
Improved Algorithms for the
Automata-based Approach

to Model-Checking

L. Doyen (EPFL) and J.-F. Raskin (ULB)

TACAS 2007
Braga - Portugal
March 28, 2007

Automata-based approach
to model-checking

• Programs and properties are formalized as
regular languages of infinite words ;

• Any regular language of infinite words is
accepted by a nondeterministic Büchi
automaton (NBW) ;

• The verification problem: given a NBW A
(that formalizes Prg) and a NBW B (that
formalizes Prop), check if L(A) ⊆ L(B).

• The language inclusion problem for
NBW is PSpace-Complete ;

• So, the complexity is rather high but similar
(or easier than) to the complexity of many
other verification problems ;

• Nevertheless, currently there is no practical
algorithms to solve this language inclusion
problem. The usual approach through explicit
complementation is difficult.

Automata-based approach
to model-checking

Plan of the talk

• Complementation of NBW

• Simulation pre-orders and fixed points

• An improved algorithm for emptiness of
ABW

• The universality and language inclusion
problems

Complementation
of NBW

• 1961, Büchi: doubly exponential construction

• 1986, Sistla Vardi Wolper : simply exponential construction 2O(n2)

• 1988, Michel: lower bound 2O(nlogn)

• 1989, Safra: (nearly) optimal solution 2O(nlogn) construction using determinization

• 1991, Klarlund: 2O(nlogn) construction without determinization

• 1997, Kupferman Vardi : 2O(nlogn) similar to Klarlund but more modular

• 2004, Yan: slightly better lower bound (0.76n)n

• 2004, Friedgut Kupferman Vardi: slightly better upper bound (0.97n)n

A forty year Saga (M. Vardi)

• Few attempts to implement the successive procedures:

• Safra procedure have been implemented by Tasiran et
al. (1995) and Thomas et al.(2005): need of intricate
data structures and very low scalability
(6 states);

• KV procedure implemented by Gurumurthy et al.
(2003): use several optimisations (based on
simulation equivalences) but very low scalability
(6 states);

• Recently, Tabakov (2006) implemented KV with
BDDs for checking universality but very low
scalability (8 states).

Complementation
of NBW

KV construction
ABW and AcoBW

• The KV construction uses alternating Büchi word
(ABW) and alternating coBüchi word (AcoBW) automata

• Alternating automata are generalizations of
nondeterministic Büchi automata

• Let A=(Q,q0,Σ,δ,α)

• in nondeterministic automata:
δ(q,σ)= {q1,q2,..,qn}

• in alternating automata:
δ(q,σ)= {{q1,q2,..,qn},{r1,r2,...,rm},...}

• The KV construction uses alternating Büchi word
(ABW) and alternating coBüchi word (AcoBW) automata

• Alternating automata are generalizations of
nondeterministic Büchi automata

• Let A=(Q,q0,Σ,δ,α)

• in nondeterministic automata:
δ(q,σ)= {q1,q2,..,qn} equivalent to {{q1},{q2},..,{qn}}

• in alternating automata:
δ(q,σ)= {{q1,q2,..,qn},{r1,r2,...,rm},...}

KV construction
ABW and AcoBW

Run of an ABW A=(Q,q0,Σ,δ,α)
on a word w=w0w1...wn...

q0

w0

Choose {q1,q2,..,qn} ∈ δ(q0,w0)

Run of an ABW A=(Q,q0,Σ,δ,α)
on a word w=w0w1...wn...

q0

w0

q1 q2 ... qn

Run of an ABW A=(Q,q0,Σ,δ,α)
on a word w=w0w1...wn...

q0

w0

q1 q2 ... qn

Choose {r1,r2,..,rm} ∈ δ(q2,w1)

for each qi of previous layer

The run is accepting if every branch
intersects infinitely often α

Run of an ABW A=(Q,q0,Σ,δ,α)
on a word w=w0w1...wn...

q0

w0

q1 q2 ... qn

...

...

w1

...

