpace-Complete;
- So, the complexity is rather high but similar (or easier than) to the complexity of many other verification problems;
- Nevertheless, currently there is no practical algorithms to solve this language inclusion problem. The usual approach through explicit complementation is difficult.

Plan of the talk

- Complementation of NBW
- Simulation pre-orders and fixed points
- An improved algorithm for emptiness of ABW
- The universality and language inclusion problems

Complementation of NBW

A forty year Saga (M.Vardi)

- 1961, Büchi: doubly exponential construction
- 1986, Sistla Vardi Wolper : simply exponential construction 2^{O(n2)}
- 1988, Michel: lower bound 2^{O(nlogn)}
- 1989, Safra: (nearly) optimal solution 2^{O(nlogn)} construction using determinization
- 1991, Klarlund: 2^{O(nlogn)} construction without determinization
- 1997, Kupferman Vardi : 2^{O(nlogn)} similar to Klarlund but more modular
- 2004, Yan: slightly better lower bound (0.76n)ⁿ
- 2004, Friedgut Kupferman Vardi: slightly better upper bound (0.97n)ⁿ

Complementation of NBW

- **Few** attempts to implement the successive procedures:
 - Safra procedure have been implemented by Tasiran et al. (1995) and Thomas et al.(2005): need of intricate data structures and very low scalability (6 states);
 - KV procedure implemented by Gurumurthy et al. (2003): use several optimisations (based on simulation equivalences) but very low scalability (6 states);
 - Recently, Tabakov (2006) implemented KV with BDDs for checking universality but very low scalability (8 states).

KV construction ABW and AcoBW

- The KV construction uses **alternating** Büchi word (ABW) and alternating coBüchi word (AcoBW) automata
- Alternating automata are **generalizations** of nondeterministic Büchi automata
- Let $A=(Q,q_0,\Sigma,\delta,\alpha)$
 - in **nondeterministic** automata: $\delta(q,\sigma) = \{q_1,q_2,..,q_n\}$
 - in **alternating** automata: $\delta(q,\sigma) = \{\{q_1,q_2,...,q_n\},\{r_1,r_2,...,r_m\},...\}$

KV construction ABW and AcoBW

- The KV construction uses **alternating** Büchi word (ABW) and alternating coBüchi word (AcoBW) automata
- Alternating automata are **generalizations** of nondeterministic Büchi automata
- Let $A=(Q,q_0,\Sigma,\delta,\alpha)$
 - in **nondeterministic** automata: $\delta(q,\sigma) = \{q_1,q_2,..,q_n\} \qquad \text{equivalent to } \{\{q_1\},\{q_2\},..,\{q_n\}\}$
 - in **alternating** automata: $\delta(q,\sigma) = \{\{q_1,q_2,...,q_n\},\{r_1,r_2,...,r_m\},...\}$

Run of an ABW A=(Q,q₀,Σ,δ,α) on a word w=w₀w₁...w_n...

Run of an ABW A= $(Q,q_0,\Sigma,\delta,\alpha)$ on a word w=w_0w_1....w_n...

Run of an ABW $A=(Q,q_0,\Sigma,\delta,\alpha)$ on a word $w=w_0w_1...w_n...$

The run is **accepting** if every branch intersects **infinitely often** α

Run of an AcoBW A=(Q,q₀, Σ , δ , α) on a word w=w₀w₁....w_n...

The run is **accepting** if every branch intersects **only finitely often** α

Input: A an NBW

B an AcoBW that accepts the complement of A

C an ABW that accepts the same language as B

Output: D an NBW that accepts the same language as C

C an ABW that accepts the same language as B

Output: D an NBW that accepts the same language as C

- Let A be an **NBW** with transition relation δ ;
- Let B be an **AcoBW** identical to A but with transition relation δ' defined as follows: for all $q \in Q$: for all $\sigma \in \Sigma$: **if** $\delta(q,\sigma) = \{\{q_1\}, \{q_2\}, ..., \{q_n\}\}$ **then** $\delta'(q,\sigma) = \{\{q_1, q_2, ..., q_n\}\};$
- So in B, we have **dualized** the transition relation: a run of the AcoBW on a word w is the tree that contains the set of **all** runs of the NBW on w ;
- ... and the accepting condition: B has an accepting run (tree) on w iff all the runs of A are rejecting;
- So, **B accepts the complement of A**.

Output: D an NBW that accepts the same language as C

Accepting runs of AcoBW

- Accepting runs of AcoBW are memoryless (Emerson and Jutla, 1991).
- Memoryless runs are structured and that structure can be exploited to transform an AcoBW into an ABW (Kupferman and Vardi, 1997).

Input: A an NBW

B an AcoBW that accepts the complement of A

A NBW can guess a run by maintaing pairs (S,O): S states of a level and O \subseteq S states that need a visit to α .

