
Chapter 16

Higher-Order Uni�ation and Mathing

Gilles Dowek

Seond readers: Jean Goubault-Larreq and Gopalan Nadathur.

Contents

1 Type Theory and Other Set Theories . 1011

1.1 Naive Set Theory . 1011

1.2 Plotkin-Andrews Quotient . 1012

1.3 Type Theory . 1013

1.4 Churh's Type Theory . 1015

1.5 Equational Higher-order Uni�ation . 1017

1.6 Expetations and Ahievements . 1018

2 Simply Typed �-alulus . 1018

2.1 Types . 1018

2.2 Terms . 1019

2.3 Substitution . 1020

2.4 Redution . 1022

2.5 Uni�ation . 1023

3 Undeidability . 1024

3.1 Higher-order Uni�ation . 1024

3.2 Seond-order Uni�ation . 1026

4 Huet's Algorithm . 1028

4.1 A \Generate and Test" Algorithm . 1028

4.2 Huet's Algorithm . 1030

4.3 Regular Trees, Regular Solutions . 1034

4.4 Equational Higher-order Uni�ation . 1035

5 Sopes Management . 1035

5.1 Mixed Pre�xes . 1036

5.2 Combinators . 1037

5.3 Expliit Substitutions . 1039

5.4 De Bruijn Indies . 1040

6 Deidable Subases . 1041

6.1 First-order Uni�ation . 1041

6.2 Patterns . 1041

6.3 Monadi Seond-order Uni�ation . 1042

6.4 Context Uni�ation . 1043

6.5 Seond-order Uni�ation with Linear Ourrenes of Seond-order Variables . . 1043

6.6 Pattern Mathing . 1044

HANDBOOK OF AUTOMATED REASONING

Edited by Alan Robinson and Andrei Voronkov

 2001 Elsevier Siene Publishers B.V. All rights reserved

7 Uni�ation in �-alulus with Dependent Types . 1049

7.1 �-alulus with Dependent Types . 1049

7.2 Uni�ation in �-alulus with Dependent Types 1050

7.3 Closed Solutions . 1052

7.4 Automated Theorem Proving as Uni�ation . 1052

Bibliography . 1054

Index . 1061

Higher-Order Unifiation and Mathing 1011

1. Type Theory and Other Set Theories

After the disovery of reasonably eÆient proof searh methods for �rst-order logi

in the middle of the sixties, a next step seemed to be the extension of these methods

to higher-order logi (also alled simple type theory), i.e. a logi allowing quanti�-

ation over sets (i.e. prediates) and funtions. Indeed, many problems require suh

a quanti�ation for a natural expression. A strong advoate for the automatization

of higher-order logi was J.A. Robinson who wrote in 1968 that \its adoption, in

plae of the restrited prediate alulus [i.e. �rst-order logi℄, as the basi formal-

ism used in mehanial theorem proving systems, [was℄ an absolute neessary step if

suh system [were℄ ever going to be developed to the point of providing a genuinely

useful mathematial servie, or of helping to bring a deeper understanding of the

proess of mathematial thinking" [Robinson 1969℄.

Replying to Robinson, M. Davis realled that higher-order logi was just one

among several variants of set theory that all permit to reason about sets and fun-

tions, and that the hoie of this partiular variant ould only be justi�ed if it was

more adequate for automatization than others: \Sine higher-order logis are just

notational variants of set theories formalized in �rst-order logi, the question of the

use of higher-order formalisms in mehanial theorem-proving is simply a matter

of whether or not suh formalisms suggest useful algorithms" [Davis 1969℄.

As we shall see, it is indeed the ase that higher-order logi is, so far, more

adequate for automatization than other variants of set theory.

1.1. Naive Set Theory

Naive set theory permits the de�nition of sets in omprehension, i.e. by a harater-

isti property of their elements. For instane we an de�ne the interval of numbers

between 4 and 6 by the property z 2 R^ 4 � z^ z � 6. The omprehension sheme

is thus stated

8x

1

::: 8x

n

9y 8z ((z 2 y), P)

where P is an arbitrary proposition, z a variable, x

1

; :::; x

n

the free variables of P

exept z and y a fresh variable, i.e. a variable di�erent from z and not ourring in

P .

For example, an instane of this sheme is

9y 8z ((z 2 y), (z 2 R ^ 4 � z ^ z � 6))

Then, another axiom, the extensionality axiom, de�nes the equality of two sets:

two sets are equal if they have the same elements

8x 8y ((8z (z 2 x, z 2 y))) x = y)

If we want a notation for the objets whose existene is asserted by the ompre-

hension sheme, we skolemize it and introdue funtion symbols f

x

1

;:::;x

n

;z;P

. The

1012 Gilles Dowek

skolemized omprehension sheme

8x

1

::: 8x

n

8z ((z 2 f

x

1

;:::;x

n

;z;P

(x

1

; :::; x

n

)), P)

is then alled onversion sheme. If we write the term f

x

1

;:::;x

n

;z;P

(x

1

; :::; x

n

) as

fz j Pg (suh a term is alled an abstration), the onversion sheme is written

8x

1

::: 8x

n

8z ((z 2 fz j Pg), P)

With this onvention, the proposition P in an abstration fz j Pg annot ontain

further abstrations (beause the omprehension sheme is only stated for propo-

sitions ontaining no Skolem symbols). If we write fz j (t

1

=x

1

; :::; t

n

=x

n

)Pg for the

term f

x

1

;:::;x

n

;z;P

(t

1

; :::; t

n

), where the terms t

1

; :::; t

n

may ontain abstrations, the

propositions in abstrations may then ontain further abstrations, but unlike the

ourrenes of z in the proposition P , the ourrenes of z in the terms t

1

; :::; t

n

are

not bound by the abstration fz j (t

1

=x

1

; :::; t

n

=x

n

)Pg. In fat, it is easy to prove

that the theory allowing nested abstrations binding all the variables is equivalent

(see, for instane, [Henkin 1953, Dowek 1995℄). Thus, we an onsider the onstru-

tion fz j Pg as a basi term onstrution, and state the onversion axiom

8x

1

::: 8x

n

8z ((z 2 fz j Pg), P)

1.2. Plotkin-Andrews Quotient

Using a standard proof-searh method with suh a onversion sheme is rather

ineÆient. Indeed, if we want to prove, for instane, the proposition

2 2 fx j x = 2 _ x = 3g

using the onversion sheme, we an transform it into the equivalent one

2 = 2 _ 2 = 3

and onlude with the axioms of equality. But, going in the wrong diretion, we

may also transform this proposition into the equivalent one

2 2 fx j x 2 fy j y = 2g _ x = 3g

Thus, using the onversion axiom, a proof searh algorithm ould spend most of its

time uselessly expanding and reduing propositions.

This remark reminds that of G. Plotkin, who notied in 1972 that with the

assoiativity axiom

8x 8y 8z ((x + y) + z = x+ (y + z))

a proof searh method ould spend most of its time uselessly rearranging brakets

[Plotkin 1972℄. More generally, in any equational theory, a proof searh method

may spend too muh time randomly replaing equals by equals.

Higher-Order Unifiation and Mathing 1013

The well-know solution proposed by Plotkin is to identify propositions equivalent

modulo the ongruene generated by the axioms. When there is a onuent and

terminating rewrite system suh that two propositions are equivalent if and only if

they have the same normal forms, normal forms an be hosen as representatives of

their equivalene lasses in the quotient. For instane, with the assoiativity axiom,

we identify propositions with their normal forms for the rewrite system

(x+ y) + z � x+ (y + z)

This way, the assoiativity axiom is equivalent to the proposition

8x 8y 8z (x+ (y + z) = x+ (y + z))

thus it is a simple onsequene of the axioms of equality and it an be dropped.

On the other hand, a uni�er of two propositions is now a substitution making

the propositions equal modulo the equivalene (suh a problem is alled equational

uni�ation). For instane the propositions

a = X + d and a = b+ (+ d)

are uni�able (while they are not for the usual notion of uni�ation) beause sub-

stituting X by b+ yields

a = (b+) + d

whih redues to

a = b+ (+ d)

In other words, the assoiativity axiom is now mixed with the uni�ation algorithm.

A similar program: mixing the onversion axiom and uni�ation algorithm was

proposed in 1971 by P.B. Andrews, in the ontext of type theory: \[First-order

resolution℄ is an elegant ombination of substitution and ut [...℄. An important

open problem onerning resolution in type theory is to �nd an equally elegant way

of ombining [substitution℄, [onversion℄ and [ut℄" [Andrews 1971℄.

To ahieve this goal in naive set theory, we would onsider the rewrite system

t 2 fz j Pg� (t=z)P

identify propositions with their normal forms and drop the onversion axiom. A

uni�er of two propositions would be a substitution making the propositions having

the same normal form.

1.3. Type Theory

Unfortunately, naive set theory has several drawbaks: �rst, as is well-known, it is

inonsistent, seond: the above rewrite system is not terminating.

Inonsisteny is given by Russell's paradox. The proposition \the set of sets that

do not belong to themselves belongs to itself"

fx j :x 2 xg 2 fx j :x 2 xg

1014 Gilles Dowek

is equivalent, by the onversion sheme, to its negation. Thus, both it and its

negation are provable. This proposition is also a ounter-example to termination,

as it rewrites to its negation.

To avoid Russell's paradox, and to get a (hopefully) onsistent theory of sets,

we an restrit naive set theory in two ways. The �rst method is to restrit the

omprehension sheme to some partiular propositions (for instane Zermelo's set

theory permits four onstrutions : pairs, unions, power sets and subsets), the other

is to move to a many-sorted theory with a sort (alled 0) for atoms a sort (alled

1) for sets of atoms, a sort (alled 2) for sets of sets of atoms, et. and allow

propositions of the form t 2

n

u only when t is of sort n and u of sort n + 1

(whih permits to onstrut unions, power sets and subsets but disallows arbitrary

pairs). The formalism obtained this way is alled higher-order logi or simple type

theory. The original formulation of A.N. Whitehead and B. Russell [Whitehead and

Russell 1910-1913, 1925-1927℄ has been modi�ed by L. Chwistek, F. Ramsey and

�nally by A. Churh [Churh 1940℄.

Although, as remarked by W.V.O. Quine [Quine 1969℄, the di�erene between

these two methods is rather shallow (as a many-sorted theory an always be rela-

tivized as a single-sorted one, and introduing sorts is thus also a way to restrit

the omprehension sheme to relativizations of sorted propositions), it is important

for automatization.

� First, as some meaningless propositions suh as N 2 N are forbidden by the

syntax, they are systematially avoided by the proof searh method.

� Then, the rewrite system terminates in higher-order logi and not set theory.

Indeed, given a set A and a proposition P , set theory allows to de�ne the set

fz 2 A j Pg of the members of A verifying the proposition P , and the rewrite

rule assoiated to this restrition of the omprehension sheme

t 2 fz 2 A j Pg� t 2 A ^ (t=z)P

does not terminate. A ounter-example, whih is an adaptation of Russell's

paradox is Crabb�e's proposition C

fx 2 A j :x 2 xg 2 fx 2 A j :x 2 xg

This proposition rewrites to

fx 2 A j :x 2 xg 2 A ^ :fx 2 A j :x 2 xg 2 fx 2 A j :x 2 xg

i.e. to B ^ :C where B is the proposition fx 2 A j :x 2 xg 2 A.

Thus, the Plotkin-Andrews quotient annot be applied, in a simple way, to

set theory, while it an be applied to higher-order logi. Equational uni�ation

modulo onversion is alled higher-order uni�ation .

� At last, most proof-searh method rely on ut elimination (sometimes taking

the form of Herbrand's theorem). Both higher-order logi and set theory in-

trodue more uts than those already there in �rst-order logi with no axioms.

These uts an be eliminated in higher-order logi [Takahashi 1967, Prawitz

Higher-Order Unifiation and Mathing 1015

1968, Girard 1970, Girard 1972℄ but, Crabb�e's ounter-example shows that they

annot be eliminated in set theory. Indeed, Crabb�e's proposition C rewrites to

B ^ :C. The proposition :B has the following natural dedution proof

axiom

B;C ` B ^ :C

^-elim

B;C ` :C

axiom

B;C ` C

:-elim

B;C ` ?

:-intro

B ` :C

axiom

B ` B

axiom

B;C ` B ^ :C

^-elim

B;C ` :C

axiom

B;C ` C

:-elim

B;C ` ?

:-intro

B ` :C

^-intro

B ` C

:-elim

B ` ?

:-intro

` :B

that ontains a ut (the negation is �rst introdues then eliminated). But it is

easy to hek that this proposition does not have a ut-free proof (notie that

after eliminating twie a ut in the proof above we get bak the same proof).

See [Halln�as 1983, Ekman 1994℄ for a more detailed explanation.

1.4. Churh's Type Theory

Instead of onsidering only sets, Churh's type theory onsiders also relations of

an arbitrary number of arguments (unary relations are sets, zero-ary relations are

naturally identi�ed with propositions). Then, funtions are primitive objets and

are distint from their graphs that are relations. Funtions of several arguments are

urried, for instane the funtion mapping two numbers n and m to n +m + 2 is

identi�ed with the funtion mapping n to the funtion mapping m to n +m + 2.

Just as we have a membership symbol 2 to build a proposition from two terms in

set theory, we have an appliation symbol � to build a term from two terms. The

term �(t; u) is written (t u). At last, relations are expressed as funtions mapping

their arguments to a zero-ary relation i.e. a proposition. For instane, the relation

� is expressed as the funtion mapping a and b to the proposition a � b. Thus, if

A is a set (unary relation), the notation x 2 A is an abbreviation for (A x), i.e.

�(A; x).

The sorts of the system are alled simple types, they ontain two base types � for

atoms and o for zero-ary relations (propositions), and whenever T and U are two

types, T ! U is also a type (the type of funtions mapping objets in T to objets

in U).

As we have a omprehension sheme for sets and relations, we have a ompre-

hension sheme for funtions

8x

1

::: 8x

n

9f 8y

1

::: 8y

p

((f y

1

::: y

p

) = t)

and an extensionality axiom for funtions

8f 8g ((8x (f x) = (g x))) f = g)

Skolemizing the omprehension sheme yields an expliit language for funtions

where the funtion mapping y

1

; :::; y

p

to t is written y

1

; :::; y

p

7! t. Again, although

1016 Gilles Dowek

the skolemized omprehension sheme provides only suh terms when t does not

ontain Skolem symbols, it is easy to prove that the theory allowing suh nested

abstrations is equivalent (see, for instane, [Henkin 1953, Dowek 1995℄). Then,

urried funtions of p arguments an be written y

1

7! (:::y

p

7! t:::). Following

Churh's original notation, the term x 7! t is written �x t. The onversion axiom,

alled �-onversion axiom is then stated

8x 8y

1

::: 8y

p

((�x t) x) = t

Notie that the funtional omprehension sheme, asserts the existene of very few

funtions. For instane, if the atoms are taken to be natural numbers and the

language ontains a symbol 0 of type � and S of type � ! �, for funtions of type

�! � the onversion sheme only asserts the existene of the onstant funtions and

the funtions adding a onstant to their argument. Similarly, these funtions are the

only ones that are expliitly de�nable by a term (e.g. �x S(S(0)) and �x S(S(x))).

For instane, the omprehension sheme does not assert the existene of the funtion

� mapping 0 to 0 and the other natural numbers to 1. In ontrast, the graph of this

funtion (whih is a binary relation, i.e. an objet of type �! �! o) an easily be

de�ned G = �x �y ((x = 0 ^ y = 0) _ (:(x = 0) ^ (y = 1))). This motivates the

introdution of another axiom: the desriptions axiom

9D 8x ((9

1

y (x y))) (x (D x)))

where 9

1

y P (y) is a proposition expressing the existene and uniity of an objet

verifying the property P , i.e. the proposition

9y P (y) ^ 8y

1

8y

2

((P (y

1

) ^ P (y

2

))) y

1

= y

2

)

When skolemizing this axiom, we introdue a Skolem symbol alled the desrip-

tions operator and the axiom

8x (9

1

y (x y))) (x (D x))

This desriptions operator, that piks the element in every one element set, an

be extended to a hoie operator (also alled Hilbert's " operator, or Bourbaki's

� operator) that piks an element in any nonempty set. In this ase the axiom is

rephrased

8x (9y (x y))) (x (D x))

and it is a form of the axiom of hoie.