Run of an AcoBW A=(Q,q0,Σ,δ,α)
on a word w=w0w1...wn...

q0

w0

q1 q2 ... qn

...

...

w1

The run is accepting if every branch
intersects only finitely often α

...

KV construction

Input: A an NBW

B an AcoBW that accepts the
complement of A

C an ABW that accepts the same
language as B

Output: D an NBW that accepts the
same language as C

KV construction

Input: A an NBW

B an AcoBW that accepts the
complement of A

C an ABW that accepts the same
language as B

Output: D an NBW that accepts the
same language as C

This step is
trivial
O(1)

KV construction
• Let A be an NBW with transition relation δ ;

• Let B be an AcoBW identical to A but with transition relation
δ’ defined as follows: for all q∈Q: for all σ∈Σ:

if δ(q,σ)={{q1},{q2},...,{qn}} then δ’(q,σ) ={{q1,q2,...,qn}};

• So in B, we have dualized the transition relation: a run of the
AcoBW on a word w is the tree that contains the set of all runs
of the NBW on w ;

• ... and the accepting condition: B has an accepting run (tree) on w
iff all the runs of A are rejecting ;

• So, B accepts the complement of A.

KV construction

This step is
conceptually
interesting
and costs

O(n2)

Input: A an NBW

B an AcoBW that accepts the
complement of A

C an ABW that accepts the same
language as B

Output: D an NBW that accepts the
same language as C

Accepting runs of
AcoBW

• Accepting runs of AcoBW are
memoryless (Emerson and Jutla, 1991).

• Memoryless runs are structured and that
structure can be exploited to transform an
AcoBW into an ABW (Kupferman and
Vardi, 1997).

KV construction

This step is
conceptually
simple but

costs
2O(n)

Input: A an NBW

B an AcoBW that accepts the
complement of A

C an ABW that accepts the same
language as B

Output: D an NBW that accepts the
same language as C

Accepting runs of
ABW

q0

...

...

...

level i: all paths has visited α
at least once.

...

A NBW can guess a run by maintaing pairs (S,O):
S states of a level and O⊆S states that need a visit to α.

level j: all paths has visited α
at least twice.

• Given an ABW C=(Q,q0,Σ,δ,α), the NBW that accepts the same language is
given by D=(2Qx2Q,({q0},∅), Σ,δ’,α’) where:

• for any (S,0)∈ 2Qx2Q, for any σ∈Σ:

• if O≠∅ then δ’((S,O),σ) is the set of elements {(S’,O’\α)} s.t.

O’⊆S’, ∀q∈S: ∃T∈δ(q, σ):T⊆S’, and ∀q∈O: ∃T∈δ(q, σ):T⊆O’.

• if O=∅ then δ’((S,O),σ) is the set of elements {(S’,O’\α)} s.t.

O’=S’, ∀q∈S: ∃T∈δ(q, σ):T⊆S’.

• α’=2Qx{∅}

Miyano-Hayashi
construction

• Given an ABW C=(Q,q0,Σ,δ,α), the NBW that accepts the same language is
given by D=(2Qx2Q,({q0},∅), Σ,δ’,α’) where:

• for any (S,0)∈ 2Qx2Q, for any σ∈Σ:

• if O≠∅ then δ’((S,O),σ) is the set of elements {(S’,O’\α)} s.t.

O’⊆S’, ∀q∈S: δ(q, σ)⊆S’, and ∀q∈O: δ(q, σ)⊆O’.

• if O=∅ then δ’((S,O),σ) is the set of elements {(S’,O’\α)} s.t.

O’=S’, ∀q∈S: δ(q, σ)⊆S’.

• α’=2Qx{∅}

Unfortunately, this automaton is
(usually) huge as it is constructed on

the set of locations
2Qx2Q

Miyano-Hayashi
construction

• Given an ABW C=(Q,q0,Σ,δ,α), the NBW that accepts the same language is
given by D=(2Qx2Q,({q0,∅}, Σ,δ’,α’) where:

• for any (S,0)∈ 2Qx2Q, for any σ∈Σ:

• if O≠∅ then δ’((S,O),σ) is the set of elements {(S’,O’\α)} s.t.