Miyano-Hayashi construction

- Given an ABW C=(Q,q₀, Σ , δ , α), the NBW that accepts the same language is given by D=(2^Qx2^Q,({q₀}, \emptyset), Σ , δ ', α ') where:
 - for any $(S,0) \in 2^Q \times 2^Q$, for any $\sigma \in \Sigma$:
 - if $O \neq \emptyset$ then $\delta'((S,O),\sigma)$ is the set of elements $\{(S',O'\setminus\alpha)\}$ s.t. $O'\subseteq S', \forall q\in S: \exists T\in \delta(q,\sigma):T\subseteq S', and \forall q\in O: \exists T\in \delta(q,\sigma):T\subseteq O'.$
 - if $O=\emptyset$ then $\delta'((S,O),\sigma)$ is the set of elements $\{(S',O'\setminus\alpha)\}$ s.t. $O'=S', \forall q \in S: \exists T \in \delta(q,\sigma):T \subseteq S'.$
 - $\alpha'=2^Q \times \{\emptyset\}$

Miyano-Hayashi construction

- Given an ABW C=(Q,q₀, Σ , δ , α), the NBW that accepts the same language is given by D=(2^Qx2^Q,({q₀}, \emptyset), Σ , δ ', α ') where:
 - for any $(S,0) \in 2^Q \times 2^Q$, for any $\sigma \in \Sigma$:

Unfortunately, this automaton is (usually) **huge** as it is constructed on the set of locations 29x29

Miyano-Hayashi construction

- Given an ABW C=(Q given by D=(2^Qx2^Q,({
 - for any $(S,0) \in 2^Q x$

Unfortun

(usually) hu

This explains the **poor** performances reported for current implementations of the construction

the set of locations 29x29

But, we do not need explicit complementation ...

- To check universality of A, we do not need to construct D explicitly;
- ... we only need to check if D is empty or not;
- ... similarly to check inclusion, i.e. L(A)⊆L(B), we
 do **not** need to construct the complement of B
 but we need to check that L(A)∩L^c(B) is **empty**.

But, we do not need explicit complementation ...

- To check universality of A, we do not need to construct D explicitly;
- ... we only need to check if D is empty or not:

How can we check **efficiently** the **emptiness** of D ?

Emptiness of NBW

Let A= be a NBW, ≤⊆QxQ is a **simulation pre-order** iff

for any $q_1, q_2, q_3 \in Q$, for any $\sigma \in \Sigma$,

Let A= be a NBW, ≤⊆QxQ is a **simulation pre-order** iff

for any $q_1, q_2, q_3 \in Q$, for any $\sigma \in \Sigma$,

then there exists $q_4 \in Q$ s.t.:

1)

Let A= be a NBW, ≤⊆QxQ is a **simulation pre-order** iff

for any $q_1, q_2, q_3 \in Q$, for any $\sigma \in \Sigma$,

then there exists $q_4 \in Q$ s.t.:

1)

2) and, for any $q_1,q_2 \in Q$: if $q_1 \leq q_2$ and $q_2 \in \alpha$ then $q_1 \in \alpha$

Let A= be a NBW, ≤⊆QxQ is a **simulation pre-order** iff

for any $q_1, q_2, q_3 \in Q$, for any $\sigma \in \Sigma$,

then there exists $q_4 \in Q$ s.t.:

 $\begin{array}{ccc} q_3 & & & & & & & \\ \mathbf{if} & \leq & & & & & \\ q_1 & & & & & & \\ & & & & & & & \\ \end{array} \xrightarrow{\mathbf{0}} & q_2 \end{array}$

1)

2) and, for any $q_1,q_2 \in Q$: if $q_1 \leq q_2$ and $q_2 \in \alpha$ then $q_1 \in \alpha$

A set $S \subseteq Q$ is \leq -closed iff $\forall q_1 \in S : \{q \in Q | q \leq q_1\} \subseteq S$

- Lemma: for any NBW A=(Q,q₀,Σ,δ,α), for any simulation pre-order ≤, for any ≤-closed S,T⊆Q:
 - (1) for all $\sigma \in \Sigma$: Pre(σ)(S) is \leq -closed;
 - (2) $S \cup T$ and $S \cap T$ are \leq -closed;
 - (3) α is ≤**-closed**;

 Lemma: for any NBW A=(Q,q₀,Σ,δ,α), for any simulation pre-order ≤, for any ≤-closed S,T⊆Q:

(1) for all $\sigma \in \Sigma$: Pre(σ)(S) is \leq -closed;

So, all the sets that we manipulate in Vy . μx . (Pre(x) \cup (Pre(y) $\cap \alpha$)) are \leq -closed.