The desriptions operator and axiom permit to relate the funtional relations and

the funtions. The funtion � above an be de�ned by the term �x (D (�y (G x y))).

Then we an prove, for instane that �(2) = 1. Notie however that this theorem

is not a onsequene of the onversion axiom alone, the desriptions axiom is also

needed.

When searhing for proofs in higher-order logi, we transform the �-onversion

axiom in a rewrite rule alled �-redution

((�x t) u)� (u=x)t

Higher-Order Unifiation and Mathing 1017

and we also take another rewrite rule alled �-redution whih is a onsequene of

the extensionality axiom

�x (t x)� t provided x does not appear free in t

The extensionality axiom itself and the desriptions axiom remain as axioms of the

theory.

1.1. Remark. In the presentation above, when we want to substitute the prediate

Q(:; :) for the variable P in the proposition P (a) ^ P (b) to get the proposition

Q(a; a)^Q(b; b), we �rst onstrut a term �z Q(z; z), then we substitute it for the

variable P yielding (�z Q(z; z))(a) ^ (�z Q(z; z))(b) and at last we prove that this

term is equivalent to Q(a; a) ^Q(b; b), or we redue it to Q(a; a) ^Q(b; b).

An alternative, frequently used in seond-order logi [Churh 1956, Goldfarb

1981, Farmer 1988, Krivine 1993℄, is to a de�ne a substitution operation

(Q(x; x)=P (x))A in suh a way that (Q(x; x)=P (x))(P (a)^P (b)) is Q(a; a)^Q(b; b).

This way the redution is inluded in the de�nition of substitution.

1.5. Equational Higher-order Uni�ation

Higher-order uni�ation is equational uni�ation modulo ��-equivalene. As re-

marked above, as the funtion � is de�ned with the desriptions operator, the

proposition �(2) = 1 needs the desriptions axiom to be proved and the term �(2)

does not redue to the term 1. Thus, we may want to extend the rewrite system

above, for instane with rules

�(0)� 0

�(S(x))� S(0)

In the same way, we may want to add rewrite rules for addition (whih is also

de�ned using the desriptions operator)

(+ 0 y)� y

(+ (S x) y)� (S (+ x y))

A rather general extension is to onsider rewrite rules for the reursor R (whih is

also de�ned using the desriptions operator [Andrews 1986℄)

(R x f 0)� x

(R x f (S y))� (f y (R x y))

This rewrite system is alled G�odel system T [G�odel 1958, Girard, Lafont and

Taylor 1989℄.

Equational uni�ation modulo a rewrite system ontaining �, � and other rules

like the ones above is alled equational higher-order uni�ation.

1018 Gilles Dowek

1.6. Expetations and Ahievements

Initiated in the sixties, the searh for an automated theorem proving method for

higher-order logi was motivated by big expetations. \Providing a genuinely useful

mathematial servie" is one of the goals mentioned in Robinson's quotation above

(although this quotation is still moderated for the sixties). With the passing of

time, we know that fully automated theorem proving methods have not, or very

rarely, permitted to solve really diÆult mathematial problems.

On the other hand, automated theorem proving methods have found other �elds

where they have provided genuinely useful servies (logi programming, dedutive

data bases, et.). The major appliations of proof searh in higher-order logi are

higher-order logi programming and logial frameworks (�-Prolog [Nadathur and

Miller 1998℄, Elf [Pfenning 1991a℄, Isabelle [Paulson 1991℄, et., see also [Pfenning

2001℄, Chapter 17 of this Handbook) and tools to prove easy but umbersome

lemmas in interative proof onstrution systems, see [Barendregt and Geuvers

2001℄ (Chapter 18 of this Handbook).

Besides automated theorem proving, higher-order uni�ation has also been used

to design of type reonstrution algorithms for some programming languages

[Pfenning 1988℄, in omputational linguistis [Miller and Nadathur 1986, Dalrymple,

Shieber and Pereira 1991℄, program transformation [Huet and Lang 1978, Hannan

and Miller 1988, Hagiya 1990℄, higher-order rewriting [Nipkow 1991, Nipkow and

Prehofer 1998, Mayr and Nipkow 1998℄, proof theory [Parikh 1973, Farmer 1991b℄,

et.

2. Simply Typed �-alulus

In this setion, we give the de�nitions and elementary properties of simply typed

�-alulus whih is the term-language of higher-order logi. The proofs of these

properties an be found in [Barendregt 1984, Hindley and Seldin 1986, Krivine

1993℄.

2.1. Types

We onsider a �nite set whose elements are alled atomi types.

2.1. Definition. (Types)

Types are indutively de�ned by:

� atomi types are types,

� if T and U are types then T ! U is a type.

Notation The expression T

1

! T

2

! ::: ! T

n

! U is a notation for the type

T

1

! (T

2

! :::! (T

n

! U):::).

Higher-Order Unifiation and Mathing 1019

2.2. Definition. (Size of a type)

The size of a type is de�ned as follows

� jT j = 1 if T is atomi,

� jT ! U j = jT j+ jU j.

2.3. Definition. (Order of a type)

If T is a type, the order of T is de�ned by:

� o(T) = 1 if T is atomi,

� o(T

1

! T

2

) = maxf1 + o(T

1

); o(T

2

)g.

2.2. Terms

We onsider a �nite set of onstants, to eah onstant is assigned a type. We assume

that we have at least one onstant in eah atomi type. This assumption orresponds

to the fat that we do not allow empty types.

For eah type, we onsider an in�nite set of variables. Two di�erent types have

disjoint sets of variables.

2.4. Definition. (�-terms)

�-terms are indutively de�ned by:

� onstants are terms,

� variables are terms,

� if t and u are two terms then (t u) (i.e. �(t; u)) is a term,

� if x is a variable and t a term then �x t is a term.

Notation The expression (u v

1

::: v

n

) is a notation for the term (:::(u v

1

) ::: v

n

).

2.5. Definition. (Size of a term)

The size of a term is de�ned as follows

� jxj = jj = 1,

� j(u v)j = juj+ jvj,

� j�x uj = juj.

2.6. Definition. (Type of a term)

A term t is said to have the type T if either:

� t is a onstant of type T ,

� t is a variable of type T ,

� t = (u v) and u has type U ! T and v has type U for some type U ,

� t = �x u, the variable x has type U , the term u has type V and T = U ! V .

A term t is said to be well-typed if there exists a type T suh that t has type T .

In this ase T is unique and is alled the type of t.

1020 Gilles Dowek

2.7. Remark. In this hapter, we use an expliitly typed �-alulus. For instane,

the term �x x has a single type T ! T where T is the type of the variable x.

We ould alternatively have used a type assignment system, with a single lass of

variables and rules assigning types to terms, for instane any type of the form

T ! T to the term �x x.

In the rest of this hapter we onsider only well-typed terms.

2.3. Substitution

2.8. Definition. (Variables, free variables)

Let t be a term, the set V ar(t) is the set of all variables ourring in t, it is

de�ned by indution on the struture of t by:

� V ar() = ;,

� V ar(x) = fxg,

� V ar((t u)) = V ar(t) [V ar(u),

� V ar(�x t) = V ar(t) [fxg.

In ontrast, the set FV ar(t) is the set of the variables ourring freely in t, it is

de�ned by indution on the struture of t by:

� FV ar() = ;,

� FV ar(x) = fxg,

� FV ar((t u)) = FV ar(t) [FV ar(u),

� FV ar(�x t) = FV ar(t) n fxg.

A term with no free variables is alled a losed term.

2.9. Example. The variable x ours in the terms �x x, �x y and �y x, but it

ours freely only in the third of these terms.

2.10. Definition. (Substitution)

A substitution is a �nite set of pairs fhx

1

; t

1

i; :::; hx

n

; t

n

ig where for eah i, x

i

is

a variable and t

i

a term of the same type and suh that if hx; ti and hx; t

0

i are both

in this set then t = t

0

. Suh a substitution is written t

1

=x

1

; :::; t

n

=x

n

.

We now want to de�ne the operation of substituting the terms t

1

; :::; t

n

for the

variables x

1

; :::; x

n

in a term u. A �rst attempt leads to the following de�nition.

2.11. Definition. (Replaement in a term)

If � = t

1

=x

1

; :::; t

n

=x

n

is a substitution and t a term, then the term h�it is de�ned

as follows

� h�i = ,

� h�ix

i

= t

i

and h�ix = x, if x is a variable not among x

1

; :::; x

n

,

� h�i(t u) = (h�it h�iu),

� h�i(�x t) = �x h�it,

Higher-Order Unifiation and Mathing 1021

This notion of replaement has two drawbaks: �rst if we replae the variable x

by the variable y in the term �x x we get the term �x y, while the variable x is

bound in the term �x x, and thus we would rather expet the term �x x. Then if

we replae the variable x by the variable y in the term �y x we get the term �y y

where the variable y has been aptured, we would rather want to get the term �z y.

Nevertheless, this notion of replaement is useful in some situations. For instane,

it will be used in setion 5.3 and it is also useful to de�ne the notion of equivalene

of two terms modulo bound variable renaming (�-equivalene).

2.12. Definition. (�-equivalene)

The �-equivalene of two terms is indutively de�ned by:

� � ,

� x � x,

� (t u) � (t

0

u

0

) if t � t

0

and u � u

0

,

� �x t � �y u if hz=xit � hz=yiu for some variable z di�erent from x and y and

ourring neither in t nor in u.

2.13. Example. The terms �x x and �y y are �-equivalent.

2.14. Proposition. �-equivalene is an equivalene relation. Moreover, the opera-

tions on terms (appliation and abstration with respet to a variable) are ompatible

with this relation. Thus, they are de�ned on equivalene lasses.

In the following we shall identify �-equivalent terms, i.e. onsider terms as rep-

resentatives of their �-equivalene lass.

Now, we an de�ne the substitution operation. To avoid apture, when we sub-

stitute the variable y for the variable x in the term �y x, we need to rename the

bound variable y, and get for instane the term �z y. The hoie of the variable z is

purely arbitrary, thus the substitution operation is in fat de�ned on terms modulo

�-equivalene, i.e. on �-equivalene lasses.

2.15. Definition. (Substitution in a term)

If � = t

1

=x

1

; :::; t

n

=x

n

is a substitution and t a term then the term �t is de�ned

as follows

� � = ,

� �x

i

= t

i

and �x = x, if x is a variable not among x

1

; :::; x

n

,

� �(t u) = (�t �u),

� �(�x u) = �y �(y=x)u, where y is a fresh variable, with the same type as x,

i.e. a variable that does not our in t nor in t

1

; :::; t

n

and is di�erent from

x

1

; :::; x

n

.

2.16. Proposition. If t is a term of type T , x is a variable of type U and u a

term of type U then the term (u=x)t has type T .

1022 Gilles Dowek

2.17. Definition. (Composition of substitutions)

Let � and �

0

two substitutions and x

1

; :::; x

n

be the variables bound by one

substitution or the other. We let

� Æ �

0

= ��

0

x

1

=x

1

; :::; ��

0

x

n

=x

n

2.18. Definition. (More general)

A substitution �

1

is said to be more general than a substitution �

2

(�

1

� �

2

) if

there exists a substitution � suh that �

2

= � Æ �

1

.

2.19. Definition. (Size of a substitution)

The size of a substitution t

1

=x

1

; :::; t

n

=x

n

is de�ned as

jt

1

=x

1

; :::; t

n

=x

n

j = jt

1

j+ :::+ jt

n

j

2.4. Redution

2.20. Definition. (��-redution)

The ��-redution (in one step), written �, is indutively de�ned by:

� �: ((�x t) u)� (u=x)t ,

� �: �x (t x)� t if x is not free in t,

� �: if u� u

0

then (t u)� (t u

0

),

� �: if t� t

0

then (t u)� (t

0

u),

� �: if t� t

0

then �x t� �x t

0

.

The ��-redution (in several steps), written �

�

, is the reexive-transitive losure

of the relation �, it is indutively de�ned by:

� if t� u, then t�

�

u,

� t�

�

t,

� t�

�

u and u�

�

v then t�

�

v.

2.21. Proposition. If a term t has type T and t redues to u then u has type T .

2.22. Proposition. Substitution and redution ommute, i.e. if t �

�

u then

(v=x)t�

�

(v=x)u.

2.23. Theorem. The ��-redution relation is strongly normalizable and onu-

ent on typed terms, and thus eah term has a unique ��-normal form modulo �-

onversion.

2.24. Proposition. Let t be a normal well-typed term of type T

1

! ::: ! T

n

!

U (U atomi), the term t has the form

t = �x

1

::: �x

m

(y u

1

::: u

p

)

where m � n and y is a onstant or a variable.

The symbol y is alled the head symbol of the term.

Higher-Order Unifiation and Mathing 1023

2.25. Definition. (Long normal form) If t = �x

1

::: �x

m

(y u

1

::: u

p

) is a normal

term of type T

1

! :::! T

n

! U (U atomi) (m � n) then its long normal form is

the term

t

0

= �x

1

::: �x

m

�x

m+1

::: �x

n

(y u

0

1

::: u

0

p

x

0

m+1

::: x

0

n

)

where u

0

i

is the long normal form of u

i

and x

0

i

is the long normal form of x

i

.

This de�nition is made by indution on a pair whose �rst omponent is the size

of the term and the seond the size of its type.

The long normal form of an arbitrary term is that of its normal form.

2.26. Remark. The �-normal form of a term is its normal form for the following

rewrite system whih is also strongly normalizing and onuent.

� �: ((�x t) u)�

�

(u=x)t,

� �: if u�

�

u

0

then (t u)�

�

(t u

0

),

� �: if t�

�

t

0

then (t u)�

�

(t

0

u),

� �: if t�

�

t

0

then �x t�

�

�x t

0

.

Beause �-redution an be delayed with respet to �-redution, the long normal

form of a term is also that of its �-normal form. Thus to ompute the long normal

form of a term, we do not need to perform �-redutions.

2.27. Remark. Two terms have the same long normal form if and only if they

have the same genuine normal form. Thus, as representatives of lasses of terms we

an either hose the genuine short normal form or the long normal form. Choosing

the long one simpli�es many problems. So in the rest of this hapter, \normal form"

will always mean \long normal form".

2.5. Uni�ation

2.28. Definition. (Uni�ation problem, Uni�er)

An equation is a pair of terms t; u. A uni�ation problem is a �nite set of equations.

A solution or a uni�er of suh a problem is a substitution � suh that for eah pair

t; u of the problem, the terms �t and �u have the same normal form.

2.29. Definition. (Minimal uni�er, Most general uni�er)

A uni�er � of a problem is said to be minimal if all the uni�ers of the problem

more general than � are renamings of �, i.e. substitutions of the form � Æ � with

� = y

1

=x

1

; :::; y

n

=x

n

.

A uni�er of a problem is said to be the smallest or the the most general uni�er

if it is more general than all the uni�ers.

1024 Gilles Dowek

3. Undeidability

3.1. Higher-order Uni�ation

In this setion, we show that higher-order uni�ation is undeidable, i.e. there is

no algorithm that takes as argument a uni�ation problem and answers if it has

a solution or not. To ahieve this goal, we redue another undeidable problem:

Hilbert's tenth problem.

3.1. Theorem. (Matiyaevih-Robinson-Davis [Matiyaevih 1970, Davis 1973℄)

Hilbert's tenth problem is undeidable, i.e. there is no algorithm that takes as ar-

guments two polynomials P (X

1

; :::; X

n

) and Q(X

1

; :::; X

n

) whose oeÆients are

natural numbers and answers if there exists natural numbers m

1

; :::;m

n

suh that

P (m

1

; :::;m

n

) = Q(m

1

; :::;m

n

)

We have seen that very few funtions an be expressed in simply typed �-alulus

alone. With Peano numbers (i.e. with a symbol 0 of type � and S of type � ! �),

we an only de�ne the onstant funtions and the funtions adding a onstant to

one of their arguments. The desriptions operator is needed to de�ne addition and

multipliation and thus polynomials. Nevertheless, we an use another de�nition of

natural numbers: Churh numbers.