O’⊆S’, ∀q∈S: δ(q, σ)⊆S’, and ∀q∈O: δ(q, σ)⊆O’.

• if O=∅ then δ’((S,O),σ) is the set of elements {(S’,O’\α)} s.t.

O’=S’, ∀q∈S: δ(q, σ)⊆S’.

• α’=2Qx{∅}

Unfortunately, this automaton is
(usually) huge as it is constructed on

the set of locations
2Qx2Q

Miyano-Hayashi
construction

This explains the poor
performances reported for
current implementations

of the construction

• To check universality of A, we do not need to
construct D explicitely;

• ... we only need to check if D is empty or not;

• ... similarly to check inclusion, i.e. L(A)⊆L(B), we

do not need to construct the complement of B
but we need to check that L(A)∩Lc(B) is empty.

But, we do not need explicit
complementation ...

• To check universality of A, we do not need to
construct D explicitely;

• ... we only need to check if D is empty or not;

• ... similarly to check that L(A)⊆L(B), we do not

need to construction the complement of B but
we need to check that L(A)∩Lc(B) is empty.

But, we do not need explicit
complementation ...

How can we check efficiently the
emptiness of D ?

Emptiness of
NBW

To evaluate emptiness of A=(Q,q0,Σ,δ,α)

Check if

q0 ∈ νy . μx . (Pre(x) ∪ (Pre(y) ∩ α))

Let A= be a NBW,
≤⊆QxQ is a simulation pre-order iff

for any q1, q2, q3 ∈ Q, for any σ∈Σ,

q3

q2q1

≤ σif

Simulation pre-orders
and fixed points

1)

Let A= be a NBW,
≤⊆QxQ is a simulation pre-order iff

for any q1, q2, q3 ∈ Q, for any σ∈Σ,

q3

q2q1

≤ σif

then there exists q4 ∈ Q s.t.:

q4
σ

≤

Simulation pre-orders
and fixed points

1)

Let A= be a NBW,
≤⊆QxQ is a simulation pre-order iff

for any q1, q2, q3 ∈ Q, for any σ∈Σ,

q3

q2q1

≤ σif

then there exists q4 ∈ Q s.t.:

q4
σ

≤

Simulation pre-orders
and fixed points

and, for any q1,q2∈Q: if q1≤q2 and q2∈α then q1∈α

1)

2)

Let A= be a NBW,
≤⊆QxQ is a simulation pre-order iff

for any q1, q2, q3 ∈ Q, for any σ∈Σ,

q3

q2q1

≤ σif

then there exists q4 ∈ Q s.t.:

q4
σ

≤

Simulation pre-orders
and fixed points

and, for any q1,q2∈Q: if q1≤q2 and q2∈α then q1∈α

1)

2)

A set S⊆Q is ≤-closed iff ∀q1∈S : {q∈Q|q≤q1}⊆S

• Lemma: for any NBW A=(Q,q0,Σ,δ,α), for
any simulation pre-order ≤, for any
≤-closed S,T⊆Q:

(1) for all σ∈Σ: Pre(σ)(S) is ≤-closed;

(2) S∪T and S∩T are ≤-closed;

(3) α is ≤-closed;

Simulation pre-orders
and fixed points

Simulation pre-orders
and fixed points

q1

{q | q ≤ q1}

Simulation pre-orders
and fixed points

q1q2
σ

≤

Simulation pre-orders
and fixed points

q1q2
σ

q3

≤ ≤

Simulation pre-orders
and fixed points

q1q2
σ

q3

≤
q4

σ ≤

Simulation pre-orders
and fixed points

q1q2
σ

q3

≤
q4

σ ≤

Simulation pre-orders
and fixed points

q1q2
σ

q3

≤
q4

σ
σq5

q6
≤

q7
σ

≤

• Lemma: for any NBW A=(Q,q0,Σ,δ,α), for
any simulation pre-order ≤, for any
≤-closed S,T⊆Q:

(1) for all σ∈Σ: Pre(σ)(S) is ≤-closed;

(2) S∪T and S∩T are ≤-closed;

(3) α is ≤-closed;
So, all the sets that we manipulate in
νy . μx . (Pre(x) ∪ (Pre(y) ∩ α))

are ≤-closed.