• Lemma: for any NBW $A=(Q,q_0,\Sigma,\delta,\alpha)$, for any **simulation pre-order** \leq , for any \leq -closed $S T \subset O^{\cdot}$

(I) for
 ≤-closed sets can be represented symbolically by their maximal elements only
 So, all the set

 $\forall y . \mu x . (Pre(x) \cup (Pre(y) \cap \alpha))$

are \leq -closed.

We can potentially compute Lemma: foi ∇y . µx. (Pre(x) ∪ (Pre(y) ∩ α)) any simul more efficiently by working on ≤-closed maximal elements only. (I) for ≤-cl maximal elements symbolically by their maximal elements only So, all the set \forall y.µx.(Pre(x) ∪ (Pre(y) ∩ α)) are \leq -closed.

Good news!

The NBW that results from the KV procedure is equipped **by construction** with a **simulation** pre-order ≤.

Idea: do not construct the huge NBW but check emptiness directly and evaluate the fixed point efficiently by exploiting the ≤-pre-order.

- Remember that given an ABW A=(Q,q₀,Σ,δ,α), the Miano-Hayashi construction specifies an NBW B= (2^Qx2^Q,({q₀},Ø}),Σ,δ',α').
- The following relation ≤ ⊆ 2^Qx2^Q defined by
 (S,O) ≤ (S',O') iff (I) (O=Ø iff O'=Ø) and (2) S⊆S' and O⊆O' is a simulation pre-order on B.
- Note that the ≤-closure of a pair (S,O) contains an exponential number of elements in the size of S and O!

- Remember that given an ABW A=(Q,q₀,Σ,δ,α), the Miano-Hayashi construction specifies an NBW B= (2^Qx2^Q,({q₀},Ø}),Σ,δ',α').
- The following relation $\leq \subseteq 2^Q \times 2^Q$ defined by

(S,O) ≤ (S',O') iff (I) (O=Ø iff O'=Ø) and (2) S⊆S' and O⊆O'

is a **simulation**

Note that the ≤-clean strength
 exponential nu

We can check emptiness of B by manipulating ≤-closed sets represented by their maximal elements only.

 Remember that given an ABW A=(Q,q₀,Σ,δ,α), the Miano-Hayashi construction specifies an

This potentially saves us an **exponential** !

exponential nu

ed by nd (2) S⊆S' and O⊆O'

emptiness of B by ≤-closed sets represented by their maximal elements only.

 Remember that give Hayashi constructi

This potentiall

expone

We have a **polynomial** time algorithm that given (S,O) and $\sigma \in \Sigma$, compute a

compact representation of **Pre(σ)(↓(S,O))**

exponential nu represented by their maximal elements only.

Input: A an NBW

Implicit

B an AcoBW that accepts the complement of A

Implicit

C an ABW that accepts the same language as B

Implicit

Output: D an NBW that accepts the same language as C

Practical evaluation Universality

Input: A an NBW

Implicit

Implicit

Implicit

We evaluate the fixed point for emptiness directly, that is, **without** constructing the automaton specified by the construction. We evaluate this fixed point by manipulating ≤-closed sets through their **maximal elements only**.

Practical evaluation

- We have implemented our new algorithm to check universality of NBW;
- Evaluation on a randomized model proposed by Tabakov and Vardi (2005) that generates random NBW (two parameters: r,f);
- On that randomized model Tabakov's BDD implementation can handle 6 states on the most difficult instances with median time <20s.

Practical evaluation Universality

Table 1. Automata size for which the median execution time for checking universality is less than 20 seconds. The symbol \propto means *more than 1500*.

r f	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
0.1	\propto	\propto	\propto	550	200	120	60	40	30	40	50	50	70	90	100
0.3	\propto	\propto	\propto	500	200	100	40	30	40	70	100	120	160	180	200
0.5	\propto	\propto	\propto	500	200	120	60	60	90	120	120	120	140	260	500
0.7	\propto	\propto	\propto	500	200	120	70	80	100	200	440	1000	\propto	\propto	\propto
0.9	\propto	\propto	\propto	500	180	100	80	200	600	\propto	\propto	\propto	\propto	\propto	\propto

For r=2, f=0.5, Tabakov can handle 8 states while our algorithm handles **120** states in less than 20s.

Practical evaluation Universality

Fig. 1. Median time to check universality of 100 automata of size 30 for each sample point.

To compare, Tabakov's BDD implementation was able to handle automata of size 6 on the entire state space (within 20s as in our expermients).

Conclusions

- In the automata-based approach to model-checking: keep implicit the complementation step and check for emptiness efficiently by exploiting simulation pre-orders that exists by construction;
- Implementation for universality problem shows promising results: several orders of magnitude on the randomized model !

Future Works

- Implement and evaluate the new language inclusion algorithm ;
- Evaluate beyond the randomized model ;
- Revisit the LTL model-checking problem: do not construct the NBW of the negation of the formula but use ABW and check directly for emptiness.