3.2. Definition. (Churh numbers)

With eah natural number n, we assoiate its Churh number

n = �x �f (f (:::(f x):::))

with n ourrenes of the symbol f . This term has type �! (�! �)! �.

Moving from Peano numbers to Churh numbers inreases only slightly the

set of funtions that an be expressed in simply typed �-alulus: as proved by

H. Shwihtenberg [Shwihtenberg 1976℄, the expressible funtions are the so-alled

extended polynomials, i.e. the polynomials extended by the harateristi funtions

of f0g and Nnf0g (for instane the funtion mapping n to 2

n

still needs the desrip-

tions operator). But polynomials are preisely what are needed to redue Hilbert's

tenth problem.

3.3. Proposition. Consider the terms

add = �n �m �x �f (n (m x f) f)

mult = �n �m �x �f (n x (�z (m z f)))

The normal form of the term (add n m) is n+m. The normal form of the term

(mult n m) is n�m. Thus for every polynomial P there exists a �-term p suh

that the normal form of the term (p m

1

::: m

n

) is the term P (m

1

; :::;m

n

).

Higher-Order Unifiation and Mathing 1025

Obviously, if the polynomial equation

P (X

1

; :::; X

n

) = Q(X

1

; :::; X

n

)

has a solution m

1

; :::;m

n

then the substitution m

1

=X

1

; :::;m

n

=X

n

is a solution to

the uni�ation problem

(p X

1

::: X

n

) = (q X

1

::: X

n

)

The onverse of this proposition is not obvious, indeed, there are terms of type

�! (�! �)! �, for instane variables, that are not Churh numbers.

Thus we shall add more equations to the problem to fore the solutions to be

Churh numbers.

3.4. Proposition. A normal term t of type � ! (� ! �) ! � is a Churh number

if and only if t=X is a solution of the equation

�z (X z (�y y)) = �z z

Proof. By indution on the struture of t.

Thus we an onlude.

3.5. Theorem. There is no algorithm that takes as argument a uni�ation problem

and answers if it has a solution or not.

Proof. With eah polynomial equation

P (X

1

; :::; X

n

) = Q(X

1

; :::; X

n

)

we assoiate the uni�ation problem

(p X

1

::: X

n

) = (q X

1

::: X

n

)

�z (X

1

z (�y y)) = �z z

:::

�z (X

n

z (�y y)) = �z z

where p is the term expressing the polynomial P and q the term expressing the

polynomial Q.

If the polynomial equation has a solution m

1

; :::;m

n

then the substitution

m

1

=X

1

; :::;m

n

=X

n

is a solution of the uni�ation problem. Conversely, if the uni�-

ation problem has a solution

1

=X

1

; :::;

n

=X

n

then the normal form of eah

i

is

a Churh number

i

= m

i

. The natural numbers m

1

; :::;m

n

are a solution to the

polynomial equation.

1026 Gilles Dowek

3.6. Remark. This theorem has been proved independently in 1972 by G. Huet

[Huet 1972, Huet 1973b℄ and C.L. Luhesi [Luhesi 1972℄. The original proofs did

not redue Hilbert's tenth problem, but Post's orrespondene problem.

The uni�ation problems built when reduing Post's orrespondene problem

have the property that the variables free in the problem are applied only to terms

that do not ontain further variables free in the problem. Thus, reduing Post's

orrespondene problem permits to sharpen the theorem and prove that there is

no algorithm that takes as argument a uni�ation problem of this speial form

and answers if it has a solution or not. Suh a sharpened undeidability theorem

is useful, for instane to prove the undeidability of type reonstrution in the

extension of simply typed �-alulus with dependent types [Dowek 1993℄.

3.2. Seond-order Uni�ation

But, reduing Hilbert's tenth problem, we an sharpen the result in another di-

retion. The variables X

1

; :::; X

n

above have the type � ! (� ! �) ! �. This is

the type of funtionals taking in arguments an atom of type � and a funtion of

type � ! �. Using the de�nition 2.3, this type has order 3. We may try to sharpen

the result and allow only variables of order 2 or even 1. If we restrit the types

of the free variables to be �rst-order, the problem is just a variant of �rst-order

uni�ation and thus it is deidable. If we restrit the types of the free variables to

be at most seond-order, we get seond-order uni�ation, whih has been proved to

be undeidable by W.D. Goldfarb [Goldfarb 1981℄.

Goldfarb's proof relies on a expression of numbers that is a degeneray of

Churh's. Taking �x �f (f (:::(f x):::)) leads to a third-order type, thus the idea is

to drop the abstration on f and to take �x (f (:::(f x):::)) where f is a onstant

of type �! �. Thus numbers now have the seond-order type �! �. More preisely,

Goldfarb number n is the term �x (g a (:::(g a x):::)) where a and g are onstants

of type � and �! �! �.

Goldfarb numbers an still be haraterized by a uni�ation problem.

3.7. Proposition. A normal term t of type �! � is a Goldfarb number if and only

if t=X is a solution to the equation

(g a (X a)) = (X (g a a))

Addition an still be expressed by the term

add = �n �m �x (n (m x))

but multipliation annot be expressed this way. Thus, it will be expressed, not by

a term, but by a uni�ation problem.

3.8. Proposition. (Goldfarb's lemma) The uni�ation problem

(Y a b (g (g (X

3

a) (X

2

b)) a)) = (g (g a b) (Y (X

1

a) (g a b) a))

Higher-Order Unifiation and Mathing 1027

(Y b a (g (g (X

3

b) (X

2

a)) a)) = (g (g b a) (Y (X

1

b) (g a a) a))

has a solution m

1

=X

1

;m

2

=X

2

;m

3

=X

3

; u=Y if and only if m

1

�m

2

= m

3

.

3.9. Theorem. (Goldfarb) Seond-order uni�ation is undeidable.

Proof. By redution of Hilbert's tenth problem. Every equation of the form

P (X

1

; :::; X

n

) = Q(X

1

; :::; X

n

)

an be deomposed into a system of equations of the form

X

i

+X

j

= X

k

X

i

�X

j

= X

k

X

i

= p

With suh a system we assoiate a uni�ation problem ontaining:

� for eah variable X

i

, an equation as in proposition 3.7,

� for eah equation of the form X

i

+X

j

= X

k

, the equation (add X

i

X

j

) = X

k

,

� for eah equation of the form X

i

�X

j

= X

k

, two equations as in proposition

3.8,

� for eah equation of the form X

i

= p, the equation X

i

= p.

3.10. Remark. Goldfarb's result has been sharpened by W.M. Farmer [Farmer

1991a℄, J. Levy and M. Veanes [Levy and Veanes 1998℄ who study the number of

variables, the number of variable ourrenes and the arity of the variables that are

needed to get undeidability.

3.11. Remark. Reduing Hilbert's tenth problem is a powerful tool, but as the

proof of undeidability of Hilbert's tenth problem itself is rather ompliated, one

may want to �nd a simpler undeidability proof, i.e. one reduing a problem that is

simpler to prove undeidable (the halting problem, the semi-Thue problem, Post's

orrespondene problem, et.). We have seen that suh redutions are possible for

third-order uni�ation.

A. Shubert [Shubert 1998℄ has given another undeidability proof for seond-

order uni�ation, reduing the halting problem of a two-ounter automaton. This

proof permits also to sharpen the result proving that there is no algorithm that

takes as argument a uni�ation problem where the variables free in the problem

are applied only to terms that do not ontain further variables free in the problem

and answers if it has a solution or not. This sharpened undeidability theorem

is applied to prove the undeidability of type reonstrution in some extension of

simply typed �-alulus with polymorphi types [Shubert 1998℄.

1028 Gilles Dowek

4. Huet's Algorithm

Higher-order uni�ation is undeidable, but it is semi-deidable, i.e. we an build an

algorithm that takes a uni�ation problem as argument, terminates and returns a

solution when the problem has one, but may loop forever when it does not. Indeed,

given a problem and a substitution, it is possible to deide whether the substitution

is a solution of the problem or not: it suÆes to apply the substitution to both

members of eah equation, normalize the terms and hek that their normal forms

are equal. Thus, a naive generate and test algorithm terminates if the problem has

a solution.

Suh a generate and test algorithm is, of ourse, of no pratial use. But as we

shall see, it an be gradually improved so that we reah an algorithm that �nds a

solution rather quikly when suh a solution exists and reports failure in many ases

where the equation has no solutions (of ourse, not all of them, sine the problem

is undeidable).

4.1. A \Generate and Test" Algorithm

4.1.1. Generating Long Normal Closed Terms

Reall that we have assumed in setion 2.2 that we had a onstant

U

in eah

atomi type U . Thus, in a type T

1

! ::: ! T

p

! U , we always have a losed

term �y

1

::: �y

p

U

. Obviously, if a substitution t

1

=X

1

; :::; t

n

=X

n

is a solution to a

problem then the substitution obtained by substituting eah free variable of t

1

; :::; t

n

by the term �y

1

::: �y

p

U

orresponding to its type is also a solution. Moreover, this

solution is losed, i.e. all the terms substituted to the variables X

1

; :::; X

n

are losed

terms. Thus, if a problem has a solution, it has also a losed solution and instead

of enumerating all the terms t

1

; :::; t

n

to be substituted for the variables X

1

; :::; X

n

we an restrit to the losed ones. Similarly, if a substitution t

1

=X

1

; :::; t

n

=X

n

is

a solution to a problem then the substitution obtained by taking the long normal

form of the terms t

1

; :::; t

n

is also a solution. Thus, we an restrit the enumeration

the long normal losed terms.

Using de�nition 2.25 long normal losed terms of type T

1

! :::! T

p

! U , where

U is an atomi type, have the shape

�y

1

::: �y

p

(h u

1

::: u

r

)

where y

1

; :::; y

p

are variables of type T

1

; :::; T

p

, the head symbol h is either one of

the variables y

1

; :::; y

p

or a onstant, and u

1

; :::; u

r

are terms whose number and

type depend on the type of the symbol h.

Thus a method to enumerate all the normal terms of a given type is to proeed

step by step, enumerating all the possible head symbols of the term and then using

reursively the same method to enumerate the terms u

1

; :::; u

r

.

A �rst, but naive, idea would be to use variables H

1

; :::; H

r

to hold for the terms

u

1

; :::; u

r

, i.e. to onsider the term

�y

1

::: �y

p

(h H

1

::: H

r

)

Higher-Order Unifiation and Mathing 1029

and then to enumerate the terms to be substituted for the variables H

1

; :::; H

r

.

Unfortunately, suh an idea does not work, beause the variables y

1

; :::; y

p

may

our in the terms u

1

; :::; u

r

, substituting suh terms to the variables H

1

; :::; H

r

would introdue aptures, and substitution renames bound variables to avoid suh

aptures. Thus, for instane, suh a method would not generate the term �x �f (f x)

of type �! (�! �)! �: a �rst step would onsider the term �x �f (f H) but then

substituting the term x to the variable H would yield the term �y �f (f x) and

not �x �f (f x).

A solution to this problem is to express funtionally the dependene of the terms

u

1

; :::; u

r

with respet to the variables y

1

; :::; y

p

, onsidering the term

�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))

Then the term �x �f (f x) is generated in two steps: �rst, we generate the term

�x �f (f (H x f)) then we substitute the term �x �f x for the variable H .

A substitution of the form

�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X

is alled an elementary substitution.

4.1. Definition. We onsider the following inferene system

t

(�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X)t

where the terms are normal (i.e. (�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X)t

atually stands for the long normal form of this term), X is a free variable of t

of type T

1

! ::: ! T

p

! U (U atomi), h is one of the variables y

1

; :::; y

p

or a

onstant, the target type of h is U and the variables H

1

; :::; H

r

are fresh variables

of the appropriate type.

4.2. Proposition. All the long normal losed terms of type T are produed from

a variable of type T by the inferene system above.

Proof. By indution on the size of t.

4.3. Remark. The inferene system above has two forms of non-determinism: �rst

the hoie of the variable X of the term t to be substituted, then the hoie of the

head symbol h in the substituted term. The hoie of the variable X is a don't are

non-determinism, the hoie of the head symbol h is a don't know non-determinism.

This don't know non-determinism an be handled by building a searh tree as

follows. Nodes are labeled by terms and leaves by losed terms. In eah internal

node, we hose a variable and we draw an edge orresponding to eah possible head

symbol.

Another solution is to onsider an inferene system de�ned on �nite sets of terms,

deriving from A[ftg, the set A[f�

1

t; :::; �

n

tg where �

1

; :::; �

n

are the elementary

substitutions orresponding to the di�erent possible head symbols.

1030 Gilles Dowek

4.1.2. A Uni�ation Algorithm

4.4. Definition. (Generate and test algorithm)

We onsider the inferene system

E

(�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X)E

where E is a uni�ation problem (i.e. a �nite set of equations), X is a free variable

of E of type T

1

! :::! T

p

! U (U atomi) and h is one of the variables y

1

; :::; y

p

or

a onstant and the variables H

1

; :::; H

r

are fresh variables of the appropriate type.

4.5. Proposition. The above algorithm is sound and omplete, i.e. a problem has

a solution if and only if a trivial problem (i.e. a problem where eah equation relates

idential terms) an be derived from it.

Proof. The soundness property is an obvious indution on the length of the deriva-

tion. The ompleteness property is proved by indution on the size of a long normal

losed solution.

4.2. Huet's Algorithm

In the generate and test algorithm, the uni�ation problem is ompletely passive, it

is only used to test if a given substitution is a solution or not. In Huet's algorithm

it is used in a muh more ative way to restrit the searh spae.

For instane, onsider the problem 0 = S(X), whatever losed term we may

substitute for X , we will get two terms whih have a di�erent head symbol and

thus are di�erent. Similarly the problem S(u) = S(v) an be simpli�ed into the

problem u = v that has the same solutions. Suh a term where the head symbol

is a onstant or a bound variable and thus annot be hanged by a substitution is

alled rigid.

4.6. Definition. (Rigid, exible term)

A term is said to be rigid if its head symbol is a onstant or a bound variable, it

is said to be exible if its head symbol is a free variable.

4.2.1. Rigid-rigid Equations

A �rst improvement that an be made to the generate and test algorithm is to

simplify problems using the rules

E [f�x

1

::: �x

n

(f u

1

::: u

p

) = �x

1

::: �x

n

(g v

1

::: v

q

)g

Fail

?

E [f�x

1

::: �x

n

u

1

= �x

1

::: �x

n

v

1

; :::; �x

1

::: �x

n

u

p

= �x

1

::: �x

n

v

p

g

E [f�x

1

::: �x

n

(f u

1

::: u

p

) = �x

1

::: �x

n

(f v

1

::: v

p

)g

Simplify

Higher-Order Unifiation and Mathing 1031

where the simpli�ed equation relates two rigid terms (i.e. the symbols f and g are

either onstants or among x

1

; :::; x

n

) the head symbols of these terms are di�erent

for the rule Fail and idential for the rule Simplify.

Notie that these rules derive uni�ation problems, i.e. �nite set of equations,

and that we have onventionally added an \unsolvable problem" ?.

4.7. Proposition. If a problem E

0

is derived from a problem E by the rule Fail or

the rule Simplify, then E and E

0

have the same solutions.

4.8. Proposition. The appliation of the rules Fail and Simplify terminates and

produes a problem that does not ontain rigid-rigid equations.

4.2.2. Flexible-rigid Equations

When the problem has an equation relating a exible term and a rigid one

�x

1

::: �x

n

(X u

1

::: u

p

) = �x

1

::: �x

n

(f v

1

::: v

q

) we an deide

to generate the substitutions to be substituted for the variable X . As in

the generate and test algorithm, we try all the substitutions of the form

�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

)) where h is a onstant or among

the variables y

1

; :::; y

p

.