Simulation pre-orders
and fixed points

• Lemma: for any NBW A=(Q,q0,Σ,δ,α), for
any simulation pre-order ≤, for any
≤-closed S,T⊆Q:

(1) for any σ∈Σ: Pre(σ)(S) is ≤-closed;

(2) S∪T and S∩T are ≤-closed;

(3) α is ≤-closed;
So, all the sets that we manipulate in
νy . μx . (Pre(x) ∪ (Pre(y) ∩ α))

are ≤-closed.

≤-closed sets can be represented
symbolically by their maximal

elements only

Simulation pre-orders
and fixed points

• Lemma: for any NBW A=(Q,q0,Σ,δ,α), for
any simulation pre-order ≤, for any
≤-closed S,T⊆Q:

(1) for any σ∈Σ: Pre(σ)(S) is ≤-closed;

(2) S∪T and S∩T are ≤-closed;

(3) α is ≤-closed;
So, all the sets that we manipulate in
νy . μx . (Pre(x) ∪ (Pre(y) ∩ α))

are ≤-closed.

Simulation pre-orders
and fixed points

≤-closed sets can be
represented symbolically by their

maximal elements only

≤-closed sets can be represented
symbolically by their maximal

elements only

We can potentially compute
νy . μx . (Pre(x) ∪ (Pre(y) ∩ α))

more efficiently by working on
maximal elements only.

Good news !

The NBW that results from the KV procedure
is equipped by construction

with a simulation pre-order ≤.

Idea: do not construct the huge NBW but
check emptiness directly and evaluate the

fixed point efficiently
by exploiting the ≤-pre-order.

Illustration:
emptiness of ABW

• Remember that given an ABW A=(Q,q0,Σ,δ,α), the Miano-
Hayashi construction specifies an
NBW B= (2Qx2Q,({q0},∅}),Σ,δ’,α’).

• The following relation ≤ ⊆ 2Qx2Q defined by

(S,O) ≤ (S’,O’) iff (1) (O=∅ iff O’=∅) and (2) S⊆S’ and O⊆O’

is a simulation pre-order on B.

• Note that the ≤-closure of a pair (S,O) contains an
exponential number of elements in the size of S and O!

Illustration:
emptiness of ABW

• Remember that given an ABW A=(Q,q0,Σ,δ,α), the Miano-
Hayashi construction specifies an
NBW B= (2Qx2Q,({q0},∅}),Σ,δ’,α’).

• The following relation ≤ ⊆ 2Qx2Q defined by

(S,O) ≤ (S’,O’) iff (1) (O=∅ iff O’=∅) and (2) S⊆S’ and O⊆O’

is a simulation pre-order on B.

• Note that the ≤-closure of a pair (S,O) contains an
exponential number of elements in the size of S and O!

We can check emptiness of B by
manipulating ≤-closed sets

represented by their maximal
elements only.

• Remember that given an ABW A=(Q,q0,Σ,δ,α), the Miano-
Hayashi construction specifies an
NBW B= (2QxQ, ({q0},∅}), Σ,δ’,α’).

• The following relation ≤ ⊆ 2Qx2Q defined by

(S,O) ≤ (S’,O’) iff (1) (O=∅ iff O’=∅) and (2) S⊆S’ and O⊆O’

is a simulation pre-order on B.

• Note that the ≤-closure of a pair (S,O) contains an
exponential number of elements in the size of S and O!

Illustration:
emptiness of ABW

We can check emptiness of B by
manipulating ≤-closed sets

represented by their maximal
elements only.

This potentially saves us an
exponential !

• Remember that given an ABW A=(Q,q0,Σ,δ,α), the Miano-
Hayashi construction specifies an
NBW B= (2QxQ, ({q0},∅}), Σ,δ’,α’).