In this ase, if h is a onstant di�erent from the head f of the rigid term, this

substitution leads to an unsolvable rigid-rigid equation. Thus suh an enumeration

an be avoided and we an restrit the symbol h to be among y

1

; :::; y

p

(suh a

substitution is alled a projetion) or the symbol f , if this symbol is a onstant

(suh a substitution is alled an imitation).

E

Generate

(�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X)E

where E ontains an equation of the form

�x

1

::: �x

n

(X u

1

::: u

p

) = �x

1

::: �x

n

(f v

1

::: v

q

)

or

�x

1

::: �x

n

(f v

1

::: v

q

) = �x

1

::: �x

n

(X u

1

::: u

p

)

and h is among y

1

; :::; y

p

; f when f is a onstant and among y

1

; :::; y

p

otherwise.

4.2.3. Flexible-exible Equations

Thus, while in a problem E we have a rigid-rigid equation, a exible-rigid one or

a rigid-exible one, we do not need to use the blind generation of the potential

solutions, but we an restrit to the rules Fail, Simplify and Generate. When all the

equations are exible-exible, it seems that we have no way to restrit the blind

enumeration anymore.

However, Huet's lemma shows that exible-exible equations always have solu-

tions and thus, that if we are not interested in all the uni�ers, but simply in the

existene of suh uni�ers, we do not need to solve exible-exible equations.

1032 Gilles Dowek

4.9. Definition. (Solved problem)

If all the equations of a problem E relate exible terms, then the problem E is

said to be solved.

4.10. Proposition. (Huet) Any solved problem has a solution.

Proof. For eah atomi U type onsider a onstant

U

. Let � the substitution that

binds every variable X of type T

1

! :::! T

p

! U of E to the term �y

1

::: �y

p

U

.

The substitution � is a solution of E, indeed applying � to an equation of the

form �x

1

::: �x

n

(X u

1

::: u

p

) = �x

1

::: �x

n

(Y v

1

::: v

q

) yields �x

1

::: �x

n

U

=

�x

1

::: �x

n

U

.

In higher-order logi, testing uni�ability is muh simpler than enumerating uni-

�ers. This motivates the design of proof-searh methods, suh as onstrained reso-

lution [Huet 1972, Huet 1973a℄, that require only the testing of uni�ability and not

the enumeration of solutions, see [Andrews 2001℄ (Chapter 15 of this Handbook).

4.2.4. Corretness

We want to prove the soundness and ompleteness of the inferene system Fail,

Simplify and Generate.

4.11. Proposition. (Soundness) If from a problem E we an infer a solved prob-

lem E

0

with the rules Fail, Simplify and Generate, then the problem E has a solu-

tion.

Proof. By indution on the length of the derivation.

If the derivation is empty, we onlude with the proposition 4.10.

If the �rst rule is Fail or Simplify, we onlude with the indution hypothesis and

the proposition 4.7.

If the �rst rule is Generate, deriving the problem E

0

from the problem E, then

by indution hypothesis the problem E

0

has a solution �

0

and the substitution

� = �

0

Æ (�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X) is a solution of E.

4.12. Proposition. (Completeness) If the problem E has a solution �, then from

a problem E we an derive a solved problem E

0

with the rules Fail, Simplify and

Generate.

Proof. By indution on the size of the substitution �. First, we apply the rules

Fail and Simplify to the problem E. By proposition 4.8 this proess terminates and

returns a problem E

0

that does not ontain rigid-rigid equations and by proposition

4.7, the substitution � is a solution of the problem E

0

. If the problem E

0

is solved,

we have a derivation from E to a solved problem.

Otherwise, the problem E

0

ontains a exible-rigid equation (or a rigid-exible

one) �x

1

::: �x

n

(X u

1

::: u

p

) = �x

1

::: �x

n

(f v

1

::: v

q

). Let �y

1

::: �y

p

(h w

1

::: w

r

)

be the term �X . The symbol h is among y

1

; :::; y

p

; f if the symbol f is a onstant,

and among y

1

; :::; y

p

otherwise.

Higher-Order Unifiation and Mathing 1033

By the rule Generate we derive the problem

E

00

= (�y

1

::: �y

p

(h (H

1

x

1

::: x

p

) ::: (H

r

x

1

::: x

p

))=X)E

0

A solution to this problem is the substitution

�

0

= � � f�X=Xg [f�y

1

::: �y

p

w

1

=H

1

; :::; �y

1

::: �y

p

w

r

=H

r

g

This substitution is smaller than the substitution � and thus, by indution hypoth-

esis, we an derive a solved problem from the problem E

00

. Thus, we an derive a

solved problem from the problem E.

4.2.5. Non-determinism

The proof of the ompleteness lemma gives a omplete strategy for applying these

rules. While a problem ontains rigid-rigid equations, the rules Fail and Simplify

an be applied. The hoie of applying these rules and the hoie of the equation is

don't are, i.e. we never need to baktrak to try another rule or another equation.

The Generate rule an be applied only to simpli�ed problems, i.e. problems on-

taining no rigid-rigid equation. The hoie of the exible-rigid equation is don't

are, but the hoie of the head-variable is don't know and may lead to baktrak.

Again, this don't know non-determinism an be handled by building a searh

tree alled uni�ation tree. Nodes are labeled by simpli�ed problems. Leaves are

solved problems and the unsolvable problem (?). In eah internal node, we hose

an equation and we draw an edge orresponding to eah possible head symbol.

Another solution is to onsider an inferene system on �nite set of uni�ation

problems, deriving from A[fEg the set A[f�

1

E; :::; �

n

Eg where �

1

; :::; �

n

are the

elementary substitutions orresponding to the di�erent possible head symbols.

In some presentations, an equation is onsidered as an atomi proposition in a

uni�ation logi. A uni�ation problem (�nite set of equations) is then the onjun-

tion of the atomi propositions orresponding to the equations. Sets of uni�ation

problems are then onsidered as disjuntions.

4.2.6. Empty Types

Above we have used the fat that we had a onstant in eah atomi type and thus

that every type was inhabited and that the existene of a solution to a uni�ation

problem was equivalent to the existene of a losed solution.

If we allow empty types, �nding a losed solution to a uni�ation problem is more

diÆult that �nding a (possibly open) solution. For instane, if we have a variable

X of type T , the empty uni�ation problem with respet to this variable (or, if we

prefer, the problem X = X) has a trivial open solution, but has a losed solution

only if the type T is inhabited.

When we have empty types, exible-exible equations do not always have losed

solutions, for instane X = X does not if the type of X is empty (the existene of

a suh a solution is even undeidable [Miller 1992℄). Thus we annot avoid solving

exible-exible equations.

1034 Gilles Dowek

Notie that any type inhabitation problem an be expressed as a uni�ation

problem, taking a variable of type T and searhing for a solution to the empty

problem (or to the problem X = X).

4.2.7. Uni�ation Modulo the Rule � Alone

A long normal term of type T

1

! ::: ! T

p

! U (U atomi) has the form

�x

1

::: �x

p

(h u

1

::: u

r

) where the number of abstrations is p, i.e. the arity of

its type.

To de�ne the long normal form, we need to have the rule �, whih is a onsequene

of the extensionality axiom. If we drop the extensionality axiom, we have to unify

terms modulo the rule � alone.

A �-normal term of type T

1

! ::: ! T

p

! U is now of the form

�x

1

::: �x

q

(h u

1

::: u

r

) with q � p. Thus we must onsider more elementary sub-

stitutions where the number of abstrations ranges from 0 to n. Suh an algorithm

is desribed in [Huet 1975, Huet 1976℄.

For instane with the rules � and �, the problem

(X a) = (f a)

has the two solutions �x (f a)=X and �x (f x)=X . But, with the rule � alone, it

has also a third one f=X whih is not equivalent to �x (f x)=X anymore.

4.3. Regular Trees, Regular Solutions

We have seen (proposition 3.4) that the solutions of the problem

�z (X z (�y y)) = �z z

where X is a variable of type �! (�! �)! �, are all the substitutions of the form

t=X where t is a Churh number.

When we apply the elementary substitution �x �f x=X to this problem and

simplify it, we get the empty problem that is solved. And when we apply the

elementary substitution �x �f (f (Y f x))=X we get the problem

�z (Y z (�y y)) = �z z

whih is a renaming of the initial problem. Thus, only a �nite number of problems

(in this ase, two) an be generated. In other words, the uni�ation tree is regular

and an be represented by a �nite skeleton.

M. Zaion [Zaion 1987℄ has remarked that when the number of problems we an

generate from a given problem is �nite (in other words when the problem has a

regular uni�ation tree) we an ompute this set of problems (or the skeleton of the

uni�ation tree). If this �nite set does not ontain a solved problem, then we know

that the problem is unsolvable. This way he has sharpened Huet's algorithm and

Higher-Order Unifiation and Mathing 1035

proposed an algorithm that reports failures more often that Huet's. For instane,

for the problem

(X a) = (f (X a))

Huet's algorithm onstruts an in�nite tree with no solved problem, while after an

imitation step �x (f (H x))=X yielding after simpli�ation to the problem

(H a) = (f (H a))

Zaion's algorithm reports a failure.

Moreover, when the number of problems generated by a given problem is �nite

and the problem has solutions, the set of minimal uni�ers may be in�nite, but it

an be desribed by a grammar. For instane, for the problem

�z (X z (�y y)) = �z z

alling � the elementary substitution �x �f x=X and � the elementary substitution

�x �f (f (X f x))=X , all the solutions have the form � Æ� Æ :::Æ� Æ�. Suh a substi-

tution an be represented by the word ��:::�� and the set of words orresponding

to the minimal uni�ers is produed by the grammar

s! �

s! �s

4.4. Equational Higher-order Uni�ation

Several extensions of Huet's algorithm have been proposed to higher-order equa-

tional uni�ation (see setion 1.5). Some aim at giving a general algorithm for an

arbitrary higher-order equational theory (see, for instane, [Avenhaus and Lor

�

ia-

S�aenz 1994, M�uller andWeber 1994, Prehofer 1994b, Prehofer 1995, Qian 1994, Qian

and Wang 1992, Snyder 1990℄). Others onsider speial theories (see, for instane,

[Curien 1995, Qian and Wang 1994, Sa��di 1994, Boudet and Contejean 1997℄).

5. Sopes Management

The idea, underlying Huet's algorithm is to build the terms substituted for the

variables step by step and to transform the equations at eah step substituting

the part of the solution onstruted so far. This is a rather general approah in

equational uni�ation. As ompared to �rst-order equational uni�ation methods,

higher-order uni�ation presents the partiularity of a rather subtle management

of sopes. For instane, as already mentioned, we annot take the elementary sub-

stitution �y

1

::: �y

p

(f H

1

::: H

r

)=X but we must express the dependene of the

arguments of f with respet to the variables y

1

; :::; y

p

in a funtional way, taking

the substitution �y

1

::: �y

p

(f (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X . This is due to

the fat that substitution in �-alulus renames bound variables to avoid aptures.

1036 Gilles Dowek

We might want to build the solutions with smaller steps, for instane substituting

a variable of a funtional type T ! U by a term of the form �y H=X and then

substitute H . But this is not possible as expressing funtionally the dependene

in suh a substitution would yield �y (H y)=X . i.e. H=X and thus the indutive

argument in the ompleteness proof would not go through. (Beause of the fun-

tional enoding of sopes we have to take j�x tj = jtj and not j�x tj = jtj+ 1, thus

instantiating a variable by an abstration does not let the problem progress).

In the same way, we might want to simplify an equation of the form �x u = �x v

into u = v, but suh a simpli�ation rule is unsound. For instane the equation

�x Y = �x (f x x) has no solution (as the substitution (f x x)=Y would rename

the bound variable to avoid the apture), while the equation Y = (f x x) has the

solution (f x x)=Y .

All these partiularities of higher-order uni�ation ome from the partiularities

of the substitution in �-alulus, and this partiularities ome from the fat that

�-alulus ontains a binding operator �.

5.1. Mixed Pre�xes

To have the simpli�ation rule

E [f�x t = �x ug

E [ft = ug

we must add to the simpli�ed problem an ourrene onstraint forbidding the

variable x to appear in the term substituted for the variables free in t and u. This

way both problems

�x Y = �x (f x x)

and

Y = (f x x); x not available to Y

have no solution, and more generally the simpli�ation of abstrations is sound.

Suh ourrene onstraints an be elegantly expressed in a uni�ation logi.

In a uni�ation logi, uni�ation problems are expressed as propositions and uni-

�ation rules as dedution rules in suh a way that a proposition P is provable if

and only if it expresses a uni�able problem. An equation t; u is expressed as an

atomi proposition t = u introduing a prediate symbol =. A uni�ation prob-

lem (i.e. a �nite set of equations) is represented as the onjuntion of the atomi

propositions orresponding to equations. The variables ourring in the problem

are then existentially quanti�ed at the head of the problem and the onstants an

be onsidered as universally quanti�ed variables.

For instane the problem

�x Y = �x (f x x)

is expressed as the proposition

8f 9Y (�x Y = �x (f x x))

Higher-Order Unifiation and Mathing 1037

Uni�ation problems are thus usually expressed as propositions of the form 89.

D. Miller [Miller 1992℄ has proposed to onsider propositions with a more omplex

alternation of quanti�ers (mixed pre�xes), in partiular propositions of the form

898. Then the problem

8f 9Y (�x Y = �x (f x x))

an be simpli�ed into

8f 9Y 8x (Y = (f x x))

in whih the usual soping rules for quanti�ers manipulation express that the vari-

able x is not available to Y and forbid the substitution (f x x)=Y . This way, he

has been able to give more natural simpli�ation rules. The study of quanti�er

permutation in suh problems has also permitted to identify a deidable subase of

higher-order uni�ation (see setion 6.2).

Thus, mixed pre�xes permit to give more natural simpli�ation rules, but not to

give more natural generation rules.

5.2. Combinators

Reall that higher-order logi is just one among several variants of set theory [Davis

1969℄. Like other variants of set theory, it an be expressed in �rst-order logi.

When we express higher-order logi as a �rst-order theory, the term language is a

�rst-order term language and thus, as opposed to �-alulus it ontains no binding

operator. Thus, the substitution does not need to avoid aptures and sope man-

agement is simpler. Expressing this way higher-order logi as a �rst-order theory

permits also to use standard tehnique for proof searh and in partiular standard

�rst-order equational uni�ation algorithms for higher-order uni�ation.

When we express higher-order logi as a (many-sorted) �rst-order theory, we

need to distinguish zero-ary relations that are expressed by terms of sort o and

propositions. We introdue a unary prediate symbol " of rank (o) and if t is a term

of type o, the orresponding proposition is written "(t). For eah pair of type, we

introdue also a funtion symbol �

T;U

of rank (T ! U; T; U) and the term (t u) is

a notation for �

T;U

(t; u). We may also introdue symbols =

T

of type T ! T ! o

for equality.

As seen in setion 1 we state the omprehension shemes

8x

1

::: 8x

n

9f 8y

1

::: 8y

p

("(f y

1

::: y

p

), P))

8x

1

::: 8x

n

9f 8y

1

::: 8y

p

"((f y

1

::: y

p

) = t)

These shemes are equivalent to the losed shemes

9f 8y

1

::: 8y

p

("(f y

1

::: y

p

), P))

9f 8y

1

::: 8y

p

"((f y

1

::: y

p

) = t)

1038 Gilles Dowek

where all the free variables of t and P are required to be among y

1

; :::; y

p

.

As seen in setion 1, to have a language for the relations and funtions we

skolemize these axioms and introdue symbols that we may write �y

1

::: �y

p

t and

�y

1

::: �y

p

P if we want, but we must reall that (1) in suh expressions, the free

variables of P and t must be among y

1

; :::; y

p

, (2) the proposition P and the term

t do not ontain further abstrations and (3) suh terms are individual symbols.

These symbols are alled ombinators [Curry 1942, Curry and Feys 1958, Hindley

and Seldin 1986℄.

We an also hose to restrit the omprehension shemes to a �nite number of

instanes that are equivalent to the full sheme. This way we have a �nite number

of ombinators (e.g. S;K;);^;_;:;8; 9).

We have said in setion 1 that this language was equivalent to �-alulus, but

moving from this language to the more onvenient notation of �-alulus introdues

the binding operator � and thus the notion of substitution with renaming. An alter-

native is to keep this language and to perform uni�ation modulo the ombinators

onversion axioms.

The use of ombinators, instead of �-alulus, was already investigated by

J.A. Robinson in 1970 [Robinson 1970℄ (but, apparently, without stressing the re-

lation to Davis' remark that higher-order logi ould be expressed as a �rst-order

theory). This approah has been pursued in [Dougherty 1993℄. Using ombinators

instead of �-alulus permits to use standard �rst-order equational uni�ation al-

gorithms to perform uni�ation modulo the onversion axioms.

The translations from �-alulus to ombinators [Curry 1942, Curry and Feys

1958, Hindley and Seldin 1986, Hughes 1982, Johnsson 1985, Dowek 1995℄, suh as

�-lifting, are orret if the extensionality axiom is taken, but not when this axiom is

dropped: the theory of the onversion axiom alone are not equivalent in �-alulus

and in the theory of ombinators. In other words, some proofs, for instane that of

the proposition

((�x �y �z x) w w) = ((�x �y �z y) w w)

do not require the use of the extensionality axiom in �-alulus and requires it with

ombinators.

If uni�ation is seen as a part of resolution, then resolution in the �-alulus

presentation of higher-order logi is equivalent to resolution in the ombinators

presentation of higher-order logi, i.e. a proposition is provable in one system if and

only if its translation is provable in the other (although the proofs may be di�erent

in the two systems, in partiular one may need to use the extensionality axiom,

while the other does not).

If uni�ation is seen as an independent problem then ombinator uni�ation is

weaker than higher-order uni�ation, i.e. it is not the ase that a problem has a

solution in �-alulus if and only if its translation has one in ombinators, but

ombinator uni�ation may be adapted to get the same power as higher-order

uni�ation, using a glimpse of extensionality [Dougherty 1993℄. This algorithm is,

however, more redundant than Huet's.

Notie, at last, that the higher-order uni�ation algorithm itself uses part of the

Higher-Order Unifiation and Mathing 1039

translation of �-alulus to ombinators. In partiular the funtional enoding of

sopes is reminisent of �-lifting.

5.3. Expliit Substitutions

To avoid the problems with extensionality introdued by the use of ombinators,

another solution is to keep �-alulus, but to avoid the diÆulties of sopes man-

agement with the use the replaement, allowing apture (see de�nition 2.11) instead

of substitution. In other words, when we have an equation a = b we do not look for

a substitution � suh that �a = �b but for a substitution � suh that h�ia = h�ib.

Using suh a notion of replaement permits to deompose the simpli�ation rules

into a rule simplifying equations of the form �x u = �x v into u = v an other one

simplifying equations of the form (f u

1

::: u

p

) = (f v

1

::: v

p

) into u

1

= v

1

; :::; u

p

= v

p

and (f u

1

::: u

p

) = (g v

1

::: v

q

) into ? when f and g are di�erent. The generation

rule an also be simpli�ed: if X is a variable of type T ! U we an replae it by a

term �x Y where Y is a variable of type U , and when X has an atomi type, we

replae it by the term (h H

1

::: H

r

).

But, this notion of replaement raises two new diÆulties. First replaement does

not ommute with redution and thus it annot be de�ned on the quotient of terms

modulo redution. For instane, the term ((�x Y) a) redues to Y , but replaing

x for Y yields ((�x x) a) that redues to a and not to x. To avoid this diÆulty,

a solution is to delay the substitution of a for x in Y until Y is replaed and we

know whether it ontains an ourrene of x or not (when using substitution with

renaming suh a delay is not needed (proposition 2.22) beause a term ontaining

the variable x annot be substituted for the variable Y).

Delaying this way the substitutions initiated by �-redution requires an ex-

tension of �-alulus with expliit substitutions [Abadi, Cardelli, Curien and

L�evy 1991, Curien, Hardin and L�evy 1996, Nadathur and Wilson 1998℄. Besides

onstants, variables, appliations and abstrations, the alulus of expliit substi-

tutions introdues another onstrution the losure [�℄t where � is a substitution

and t a term. The �-redution rule is replaed by the rule

((�x t) u)� [u=x℄t

and more redution rules permit to propagate the expliit substitution u=x in the

term t. The simplest rules permits to distribute a substitution on an appliation

[�℄(t u)� ([�℄t [�℄u)

When suh a substitution [u=x℄ reahes the variable x the term [u=x℄x redues to

the term u, when it reahes another variable y the term [u=x℄y redues to y, but

when it reahes a metavariable Y the term [u=x℄Y annot be redued and thus

the substitution is delayed until the metavariable Y is replaed. Thus, when we ex-

press a higher-order uni�ation problem in the alulus of expliit substitutions free

variables are expressed as metavariables and bound variables as ordinary variables.

1040 Gilles Dowek

The seond diÆulty is that some problems have solutions for replaement while

they have none for substitution. This is the ase for instane for the problem �x Y =

�x (f x x). If we use replaement, (f x x)=Y is a solution, while the problem has no

solution if we use substitution. This problem is solved again by the use of expliit

substitutions. In this system, there are expliit renaming operators and thus we an

use suh an operator to protet the metavariable Y from being replaed by a term

ontaining the variable x.

Thus we an de�ne a translation from �-alulus to �-alulus with expliit sub-

stitutions suh that a uni�ation problem has a solution for substitution if and

only if its translation has one for replaement. In other words, the substitution of

�-alulus is deomposed into an (expliit) renaming and a replaement.

This approah has been investigated in [Dowek, Hardin and Kirhner 1995,

Borovansk�y 1995, Nadathur 1998, Nadathur and Mithell 1999℄.

5.4. De Bruijn Indies

Like ombinators, the alulus of expliit substitutions permits to avoid the subtle

sope management of higher-order uni�ation and it avoids also the use of exten-

sionality. But, so far, it does not permit to use the standard �rst-order equational

uni�ation tehniques beause �-alulus (with expliit substitutions or not) is still

not a �rst-order language.

In fat, independently of ombinators, N.G. de Bruijn [de Bruijn 1972℄ has pro-

posed another notation for �-alulus that happened to be also a �rst-order lan-

guage.

The idea of de Bruijn notation, is that the name of bound variables is only used to

indiate the binder they depend on. This dependeny may also be indiated by the

height of this binder above the variable. For instane, the term �x �y (x �z (x z))

may be written ��(2 �(3 1)) beause the �rst ourrene of the variable x refers to

the seond � above it, the seond ourrene of the variable x refers to the third �

above it and the ourrene of the variable z refers to the �rst � above it.

In de Bruijn notation, the operator � is not a binding operator anymore and thus

�-alulus an be represented as a �rst-order term language with a unary funtion

symbol �, a binary funtion symbol � and an in�nite number of onstant symbol

1, 2, et.

Beause of the presene of the substitution in the �-redution rule, the redution

system in this language is not a �rst-order rewrite system, but the redution system

in �-alulus with de Bruijn indies and expliit substitutions is �rst-order. In

fat, the standard presentation of the alulus of expliit substitutions uses de

Bruijn indies and not named variables. The metavariables of the alulus of expliit

substitutions are the variables of the free algebra built on this language.

With de Bruijn indies and expliit substitutions, we an use �rst-order teh-

niques to perform uni�ation, we do not have sopes management problems nor

those reated by the use extensionality in translating �-alulus to ombinators

[Dowek et al. 1995℄.

Higher-Order Unifiation and Mathing 1041

These investigations have also lead to another �rst-order presentation of higher-

order logi based on de Bruijn indies and expliit substitutions that is extensionally

equivalent to the presentation using �-alulus [Dowek, Hardin and Kirhner 2001℄.

Presenting this way �-alulus as a �rst-order language and higher-order uni�-

ation as �rst-order equational uni�ation modulo an equational theory T

1

per-

mits to onsider also equational higher-order uni�ation modulo an equational

theory T

2

as equational �rst-order uni�ation modulo T

1

[T

2

[Dougherty and

Johann 1992, Goubault 1994, Kirhner and Ringeissen 1997℄.

6. Deidable Subases

As usual when a problem is undeidable, besides building a semi-deision algorithm,

we are also interested in identifying deidable subases. In this setion, we present

a few deidable subases of higher-order uni�ation. These subases are obtained

by restriting the order, the arity or the number of ourrenes of variables, or by

taking terms of a speial form. For some subases, Huet's algorithm terminates, for

others it does not and we must design another algorithm to prove deidability.

The main onjetures in this area are the deidability of pattern-mathing, i.e.

the subase of uni�ation where variables our only in a single side of equations

and the deidability of ontext uni�ation.

6.1. First-order Uni�ation

The �rst deidable subase of higher-order uni�ation is obviously �rst-order uni�-

ation. When all the variables of a problem have �rst-order, i.e. atomi, types (see

de�nition 2.3), all the onstants have at most seond-order types and the terms

in the equations have �rst-order types, then the problem is just a rephrasing of

a �rst-order uni�ation problem. Notie however that Huet's algorithm does not

always terminate on suh problems. For instane the problem

X = f(X)

leads to an in�nite searh. In other words, Huet's algorithm does not detet failure

by our-hek. However, it an be sharpened, adding a rule alled rigid paths our-

hek [Huet 1975, Huet 1976℄ that fores failure in more ases and in partiular for

all the �rst-order unsolvable uni�ation problems.

6.2. Patterns

When we de�ne a funtion by an equation, for instane,

8x 8y ((F x y) = x+ y + x� y)

we atually mean

F = �x �y (x+ y + x� y)

1042 Gilles Dowek

But the �rst de�nition an also be used beause the equation has a single solution

�x �y (x + y + x� y). In ontrast, the de�nitions

8x ((F x x) = x+ x+ x� x)

or

8x ((F 0 x) = x)

are inorret beause the equations have more than one solution.

This remark motivates the study of uni�ation problems where the higher-order

free variables an only be applied to distint bound variables.

A pattern [Miller 1991℄ is a term t suh that for every subterm of the form

(F u

1

::: u

n

) where F is a free variable, the terms u

1

; :::; u

n

are distint variables

bound in t. Uni�ation of patterns is deidable and when a uni�ation problem has

a uni�er, it has a most general uni�er [Miller 1991℄.

For instane the problem

�x �y �z (F x z) = (f (�x �y (G y x)) (�x �y (F x y)))

is a patterns uni�ation problem.

Patterns uni�ation extends �rst-order uni�ation. It has the same properties

(polynomial time deidability and most general uni�er) and the algorithms have

some similarities (in partiular, the our-hek plays an essential role in both

ases). The orrespondene between �rst-order uni�ation and patterns uni�ation

is better understood when we study quanti�er permutation in mixed pre�xes (see

setion 5.1) as patterns uni�ation problems an be obtained by permuting quanti-

�ers in �rst-order problems [Miller 1992℄. This is also the way patterns uni�ation

was disovered.

Patterns uni�ation is used in higher-order logi programming [Nadathur and

Miller 1998, Pfenning 1991a℄.

Patterns uni�ation with expliit substitutions is studied in [Dowek, Hardin,

Kirhner and Pfenning 1996℄, the deidability and uniity of solution rely there on

invertibility properties of expliit substitutions.

This subase of uni�ation alled patterns uni�ation must not be onfused with

pattern mathing disussed in setion 6.6.

6.3. Monadi Seond-order Uni�ation

Goldfarb's undeidability proof requires a language with a binary onstant g. Thus,

a natural problem to investigate is uni�ation in seond-order languages ontaining

only unary onstants, i.e. onstants with a single argument. This problem, alled

unary or monadi seond-order uni�ation has been proved deidable by Farmer

[Farmer 1988℄.

Farmer's proofs relies on the fat that a losed term of an atomi type in suh

a language has the form (f

1

(f

2

::: (f

n

):::)) and thus an be represented by the

Higher-Order Unifiation and Mathing 1043

word f

1

f

2

:::f

n

. Thus, a uni�ation problem in suh a language an be redued to

word uni�ation problem, and suh problems are known to be deidable.

In this ase, the set of minimal uni�ers may be in�nite. For instane the uni�a-

tion problem

�z (f (X z)) = �z (X (f z))

whih is equivalent to the word problem fX = Xf has an in�nite number of

minimal solutions where the terms �x x, �x (f x), �x (f (f x)), �x (f (f (f x))),

�x (f (f (f (f x)))), et. are substituted for the variable X , orresponding to

the solutions of the word problem ", f , ff , fff , et. Farmer proposes to desribe

minimal uni�ers using so alled parametri terms, reminding of Zaion's desription

by a grammar. For instane the parametri term �x (f

n

x) (orresponding to the

parametri word f

n

) is the most general uni�er of the problem above.

6.4. Context Uni�ation

Context uni�ation is a variant of seond order uni�ation with the extra ondition

that terms substituted to seond order variables have to be ontexts, i.e. normal

terms of the form �x

1

::: �x

n

t where the variables x

1

; :::; x

n

our one in t.

Suh terms an be seen as �rst-order terms with holes. This problem is related to

uni�ation in linear lambda-alulus [Pfenning and Cervesato 1997℄.

The deidability of this problem is open, [Comon 1998, Shmidt-Shau� 1994,

Levy 1996, Niehren, Pinkal and Ruhrberg 1997, Shmidt-Shau� and Shulz 1999,

Shmidt-Shau� 1999, Levy and Villaret 2000, Niehren, Tison and Treinen 2000℄

give partial results.

6.5. Seond-order Uni�ation with Linear Ourrenes of Seond-order Variables

In seond-order uni�ation, when we have an equation

�x

1

::: �x

n

(X a

1

::: a

p

) = �x

1

::: �x

n

(f b

1

::: b

q

)

and we perform a projetion, we replae a variable X by a losed term �x

1

:::�x

n

x

i

,

thus the number of variables in the problem dereases. When we perform an imi-

tation and simplify the problem, we get the equations

�x

1

::: �x

n

(H

1

a

1

::: a

p

) = �x

1

::: �x

n

b

1

:::

�x

1

::: �x

n

(H

q

a

1

::: a

p

) = �x

1

::: �x

n

b

q

whih seem to be smaller than the equation we started with. Hene, it seems that

Huet's algorithm should terminate, in ontradition with Goldfarb's undeidability

result.

1044 Gilles Dowek

Atually, the variable X may have ourrenes in the terms a

1

; :::; a

p

; b

1

; :::; b

q

and in fat we get the equations

�x

1

::: �x

n

(H

1

a

0

1

::: a

0

p

) = �x

1

::: �x

n

b

0

1

:::

�x

1

::: �x

n

(H

q

a

0

1

::: a

0

p

) = �x

1

::: �x

n

b

0

q

where the variable X has been substituted everywhere. These equation need not be

smaller than the equation we started with and thus the algorithm does not always

terminate.

However this argument an be used to prove that seond-order uni�ation with

linear ourrenes of seond-order variables is deidable, i.e. that there is an algo-

rithm that deides uni�ability of seond-order problems where eah seond-order

variable has a single ourrene (see, for instane, [Dowek 1993d℄). In fat, to en-

sure that linearity is preserved by imitation we must �rst transform equations into

super�ial equations, i.e. equations where the seond-order variables an our only

at the head of the members of the equations.

This algorithm has been extended by Ch. Prehofer [Prehofer 1994a, Prehofer

1995℄ mixing linearity onditions and patterns onditions.

G. Amiot [Amiot 1990℄ had used a similar transformation to prove that super�ial

seond-order uni�ation is undeidable.

Besides linear uni�ation, a similar argument using the number of variables and

the size of equations will be used in setion 6.6.1 to prove the deidability of seond-

order mathing.

6.6. Pattern Mathing

A higher-order mathing equation is an equation whose right hand side does not

ontain free variables. A higher-order mathing problem is a �nite set of mathing

equations. The deidability of higher-order mathing, Huet's onjeture [Huet 1976℄,

has been an open problem for more than twenty years.

6.6.1. Seond-order Mathing

The �rst positive result is the deidability of seond-order mathing.