• The following relation ≤ ⊆ 2QxQ defined by

(S,0) ≤ (S’,O’) iff (1) (O=∅ iff O’=∅) and (2) S⊆S’ and O⊆O’

is a simulation pre-order on B.

• Note that the ≤-closure of a pair (S,O) contains an
exponential number of elements in the size of S and O!

We can check emptiness of B by
manipulating ≤-closed sets

represented by their maximal
elements only.

This potentially saves us an
exponential !

Illustration:
emptiness of ABW

We have a polynomial time
algorithm that

given (S,O) and σ∈Σ, compute a

compact representation of
Pre(σ)(↓(S,O))

Input: A an NBW

B an AcoBW that accepts the
complement of A

C an ABW that accepts the same
language as B

Output: D an NBW that accepts the
same language as C

Practical evaluation
Universality

Implicit

Implicit

Implicit

Input: A an NBW

B an AcoBW that accepts the
complement of A

C an ABW that accepts the same
language as B

Output: D an NBW that accepts the
same language as C

Practical evaluation
Universality

Implicit

Implicit

Implicit

We evaluate the fixed point for
emptiness directly, that is, without
constructing the automaton specified

by the construction.
We evaluate this fixed point by

manipulating ≤-closed sets through
their maximal elements only.

Practical evaluation

• We have implemented our new algorithm to check
universality of NBW;

• Evaluation on a randomized model proposed
by Tabakov and Vardi (2005) that generates random
NBW (two parameters: r,f);

• On that randomized model Tabakov’s BDD
implementation can handle 6 states on the most
difficult instances with median time <20s.

Table 1. Automata size for which the median execution time for checking universality is less

than 20 seconds. The symbol ∝ means more than 1500.

f
r 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.1 ∝ ∝ ∝ 550 200 120 60 40 30 40 50 50 70 90 100

0.3 ∝ ∝ ∝ 500 200 100 40 30 40 70 100 120 160 180 200

0.5 ∝ ∝ ∝ 500 200 120 60 60 90 120 120 120 140 260 500

0.7 ∝ ∝ ∝ 500 200 120 70 80 100 200 440 1000 ∝ ∝ ∝
0.9 ∝ ∝ ∝ 500 180 100 80 200 600 ∝ ∝ ∝ ∝ ∝ ∝

experiments, we choose r0 = r1, and denote the transition density by r. The model
contains a second parameter: the density f of accepting states. There is only one initial
state, and the number m of accepting states is linear in the total number of states, as

determined by f = m
|Loc| . The accepting states themselves are chosen uniformly at ran-

dom. Observe that since the transition relation is not always total, automata with f = 1
are not necessarily universal.

Tabakov and Vardi have studied the space of parameter values for this model and

argue that “interesting” automata are generated by the model as the two parameters r
and f vary. They also study the density of universal automata in [Tab06].

Performance comparison We have implemented our algorithm to check the universal-

ity of randomly generated NBW. The code is written in Cwith an explicit representation

for characteristic functions, as arrays of integers. All the experiments are conducted on

a biprocessor Linux station (two 3.06Ghz Intel Xeons with 4GB of RAM).
Fig. 1 shows as a function of r (transition density) and f (density of accepting

states) the median execution times for testing universality of 100 random automata

with |Loc| = 30. It shows that the universality test was the most difficult for r = 1.8
and f = 0.1 with a median time of 11 seconds. The times for r ≤ 1 and r ≥ 2.8 are
not plotted because they were always less than 250ms. A similar shape and maximal
median time is reported by Tabakov for automata of size 6, that is for automata that are
five times smaller [Tab06]. Another previous work reports prohibitive execution times

for complementingNBW of size 6, showing that explicitly constructing the complement
is not a reasonable approach [GKSV03].

To evaluate the scalability of our algorithm, we have ran the following experiment.