6.1. Proposition. (Huet [Huet 1976, Huet and Lang 1978℄) Seond-order math-

ing is deidable, i.e. there is an algorithm that takes in argument a mathing problem

whose free variables are at most seond-order (in the sense of de�nition 2.3) and

whose bound variables and onstants are at most third-order and answers if it has

a solution or not.

Proof. For seond-order mathing problems, Huet's algorithm terminates. Indeed,

the pair (n; p) where n is the sum of the sizes of the right hand sides of equations

and p the number of variables in the problem dereases at eah step (i.e. eah

Higher-Order Unifiation and Mathing 1045

appliation of the Generate rules followed by a simpli�ation) for the lexiographi

order.

Imitations are always followed by a simpli�ation, and thus the sum of the sizes

of the right hand sides of equations dereases in suh a step. Projetions have the

form �x

1

::: �x

n

x

i

thus they do not introdue new variables H

1

; :::; H

r

and the

number of variables in the problem dereases in suh a step and the losed right

hand sides are never substituted, thus the sum of their sizes never inreases.

6.2. Remark. In a mathing problem there is no exible-exible equations. Thus

the only solved problem is the empty problem and a seond-order mathing problem

has a �nite set of minimal solutions.

6.3. Remark. L.D. Baxter has proved that the seond order mathing problem is

NP-omplete [Baxter 1977℄.

6.4. Remark. The ondition that bound variables and onstants are at most third-

order an be weakened (see, for instane, [Dowek 1991℄), but patterns-like terms

need to be used in the algorithm.

6.6.2. In�nite Set of Solutions and Pumping

As soon as we have a third-order variable, Huet's algorithm may fail to terminate

and may produe an in�nite number of minimal solutions. For instane, as seen

above (proposition 3.4) the problem

�z (X z (�y y)) = �z z

has an in�nite number of solutions of the form t=X where t is any Churh number

�x �f (f ::: (f x):::).

Thus if we look for a terminating algorithm, we annot use Huet's algorithm, and

we annot use any other algorithm enumerating all the minimal solutions. Thus,

all the algorithms proposed so far (for restrited ases) all redue the searh spae,

dropping some solutions, but hopefully keeping at least one if the problem has

solutions.

As an illustration we an use suh a method to prove the deidability, in the

domain of natural numbers, of polynomial equations with a onstant right hand side

(whereas Matiyaevih-Robinson-Davis [Matiyaevih 1970, Davis 1973℄ theorem

proves the undeidability of polynomial equations in general). Notie that in this

ase also, a problem may have an in�nite number of solutions (onsider for instane

the equation XY + 4 = 4).

6.5. Proposition. There is an algorithm that takes as arguments a polynomial P

whose oeÆients are natural numbers and a natural number b and answers if the

equation P (X

1

; :::; X

n

) = b has a solution or not in the domain of natural numbers.

Proof. If this equation has a solution a

1

; :::; a

n

then it has a solution a

0

1

; :::; a

0

n

suh

that a

0

1

� b. Indeed either Q(X) = P (X; a

2

; :::; a

n

) is not a onstant polynomial

1046 Gilles Dowek

and for all n, Q(n) � n, so a

1

� b, or the polynomial Q is identially equal to b and

h0; a

2

; :::; a

n

i is also a solution. A simple indution on n proves that if the equation

has a solution then it also has a solution in f0; :::; bg

n

and an enumeration of this

set gives a deision algorithm.

For instane, for the equation XY + 4 = 4, starting with the solution h1000; 0i

we get the solution h0; 0i. The method that transforms the solution h1000; 0i into

h0; 0i is alled pumping. It permits to know whether a solution exists in an in�nite

domain just by looking into a �nite part of the domain, beause this �nite part

mirrors all the domain.

6.6.3. Finite Models

Suh an idea has been investigated by R. Statman using model theoreti tehniques.

H. Friedman's ompleteness theorem [Friedman 1975℄ is that if we interpret the

atomi types by in�nite sets and types of the form A! B by the set of all funtions

from the interpretation of A to the interpretation of B, then two terms have the

same denotation if and only if they are ��-onvertible.

Obviously, this theorem annot be generalized to the ase where the interpreta-

tion of atomi types are �nite. Indeed, if the interpretation of the type � is �nite,

that of the type � ! (� ! �) ! � also and thus at least two di�erent Churh

numbers have the same denotation, while they are not onvertible.

However Statman's �nite ompleteness theorem [Statman 1979, Statman and

Dowek 1992℄ shows that for eah �-term b, there is a natural number n suh that,

in the �nite model built from a base sets of ardinal n, the terms that have the

same denotation as b are those onvertible to b.

Thus, if a mathing problem (a X

1

::: X

n

) = b (b losed) has a solution, the

orresponding equation in the model has a solution too, and as the denotation

of eah type in the model is �nite, we an enumerate all the potential solutions

and test one after another. Unfortunately, when we �nd a solution in the model

this solution orresponds to a solution in �-alulus only if the element of the

model is the denotation of some �-term. Thus the higher-order mathing onjeture

was redued this way to the �-de�nability deidability onjeture (Plotkin-Statman

onjeture) [Statman 1979, Statman and Dowek 1992℄.

Another formulation, that strengthen the link to the pumping method is that

assuming that we an deide whether an element is �-de�nable or not we an

ompute a number n suh that all the de�nable elements of the model of a given

type are de�ned by a term of size lower than n. Thus, if the problem has a solution,

then it has also a solution of size lower than n and to deide whether a problem has

a solution, we only need to enumerate the terms of size lower to that bound. After

this bound, the terms are redundant, i.e. their denotation is also a denotation of

smaller terms and if they are solutions to the mathing problem smaller terms also.

Unfortunately the �-de�nability deidability onjeture has been refuted by

R. Loader [Loader 1994℄.

However, V. Padovani has shown that �-de�nability was deidable in other mod-

Higher-Order Unifiation and Mathing 1047

els: the minimal models where the interpretation of the type A! B ontains only

the �-de�nable funtions and from this result, he has dedued the deidability of

the atomi higher-order mathing problem (i.e. the higher-order mathing problem

where the right hand side is a onstant) [Padovani 1996a, Padovani 1996b℄.

6.6.4. Third and Fourth-order Mathing

A similar approah has permitted to prove the deidability of third-order and

fourth-order mathing problems i.e. mathing problems whose free variables are

at most third or fourth order (in the sense of de�nition 2.3).

Consider a variable X of type �! (�! �)! �, the equation

(X (�y (g (h y)))) =

and the potential normal solution t = �x �f u for X . The term (t �y (g (h y)))

redues to the normal form of (=x; �y (g (h y))=f)u and, a simple indution on the

depth of the struture of u shows that this term has a depth greater than or equal

to that of u. For instane, taking t = �x �f (f (f (f x))) and applying it to and

�y (g (h y)) yields (g (h (g (h (g (h)))))) where eah f has been replaed by a g

and a h. Thus, if suh a term is to be a solution of the above problem u must be

smaller than . Thus, enumerating the terms smaller than gives an algorithm to

�nd all the solutions of this problem. In fat, the only solutions are �x �f and

�x �f x.

But suh a reasoning does not work for all the problems, for instane

(X (�y y)) =

(X d (�y e)) = e

has solutions of an arbitrary depth: all nonzero Churh numbers

�x �f (f (:::(f x):::)):

This an only happen when all the seond arguments of X are either of the form

�x

1

::: �x

n

x

i

(e.g. �y y) or an irrelevant term i.e. a term where a bound variable

does not our in the body (e.g. �y e). In this ase any sequene of f has the same

e�et as a single f thus, any solution of the form �x �f (f (:::(f x):::)) is redundant

with the smaller solution �x �f (f x).

Erasing, this way, all the useless ourrenes of variables permits to get smaller

solutions whose depth an be bounded by a funtion in the depth of b. Thus, we

an ompute a bound suh that if the problem has a solution, then it has also a

solution whose depth is lower than that bound and hene ahieve deidability.

The simpler ase for whih suh a method works is the third-order interpolation

problems.

6.6. Definition. (Interpolation problem)

An interpolation problem is a �nite set of equations of the form (X a

1

::: a

n

) = b

where the terms a

1

; :::; a

n

; b are losed.

1048 Gilles Dowek

Using the pumping method desribed above, we an prove the deidability of

third-order interpolation problems. Then, the bound on the depth of solutions an

be lifted to arbitrary third-order mathing problems and this proves the deidability

of third-order mathing problems [Dowek 1994℄.

A. Shubert [Shubert 1997℄ has proved that the deidability of higher-order in-

terpolation problems implies that of higher-order mathing problems, unfortunately

his transformation does not preserve the order of the variables.

V. Padovani [Padovani 1995℄ has proved that the deidability of the dual in-

terpolation problem implies that of higher-order mathing and his transformation

preserves the order of the variables thus the deidability of the dual interpolation

problem of order n implies that of the mathing of order n (a dual interpolation

problem is a pair (E;F) of interpolation problems and a solution to suh a problem

is a substitution that is solution to the equation of E but not to that of F).

Using this result, Padovani has proved the deidability of the fourth-order math-

ing problem [Padovani 1994, Padovani 1996b℄.

6.6.5. Automata

All these proofs are rather tehnial (in partiular the deidability of fourth-order

mathing is a real tehnial tour de fore) beause they all proeed by transforming

potential solutions into smaller ones utting and pasting term piees. H. Comon

and Y. Jurski [Comon and Jurski 1997℄ have proposed to reformulate these ideas

in a muh simpler way.

Instead of transforming a potential solution into a smaller one. Comon and Jurski

propose, in a similar way as Zaion (see setion 4.3) and Farmer (see setion 6.3)

to build an automaton that reognizes the solutions of a given problem.

For instane, in the problem

(X (�y y)) =

(X d (�y e)) = e

the fat that any sequene of f has the same e�et as a single f and thus that any

solution of the form �x �f (f (:::(f x):::)) is redundant with the smaller solution

�x �f (f x) is expressed as the fat that the automaton stays in the same state

reognizing the sequene of f in the solution �x �f (f (:::(f x):::)). This way a

�nite state automaton an reognize the in�nite set of solutions and deidability is

a onsequene of the deidability of the nonemptiness of a set of terms reognized

by an automaton.

This way they have given simpler deidability proofs for third-order and fourth-

order mathing. They have also proved that third order mathing was NP-omplete,

hene that is not more omplex than seond-order mathing.

6.6.6. Wolfram's Algorithm

A last approah has been investigated by D. Wolfram [Wolfram 1989℄. Wolfram

has proposed a pruning of the searh tree for the full higher-order mathing that

Higher-Order Unifiation and Mathing 1049

produes a �nite searh tree. Thus, Wolfram's algorithm always terminates, but its

ompleteness is still a onjeture.

7. Uni�ation in �-alulus with Dependent Types

To onlude this hapter we shall review uni�ation algorithms in extensions of

simply typed �-alulus. We have already seen in setion 1.5 and 4.4 that more

redution rules ould be added, we an also onsider riher type struture suh as

dependent types and polymorphism.

7.1. �-alulus with Dependent Types

7.1.1. Types Parametrized by Terms

The �-alulus with dependent types is an extension of simply typed �-alulus

where types ontain more information on terms than their funtional degree. For

instane in simply typed �-alulus, we may onsider lists (i.e. �nite sequenes)

of natural numbers as atoms and thus have an atomi type list and two symbols

" of type list for the empty list and : of type list ! nat ! list) to add an

element at the end of a list. For instane the list 1; 1; 2; 3; 5 is expressed by the term

(: (: (: (: (: " 1) 1) 2) 3) 5).

But we may want to enrih the type system in suh a way that the length of the

list is a part of its type, i.e. we want to have a family of types (list 0), (list 1),

(list 2), et. parametrized by a term of type nat.

The type of a funtion taking as argument a natural number n and returning a list

of length n, annot be written nat! (list n) but we must express the information

that the variable n refers to the argument of the funtion, thus we write suh a type

�n

nat

(list n). When we apply suh a funtion to, for instane, the term 4 we get a

term of type (list 4), i.e. a list of four elements. From now on, the notation A! B

is just an abbreviation for �x

A

B where x does not our in B. The symbol list is

not a type but it has type nat! Type where Type is a new base type.

As types ontain terms, the type of a variable may be hanged by a substitution,

for instane if x is a variable of type (list n) the term �x x has type (list n) !

(list n), but substituting n by 4 hanges the type of x to (list 4) and the type of

�x x to (list 4) ! (list 4). In suh a system, we usually indiate the type of eah

variable by a subsript at its binding ourrene, writing, for instane �x

(list n)

x.

7.1.2. Types Parametrized by Types

In the same way, we may want to parametrize the type list by the type of the

elements of the list, in order to onstrut lists of natural numbers, lists of sets of

natural numbers, lists of lists of natural numbers, et. i.e. we want to have a family

of type (list nat), (list (nat ! o)), (list (list nat)), et. parametrized by a type.

When we have suh types parametrized by types we need also to parametrize terms

by types, i.e. to have terms taking a type as argument, for instane the symbol

1050 Gilles Dowek

" must be parametrized by a type in suh a way that (" nat) be a term of type

(list nat), (" (nat! o)) a term of type (list (nat! o)), et.

Taking none, one or several of the three features: types parametrized by

terms (dependent types), types parametrized by types (type onstrutors), terms

parametrized by types (polymorphi types), we get 2

3

= 8 aluli (��-alulus

[Harper, Honsell and Plotkin 1993℄, systems F and F

!

[Girard 1970, Girard 1972℄,

the Calulus of onstrutions [Coquand 1985, Coquand and Huet 1988℄, et.) that

are usually represented as the verties of a ube [Barendregt 1992℄.

7.1.3. Proofs as Objets

These extensions of simply typed �-alulus are needed when we onsider extensions

of higher-order logi where proofs are objets. In higher-order logi, the number 2

is expressed by a term, the set E of even numbers too, the proposition (E 2) that

2 is even also, but the proof that this proposition holds is not a term. Intuitionisti

type theory [Martin-L�of 1984℄ and the Calulus of Construtions [Coquand 1985,

Coquand and Huet 1988℄ are extensions of higher-order logi where suh proofs are

terms of the formalism too.

These formalisms use Brouwer-Heyting-Kolmogorov notion of proof : proofs of

atomi propositions are atoms, proofs of propositions of the form A) B are

funtions mapping proofs of A to proofs of B (for instane, the term �x

P

0

�y

Q

0

x is

a proof of P) Q) P) and proofs of propositions of the form 8x

T

P are funtions

mapping every objet a of the type T to a proof of (a=x)P .

As remarked by H.B. Curry [Curry and Feys 1958℄, N.G. de Bruijn [de Bruijn

1980℄ and W. Howard [Howard 1980℄, the type of suh a term is isomorphi to the

proposition itself, i.e. proofs of propositions of the form A) B have type A

0

! B

0

where A

0

is the type of proofs of A and B

0

the type of proofs of B. Proofs of

propositions of the form 8x

T

P have type �x

T

P

0

where P

0

the type of the proofs

of P .

As usual, we identify isomorphi objets and thus identify A) B and A ! B,

8x

T

P and �x

T

P ,

7.2. Uni�ation in �-alulus with Dependent Types

7.2.1. ��-alulus

The �rst uni�ation algorithm for suh an extension of simply typed �-alulus has

been proposed by C.M. Elliott [Elliott 1989, Elliott 1990℄ and D. Pym [Pym 1990℄

for ��-alulus i.e. a alulus where types may be parametrized by terms, but not

by types and terms annot be parametrized by types either. The main idea in this

algorithm is still the same: simplify rigid-rigid equations, onstrut solutions to

exible-rigid equations inrementally with elementary substitutions, substituting

variables by terms of the form �y

1 T

1

::: �y

p T

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))

where h is either a bound variable or the head variable of the rigid term, and avoid

solving exible-exible equations that always have solutions.

Higher-Order Unifiation and Mathing 1051

The main di�erene onerns the typing of substitutions. In simply typed �-

alulus, if we have a variable X of type T ! U ! T and an equation (X a b) = a

then the potential elementary substitutions substitute the terms �x �y x, �x �y y,

�x �y a for the variable X . But the seond term has type T ! U ! U and thus

annot be substituted to X (see de�nition 4.1). We selet this way the elementary

substitutions that are well-typed, i.e. replae a variable by a term of the same type.

In ��-alulus a type may ontain variables and thus a type may be hanged by

a substitution. Thus, when applying a substitution t=X we must not hek that the

type of X and t are the same, but we must unify them, or add an equation relating

their types to the problem.

For instane, if the variable X has type (list 0) ! (list Y) ! (list 0)

and we have the problem (X " b) = ", although the elementary substitution

�x

(list 0)

�y

(list Y)

y=X is not well typed (the variable has type (list 0)! (list Y)!

(list 0) and the term (list 0)! (list Y)! (list Y)) we must not rejet it. Indeed,

this substitution will be well-typed when we substitute the term 0 for the variable

Y leading to the solution 0=Y; �x

(list 0)

�y

(list 0)

y=X . Thus we must onsider all the

potential elementary substitutions, well-typed or not, and when we perform suh

a substitution, we must add to the uni�ation problem the aounting equation of

this substitution, i.e. the equation relating the type of the variable and the type of

the term.

In the example above the aounting equation is

(list 0)! (list Y)! (list Y) = (list 0)! (list Y)! (list 0)

and it simpli�es to Y = Y; Y = 0.

As we onsider ill-typed substitutions, we have to onsider ill-typed, and thus

potentially nonnormalizable, equations. In fat, Elliott and Pym have proved that,

in ��-alulus, provided the simpli�ation of the aounting equation sueeds,

the equations, although ill-typed, always normalize [Elliott 1989, Elliott 1990, Pym

1990℄.

7.2.2. Polymorphism, Type Construtors, Indutive Types

When we onsider also polymorphi types and types onstrutors, i.e. terms

parametrized by types and types parametrized by types, we still need aount-

ing equations, but new phenomena happen: the number of arguments of the head

variable in an elementary substitution is not �xed by its type anymore, for instane

if the variable h has type �x

Type

x and we want to build a term of type A we an

build the term

(h (A! :::! A

| {z }

n times

! A) a ::: a

| {z }

n times

)

where the variable h has n + 1 arguments. Thus we need to onsider elementary

substitutions where the number of arguments of the head variable is arbitrary

[Dowek 1993a, Dowek 1991a℄.

Another di�erene is that exible-exible equation do not always have solutions,

1052 Gilles Dowek

for instane if the variable X has type �x

Type

x, the equation

(X (A! B) a) = (X B)

has no solution [Dowek 1991a℄. Thus we must enumerate the elementary substitu-

tions for exible-exible equations too.

At last, we loose the normalization property for ill-typed equations but we an

prove that in any situation there is always at least a variable that has a well-typed

type and that we an instantiate.

Besides dependent types, polymorphi types and types onstrutors, we an also

onsider indutive types, i.e. redution rules for reursor on some data types (see

setion 1.5 and 4.4) [G�odel 1958, Girard et al. 1989, Martin-L�of 1984, Paulin-

Mohring 1993, Werner 1994℄ and extend the uni�ation algorithm to these systems

[Sa��di 1994, Cornes 1997℄.

7.3. Closed Solutions

In ��-alulus we annot assume anymore that every atomi type is inhabited. For

instane onsider a type family (even 0), (even 1), (even 2), et. suh that (even n)

is the type of proofs that n is even. When n is odd, for instane for n = 1, this type

must be empty.

Thus, exible-exible equations do not always have losed solutions (see se-

tion 4.2.6). Like in simply typed �-alulus, the existene of a losed solution to

a exible-exible uni�ation problem is undeidable. In ��-alulus type inhabita-

tion is undeidable (see [Bezem and Springintveld 1996℄) and thus even uni�ation

problems with no equations (or uni�ation problems on the form X = X) are

undeidable.

Thus, when looking for losed solutions in ��-alulus, we annot avoid solving

exible-exible equations.

7.4. Automated Theorem Proving as Uni�ation

Using Curry-de Bruijn-Howard isomorphism, a provability problem in propositional

minimal logi an be be expressed as a type inhabitation problem in simply typed

�-alulus and thus as an higher-order uni�ation problem [Zaion 1988℄. In the

same way a provability problem in �rst-order minimal logi an be expressed as a

uni�ation problem in ��-alulus [Hagiya 1991, Pfenning 1991a℄ and a provability

problem in higher-order intuitionisti logi an be expressed as a uni�ation problem

in the Calulus of onstrutions [Dowek 1993a, Dowek 1991a℄.

Thus, in �-aluli with dependent types, provided we searh for losed solutions,

uni�ation is not a subroutine of automated theorem proving methods anymore,

but automated theorem proving an be redued to uni�ation.

For instane, onsider a ontext where we have

� a type symbol T , i.e. a symbol T of type Type,

Higher-Order Unifiation and Mathing 1053

� two symbols a and b of type T ,

� a binary relation �, of type T ! T ! Type,

� an axiom h: 8x

T

8y

T

8z

T

((x � y)) (y � z)) (x � z)), i.e. a symbol h of type

�x

T

�y

T

�z

T

((x � y)! (y � z)! (x � z)),

� two axioms v and w: a � b and b � , i.e. two symbols v and w of type a � b

and b � .

We searh a proof of the proposition a � . We start with a variable X of

type a � and no equation (or the equation X = X). As we have no equa-

tion, all the equations are exible-exible, thus we must try all the possible head

variables for term substituted for X , among them we onsider the substitution

(h Y

1

Y

2

Y

3

Y

4

Y

5

)=X introduing variables Y

1

, Y

2

and Y

3

of type T , Y

4

of type

Y

1

� Y

2

and Y

5

of type Y

2

� Y

3

. The aounting equation of this substitution is

(a �) = (Y

1

� Y

3

)

whih simpli�es to

a = Y

1

 = Y

3

These equations are exible-rigid, the only possible elementary substitution for Y

1

is a=Y

1

and the only possible one for Y

3

is =Y

3

. The aounting equations of these

substitution are trivial (T = T), thus we get a problem with three variables (Y

2

,

Y

4

, Y

5

) and no equations.

Instantiating, for instane, the variable Y

5

we must try all the possible head

variables, among them we onsider the substitution w=Y

5

leading to the aounting

equation

(Y

2

�) = (b �)

and it simpli�es to

Y

2

= b

This equation is exible-rigid, the only possible solution for Y

2

is b=Y

2

. The a-

ounting equation of this substitution is trivial (T = T) and thus we get a problem

with one variable (Y

4

) and no equation.

Instantiating this variable, we must try all the possible head variables, among

them we onsider the substitution v=Y

4

. The aounting equation of this substitu-

tion is trivial ((a � b) = (a � b)) and thus, we get a problem with no variables

and no equations. We are done. The term substituted for X , i.e. the proof of the

proposition a � is (h a b v w).

Here, all the proof searh has been performed by the uni�ation algorithm. Notie

that the elementary substitutions (h Y

1

Y

2

Y

3

Y

4

Y

5

)=X , w=Y

5

, v=Y

4

would be

onsidered as resolution steps in more traditional approahes while the elementary

substitutions a=Y

1

, =Y

3

and b=Y

2

would be onsidered as genuine uni�ation steps.

Patterns uni�ation is deidable in all the aluli with dependent types [Pfenning

1991b℄. Pattern mathing is undeidable in most of the aluli with dependent types

[Dowek 1991b, Dowek 1993b, Dowek 1991a℄ but seond-order mathing is deidable

1054 Gilles Dowek

[Dowek 1991, Dowek 1991a℄, and third-order mathing is deidable in some systems

[Springintveld 1995a, Springintveld 1995b, Springintveld 1995℄.

With dependent types also, the uni�ation steps an be deomposed using expliit

substitutions [Magnusson 1994, Mu~noz 1997℄.

Aknowledgments

I want to thank G�erard Huet who has initiated me into the theory of higher-order

uni�ation.

I also want to thank Peter Andrews, Jean Goubault-Larreq, and Gopalan Na-

dathur for their omments on this hapter.

Bibliography

Abadi M., Cardelli L., Curien P.-L. and L

�

evy J.-J. [1991℄, `Expliit substitutions', Journal

of Funtional Programming 1(4), 375{416.

Amiot G. [1990℄, `The undeidability of the seond order prediate uni�ation problem', Arhive

for mathematial logi 30, 193{199.

Andrews P. [2001℄, Classial type theory, in A. Robinson and A. Voronkov, eds, `Handbook of

Automated Reasoning', Vol. II, Elsevier Siene, hapter 15, pp. 965{1007.

Andrews P. B. [1971℄, `Resolution in type theory', The Journal of Symboli Logi 36(3), 414{

432.

Andrews P. B. [1986℄, An introdution to mathematial logi and type theory: to truth through

proof, Aademi Press.

Avenhaus J. and Lor

�

ia-S

�

aenz C. A. [1994℄, Higher-order onditional rewriting and narrowing,

in J.-P. Jouannaud, ed., `International Conferene on Constaints in Computational Logi',

Vol. 845 of Leture Notes in Computer Siene, Springer-Verlag, pp. 269{284.

Barendregt H. and Geuvers H. [2001℄, Proof-assistants using dependent type systems, in

A. Robinson and A. Voronkov, eds, `Handbook of Automated Reasoning', Vol. II, Elsevier

Siene, hapter 18, pp. 1149{1238.

Barendregt H. P. [1984℄, The Lambda-alulus, its syntax and semantis, North Holland.

Seond edition.

Barendregt H. P. [1992℄, Lambda aluli with types, in S. Abramsky, D. M. Gabbay and

T. S. E. Maibaum, eds, `Handbook of logi in omputer siene', Vol. 2, Clarendon Press,

pp. 118{309.

Baxter L. D. [1977℄, The omplexity of uni�ation, PhD thesis, University of Waterloo.

Bezem M. and Springintveld J. [1996℄, `A simple proof of the undeidability of inhabitation

in �P ', Journal of Funtional Programming 6(5), 757{761.

Borovansk

�

y P. [1995℄, Implementation of higher-order uni�ation based on alulus of expliit

substitution, in M. Barto�sek, J. Staudek and J. Wiedermann, eds, `SOFSEM : Theory and

Pratie of Informatis', number 1012 in `Leture Notes in Computer Siene', Springer-Verlag,

pp. 363{368.

Boudet A. and Contejean E. [1997℄, AC-uni�ation of higher-order patterns, in G. Smolka, ed.,

`Priniples and Pratie of Constraint Programming', Vol. 1330 of Leture Notes in Computer

Siene, Springer-Verlag, pp. 267{281.

Churh A. [1940℄, `A formulation of the simple theory of types', The Journal of Symboli Logi

5(1), 56{68.

Churh A. [1956℄, Introdution to mathematial logi, Prineton University Press.

Higher-Order Unifiation and Mathing 1055

Comon H. [1998℄, `Completion of rewrite systems with membership onstraints. Part II: Con-

straint solving', Journal of Symboli Computation 25, 421{453.

Comon H. and Jurski Y. [1997℄, Higher-order mathing and tree automata, in M. Nielsen and

W. Thomas, eds, `Conferene on Computer Siene Logi', Vol. 1414 of Leture Notes in

Computer Siene, Springer-Verlag, pp. 157{176.

Coquand T. [1985℄, Une th�eorie des onstrutions. Th�ese de troisi�eme yle, Universit�e Paris

VII.

Coquand T. and Huet G. [1988℄, `The alulus of onstrutions', Information and Computation

76, 95{120.

Cornes C. [1997℄, Coneption d'un langage de haut niveau de repr�esentation de preuves.

r�eurrene par �ltrage de motifs. uni�ation en pr�esene de types indutifs primitifs. synth�ese

de lemmes d'inversion. Th�ese de Dotorat, Universit�e de Paris VII.

Curien P.-L., Hardin T. and L

�

evy J.-J. [1996℄, `Conuene properties of weak and strong al-

uli of expliit substitutions', Journal of the Assoiation for Computing Mahinery 43(2), 362{

397.

Curien R. [1995℄, Outils pour la preuve par analogie. Th�ese de Dotorat, Universit�e Henri

Poinar�e - Nany I.

Curry H. B. [1942℄, `The ombinatory foundations of mathematial logi', The Journal of Sym-

boli Logi 7(2), 49{64.

Curry H. B. and Feys R. [1958℄, Combinatory logi, Vol. 1, North Holland.

Dalrymple M., Shieber S. and Pereira F. [1991℄, `Ellipsis and higher-order uni�ation', Lin-

guisti and Philosophy 14, 399{452.

Davis M. [1969℄, Invited ommentary of [Robinson 1969℄, in A. J. H. Morrell, ed., `International

Federation for Information Proessing Congress, 1968', North Holland, pp. 67{68.

Davis M. [1973℄, `Hilbert's tenth problem is unsolvable', The Amerian Mathematiian Monthly

80(3), 233{269.

de Bruijn N. G. [1972℄, `Lambda alulus notation with nameless dummies, a tool for auto-

mati formula manipulation, with appliation to the Churh-Rosser theorem', Indagationes

Mathematiae 34(5), 381{392.

de Bruijn N. G. [1980℄, A survey of the projet automath, in J. R. Hindley and J. P. Seldin,

eds, `To H.B. Curry: Essays on ombinatory logi, lambda alulus and formalism', Aademi

Press.

Dougherty D. J. [1993℄, `Higher-order uni�ation via ombinators', Theoretial Computer Si-

ene 114, 273{298.

Dougherty D. J. and Johann P. [1992℄, A ombinatory logi approah to higher-order E-

uni�ation, in D. Kapur, ed., `Conferene on Automated Dedution', Vol. 607 of Leture

Notes in Arti�ial Intelligene, Springer-Verlag, pp. 79{93.

Dowek G. [1991a℄, D�emonstration automatique dans le alul des onstrutions. Th�ese de

Dotorat, Universit�e de Paris VII.

Dowek G. [1991b℄, `L'ind�eidabilit�e du �ltrage du troisi�eme ordre dans les aluls ave types

d�ependants ou onstruteurs de types (the undeidability of third order pattern mathing

in aluli with dependent types or type onstrutors)', Comptes Rendus �a l'Aad�emie des

Sienes I, 312(12), 951{956. Erratum, ibid. I, 318, 1994, p. 873.

Dowek G. [1991℄, A seond-order pattern mathing algorithm in the ube of typed �-aluli, in

A. Tarleki, ed., `Mathematial Foundation of Computer Siene', Vol. 520 of Leture notes

in omputer siene, Springer-Verlag, pp. 151{160.

Dowek G. [1993a℄, `A omplete proof synthesis method for the ube of type systems', Journal

of Logi and Computation 3(3), 287{315.

Dowek G. [1993b℄, `The undeidability of pattern mathing in aluli where primitive reursive

funtions are representable', Theoretial Computer Siene 107, 349{356.

1056 Gilles Dowek

Dowek G. [1993℄, The undeidability of typability in the lambda-pi-alulus, in M. Bezem and

J. F. Groote, eds, `Typed Lambda Caluli and Appliations', number 664 in `Leture Notes

in Computer Siene', Springer-Verlag, pp. 139{145.

Dowek G. [1993d℄, A uni�ation algorithm for seond-order linear terms. Manusript.

Dowek G. [1994℄, `Third order mathing is deidable', Annals of Pure and Applied Logi 69, 135{

155.

Dowek G. [1995℄, Lambda-alulus, ombinators and the omprehension sheme, in M. Dezani-

Cianagliani and G. Plotkin, eds, `Typed Lambda Caluli and Appliations', number 902 in

`Leture Notes in Computer Siene', Springer-Verlag, pp. 154{170.

Dowek G., Hardin T. and Kirhner C. [1995℄, Higher-order uni�ation via expliit substitu-

tions, in `Logi in Computer Siene', pp. 366{374.

Dowek G., Hardin T. and Kirhner C. [2001℄, `HOL-lambda-sigma: an intentional �rst-order

expression of higher-order logi', Mathematial Strutures in Computer Siene 11, 1{25.