For a set of parameter values, we have evaluated the maximal size of automata (mea-

sured in term of number of locations) for which our algorithm could analyze 50 over
100 instances in less than 20 seconds. We have tried automata sizes from 10 to 1500,
with a fine granularity for small sizes (from 10 to 100 with an increment of 10, from
100 to 200 with an increment of 20, and from 200 to 500 with an increment of 30) and
a rougher granularity for large sizes (from 500 to 1000 with an increment of 50, and
from 1000 to 1500 with an increment of 100).

The results are shown in Fig. 2, and the corresponding values are given in Table 1.

The vertical scale is logarithmic. For example, for r = 2 and f = 0.5, our algorithm
was able to handle at least 50 automata of size 120 in less than 20 seconds and was not

For r=2, f=0.5, Tabakov can handle 8 states while
our algorithm handles 120 states in less than 20s.

Practical evaluation
Universality

Median Time (s)

12

8

4

0

f -
ac
ce
pti
ng
de
ns
ity

0.1

0.3

0.5

0.7

0.9
r - transition density

1.4
1.8

2.2
2.6

Median execution time

Fig. 1.Median time to check universality

of 100 automata of size 30 for each
sample point.

Number of locations

100

1000

10000

f
-
accepting

density 0.1

0.3

0.5

0.7

0.9

r - transition densit
y

0.2 0.6 1 1.4 1.8 2.2 2.6 3

∝

1200

800

400

0

Fig. 2. Automata size for which the

median execution time to check

universality is less than 20 sec-

onds (log scale).

able to do so for automata of size 140. In comparison, Tabakov and Vardi have studied
the behavior of Kupferman-Vardi and Miyano-Hayashi constructions for different im-

plementation schemes. We compare with the performances of their symbolic approach

which is the most efficient. For the same parameter values (r = 2 and f = 0.5), they
report that their implementation can handle NBW with at most 8 states in less than

20 seconds [Tab06]. For the easier instances r = 2.5 and f = 0.9, they can analyze
automata of size at most 200 while we go over 1500 states.

In Fig. 3, we show the median execution time to check universality for relatively

difficult instances (r = 2 and f vary from 0.3 to 0.7). The vertical scale is logarithmic,
so the behavior is roughly exponential in the size of the automata. Similar analyzes are

reported in [Tab06] but for sizes below 10.
Finally, we give in Fig. 4 the distribution of execution times for 100 automata of

size 50 with r = 2.2 and f = 0.5, so that roughly half of the instances are universal.
Each point represents one automaton, and one point lies outside the figure with an exe-

cution time of 675s for a non universal automaton. The existence of very few instances
that are very hard was often encountered in the experiments, and this is why we use the

median for the execution times. If we except this hard instance, Fig. 4 shows that uni-

versal automata (average time 350ms) are slightly easier to analyze than non-universal
automata (average time 490ms). This probably comes from the fact that we stop the

computation of the (greatest) fixed point whenever the initial state is no more!univ-less

than the successive approximations. Indeed, in such case, since the approximations are

!univ-decreasing, we know that the initial state would also not lie in the fixed point. Of

course, this optimization applies only for non-universal automata.

7 Language Inclusion for Büchi automata

LetA1 = 〈Loc1, ι1, Σ, δ1, α1〉 andA2 be two NBW defined on the same alphabetΣ for

which we want to check language inclusion: L(A1) ⊆? L(A2). To solve this problem,
we check emptiness of L(A1)∩Lc(A2). As we have seen, we can use the Kupferman-

 To compare,
Tabakov’s BDD
implementation was
able to handle
automata of size 6 on
the entire state space
(within 20s as in our
expermients).

Practical evaluation
Universality

Conclusions

• In the automata-based approach to model-checking:
keep implicit the complementation step and check
for emptiness efficiently by exploiting simulation
pre-orders that exists by construction ;

• Implementation for universality problem shows
promising results: several orders of magnitude
on the randomized model !

Future Works

• Implement and evaluate the new
language inclusion algorithm ;

• Evaluate beyond the randomized model ;

• Revisit the LTL model-checking problem:
do not construct the NBW of the
negation of the formula but use ABW and
check directly for emptiness.