Dowek G., Hardin T., Kirhner C. and Pfenning F. [1996℄, Uni�ation via expliit substi-

tutions: the ase of higher-order patterns, in M. Maher, ed., `Joint International Conferene

and Symposium on Logi Programming', The MIT Press, pp. 259{273.

Ekman J. [1994℄, Normal proofs in set theory. Dotoral thesis, Chalmers University and Univer-

sity of G�oteborg.

Elliott C. M. [1989℄, Higher-order uni�ation with dependent funtion types, in N. Dershowitz,

ed., `Internatinal Conferene on Rewriting Tehniques and Appliations', Vol. 355 of Leture

Notes in Computer Siene, Springer-Verlag, pp. 121{136.

Elliott C. M. [1990℄, Extensions and appliations of higher-order uni�ation, PhD thesis,

Carnegie Mellon University.

Farmer W. M. [1988℄, `A uni�ation algorithm for seond-order monadi terms', Annals of Pure

and applied Logi 39, 131{174.

Farmer W. M. [1991a℄, `Simple seond order languages for whih uni�ation is undeidable',

Theoretial Computer Siene 87, 25{41.

Farmer W. M. [1991b℄, `A uni�ation theoreti method for investigating the k-provability prob-

lem', Annals of Pure and Applied Logi 51, 173{214.

Friedman H. [1975℄, Equality between funtionals, in R. Parikh, ed., `Logi Colloquium', Vol.

453 of Leture Notes in Mathematis, Springer-Verlag, pp. 23{37.

Girard J.-Y. [1970℄, Une extension de l'interpr�etation de G�odel �a l'analyse et son appliation

�a l'�elimination des oupures dans l'analyse et la th�eorie des types, in J. E. Fenstad, ed.,

`Sandinavian Logi Symposium', North Holland.

Girard J.-Y. [1972℄, Interpr�etation fontionnelle et �elimination des oupures dans l'arithm�etique

d'ordre sup�erieur. Th�ese d'

�

Etat, Universit�e de Paris VII.

Girard J.-Y., Lafont Y. and Taylor P. [1989℄, Proofs and Types, Cambridge University Press.

G

�

odel K. [1958℄, `

�

Uber eine bisher noh niht ben�utzte Erweiterung des �niten Standpunktes',

Dialetia 12.

Goldfarb W. D. [1981℄, `The undeidability of the seond-order uni�ation problem',Theoretial

Computer Siene 13, 225{230.

Goubault J. [1994℄, Higher-order rigid E-uni�ation, in F. Pfenning, ed., `5th International

Conferene on Logi Programming and Automated Reasoning', number 822 in `Leture Notes

in Arti�ial Intelligene', Springer-Verlag, pp. 129{143.

Hagiya M. [1990℄, Programming by example and proving by example using higher-order uni�a-

tion, in M. Stikel, ed., `Conferene on Automated Dedution', number 449 in `Leture Notes

in Computer Siene', Springer-Verlag, pp. 588{602.

Hagiya M. [1991℄, Higher-order uni�ation as a theorem proving proedure, in K. Furukawa,

ed., `International Conferene on Logi Programming', MIT Press, pp. 270{284.

Halln

�

as L. [1983℄, On normalization of proofs in set theory. Dotoral thesis, University of

Stokholm.

Higher-Order Unifiation and Mathing 1057

Hannan J. and Miller D. [1988℄, Uses of higher-order uni�ation for implementing programs

transformers, in R. K. an K.A. Bowen, ed., `International Conferene and Symposium on Logi

Programming', pp. 942{959.

Harper R., Honsell F. and Plotkin G. [1993℄, `A framework for de�ning logis', Journal of

the Assoiation for Computing Mahinery 40(1), 143{184.

Henkin L. [1953℄, `Banishing the rule of substitution for funtional variables', The Journal of

Symboli Logi 18(3), 201{208.

Hindley J. R. and Seldin J. P. [1986℄, Introdution to ombinators and �-alulus, Cambridge

University Press.

Howard W. A. [1980℄, The formul�-as-type notion of onstrution, in J. R. Hindley and J. P.

Seldin, eds, `To H.B. Curry: Essays on ombinatory logi, lambda alulus and formalism',

Aademi Press.

Huet G. [1972℄, Constrained resolution: a omplete method for higher order logi, PhD thesis,

Case Western University.

Huet G. [1973a℄, A mehanization of type theory, in `International Joint Conferene on Arti�ial

Intelligene', pp. 139{146.

Huet G. [1973b℄, `The undeidability of uni�ation in third order logi', Information and Control

22, 257{267.

Huet G. [1975℄, `A uni�ation algorithm for typed �-alulus', Theoretial Computer Siene

1, 27{57.

Huet G. [1976℄, R�esolution d'�equations dans les langages d'ordre 1,2, ..., !. Th�ese d'

�

Etat,

Universit�e de Paris VII.

Huet G. and Lang B. [1978℄, `Proving and applying program transformations expressed with

seond order patterns', Ata Informatia 11, 31{55.

Hughes R. [1982℄, Super-ombinators, a new implementation method for appliative languages,

in `Lisp and Funtional Programming', pp. 1{10.

Johann P. and Kohlhase M. [1994℄, Uni�ation in an extensional lambda alulus with ordered

funtion sorts and onstant overloading, in A. Bundy, ed., `Conferene on Automated Dedu-

tion', number 814 in `Leture Notes in Arti�ial Intelligene', Springer-Verlag, pp. 620{634.

Johnsson T. [1985℄, Lambda lifting: transforming programs to reursive equations, in J.-P.

Jouannaud, ed., `Funtional Programming Languages and Computer Arhiteture', number

201 in `Leture Notes in Computer Siene', Springer-Verlag, pp. 190{203.

Kirhner C. and Ringeissen C. [1997℄, Higher-order equational uni�ation via expliit sub-

stitutions, in M. Hanus, J. Heering and K. Meinke, eds, `Algebrai and Logi Programming,

International Joint Conferene ALP'97-HOA'97', Vol. 1298 of Leture Notes in Computer

Siene, Springer-Verlag, pp. 61{75.

Krivine J.-L. [1993℄, Lambda alulus, types and models, Ellis Horwood series in omputer and

their appliations.

Levy J. [1996℄, Linear seond order uni�ation, in H. Ganzinger, ed., `Rewriting Tehniques and

Appliations', Vol. 1103 of Leture Notes in Computer Siene, Springer-Verlag, pp. 332{346.

Levy J. and Veanes M. [1998℄, On uni�ation problems in restrited seond-order languages.

Manusript.

Levy J. and Villaret M. [2000℄, Linear seond-order uni�ation and ontext uni�ation with

tree-regular onstraints, in `Proeedings of the 11th Int. Conf. on Rewriting Tehniques and

Appliations (RTA'00)', Vol. 1833 of Leture Notes in Computer Siene, Springer-Verlag,

Norwih, UK, pp. 156{171.

Loader R. [1994℄, The undeidability of �-de�nability. To appear in Churh memorial volume.

Luhesi C. L. [1972℄, The undeidability of the uni�ation problem for third order languages,

Tehnial Report CSRR 2060, Department of applied analysis and omputer siene, Univer-

sity of Waterloo.

1058 Gilles Dowek

Magnusson L. [1994℄, The implementation of ALF, a proof editor based on Martin-L�of monomor-

phi type theory with expliit substitution. Dotoral thesis, Chalmers University and Univer-

sity of G�oteborg.

Martin-L

�

of P. [1984℄, Intuitionisti type theory, Bibliopolis.

Matiyaevih Y. [1970℄, `Enumerable sets are diophantine', Soviet Math. Doklady 11, 354{357.

Mayr R. and Nipkow T. [1998℄, `Higher-order rewrite systems and their onuene', Theoretial

Computer Siene (192), 3{29.

Miller D. [1991℄, `A logi programming language with lambda-abstration, funtion variables,

and simple uni�ation', Journal of Logi and Computation 1(4), 497{536.

Miller D. [1992℄, `Uni�ation under a mixed pre�x', Journal of Symboli Computation 14, 321{

358.

Miller D. and Nadathur G. [1986℄, Some uses of higher-order logi in omputational linguistis,

in `Annual Meeting of the Assoiation for Computational Linguistis', pp. 247{255.

M

�

uller O. and Weber F. [1994℄, Theory and pratie of minimal modular higher-order E-

uni�ation, in A. Bundy, ed., `Conferene on Automated Dedution', number 814 in `Leture

Notes in Arti�ial Intelligene', Springer-Verlag, pp. 650{664.

Mu

~

noz C. [1997℄, Un alul de substitutions expliites pour la repr�esentation de preuves partielles

en th�eorie des types. Th�ese de Dotorat, Universit�e de Paris VII.

Nadathur G. [1998℄, An expliit substitution notation in a �prolog implementation, in `First

International Workshop on Expliit Substitutions'.

Nadathur G. and Miller D. [1998℄, Higher-order logi programming, in D. M. Gabbay, C. J.

Hogger and J. A. Robinson, eds, `Handbook of logi in arti�ial intelligene and logi pro-

gramming', Vol. 5, Clarendon Press, pp. 499{590.

Nadathur G. and Mithell D. [1999℄, System desription : A ompiler and abstrat mahine

based implementation of �prolog, in `Conferene on Automated Dedution'.

Nadathur G. and Wilson D. [1998℄, `A notation for lambda terms : A generalization of envi-

ronments', Theoretial Computer Siene 198(1{2), 49{98.

Niehren J., Pinkal M. and Ruhrberg P. [1997℄, On equality up-to onstraints over �nite trees,

ontext uni�ation, and one-step rewriting, in `Proeedings of the 14th Int. Conferene on

Automated Dedution (CADE-14)', Vol. 1249 of Leture Notes in Computer Siene, Springer-

Verlag, Townsville, North Queensland, Australia, pp. 34{48.

Niehren J., Tison S. and Treinen R. [2000℄, `On rewrite onstraints and ontext uni�ation',

Information Proessing Letters 74(1-2), 35{40.

Nipkow T. [1991℄, Higher-order ritial pairs, in `Logi in Computer Siene', pp. 342{349.

Nipkow T. and Prehofer C. [1998℄, Higher-order rewriting and equational reasonning, in

W. Bibel and P. Shmitt, eds, `Automated Dedution - A Basis for Appliations', Vol. 1,

Kluwer, pp. 399{430.

Nipkow T. and Qian Z. [1994℄, `Redution and uni�ation in lambda aluli with a general

notion of subtype', Journal of Automated Reasoning 12, 389{406.

Padovani V. [1994℄, Fourth-order mathing is deidable. Manusript.

Padovani V. [1995℄, On equivalene lasses of interpolation equations, inM. Dezani-Cianagliani

and G. Plotkin, eds, `Typed Lambda Caluli and Appliations', number 902 in `Leture Notes

in Computer Siene', Springer-Verlag, pp. 335{349.

Padovani V. [1996a℄, Deidability of all minimal models, in S. Berardi and M. Coppo, eds,

`Types for Proof and Programs 1995', number 1158 in `Leture Notes in Computer Siene',

Springer-Verlag, pp. 201{215.

Padovani V. [1996b℄, Filtrage d'ordre sup�erieur. Th�ese de Dotorat, Universit�e de Paris VII.

Parikh R. [1973℄, `Some results on the length of proofs', Transations of the Amerian Mathe-

matial Soiety 177, 29{36.

Paulin-Mohring C. [1993℄, Indutive de�nitions in the system Coq, rules and properties, in

M. Bezem and J. F. Groote, eds, `Typed Lambda Caluli and Appliations', Vol. 664 of

Leture Notes in Computer Siene, Springer-Verlag, pp. 328{345.

Higher-Order Unifiation and Mathing 1059

Paulson L. C. [1991℄, Isabelle: The next 700 theorem provers, in P. Odifreddi, ed., `Logi and

omputer siene', Aademi Press, pp. 361{385.

Pfenning F. [1988℄, Partial polymorphi type inferene and higher-order uni�ation, in `Con-

ferene on Lisp and Funtional Programming', pp. 153{163.

Pfenning F. [1991a℄, Logi programming in the LF logial framework, in G. Huet and G. Plotkin,

eds, `Logial frameworks', Cambridge University Press, pp. 149{181.

Pfenning F. [1991b℄, Uni�ation and anti-uni�ation in the alulus of onstrutions, in `Logi

in Computer Siene', pp. 74{85.

Pfenning F. [2001℄, Logial frameworks, in A. Robinson and A. Voronkov, eds, `Handbook of

Automated Reasoning', Vol. II, Elsevier Siene, hapter 17, pp. 1063{1147.

Pfenning F. and Cervesato I. [1997℄, Linear higher-order pre-uni�ation, in `Logi in Computer

Siene'.

Plotkin G. [1972℄, `Building-in equational theories', Mahine Intelligene 7, 73{90.

Prawitz D. [1968℄, `Hauptsatz for higher order logi', The Journal of Symboli Logi 33, 452{

457.

Prehofer C. [1994a℄, Deidable higher-order uni�ation problems, in A. Bundy, ed., `Conferene

on Automated Dedution', Vol. 814 of Leture Notes in Arti�ial Intelligene, Springer-Verlag,

pp. 635{649.

Prehofer C. [1994b℄, Higher-order narrowing, in `Logi in Computer Siene', pp. 507{516.

Prehofer C. [1995℄, Solving higher-order equations: from logi to programming. Dotoral thesis,

Tehnishe Universit�at M�unhen.

Pym D. [1990℄, Proof, searh and omputation in general logi. Dotoral thesis, University of

Edinburgh.

Qian Z. [1994℄, Higher-order equational logi programming, in `Priniple of Programming Lan-

guages', pp. 254{267.

Qian Z. and Wang K. [1992℄, Higher-order equational E-uni�ation for arbitrary theories, in

K. Apt, ed., `Joint International Conferene and Symposium on Logi Programming'.

Qian Z. and Wang K. [1994℄, Modular AC uni�ation of higher-order patterns, in J.-P. Jouan-

naud, ed., `International Conferene on Constaints in Computational Logi', Vol. 845 of Le-

ture Notes in Computer Siene, Springer-Verlag, pp. 105{120.

Quine W. V. O. [1969℄, Set theory and its logi, Belknap Press.

Robinson J. A. [1969℄, New diretions in mehanial theorem proving, in A. J. H. Morrell, ed.,

`International Federation for Information Proessing Congress, 1968', North Holland, pp. 63{

67.

Robinson J. A. [1970℄, `A note on mehanizing higher order logi', Mahine Intelligene 5, 123{

133.

Sa

�

�di H. [1994℄, R�esolution d'�equations dans le syst�eme T de G�odel. M�emoire de DEA, Universit�e

de Paris VII.

Shmidt-Shau� M. [1994℄, Uni�ation of strati�ed seond-order terms, Tehnial Report 12,

J.W.Goethe-Universit�at, Frankfurt.

Shmidt-Shau� M. [1999℄, Deidability of bounded seond order uni�ation, Tehnial Re-

port 11, J.W.Goethe-Universit�at, Frankfurt.

Shmidt-Shau� M. and Shulz K. [1999℄, Solvability of ontext equations with two ontext

variables is deidable, in H. Ganzinger, ed., `Conferene on Automated Dedution', number

1632 in `Leture Notes in Arti�ial Intelligene', pp. 67{81.

Shubert A. [1997℄, Linear interpolation for the higher order mathing problem, in M. Bidoit

and M. Dauhet, eds, `Theory and Pratie of Software Development', Vol. 1214 of Leture

Notes in Computer siene, Springer-Verlag, pp. 441{452.

Shubert A. [1998℄, Seond-order uni�ation and type inferene for Churh-style polymorphism,

in `Priniple of Programming Languages', pp. 279{288.

Shwihtenberg H. [1976℄, `De�nierbare Funktionen im �-Kalk�ul mit Typen', Arhiv Logik

Grundlagenforshung 17, 113{114.

1060 Gilles Dowek

Snyder W. [1990℄, Higher-order E-uni�ation, in M. E. Stikel, ed., `Conferene on Automated

Dedution', Vol. 449 of Leture Notes in Arti�ial Intelligene, Springer-Verlag, pp. 573{587.

Snyder W. and Gallier J. [1989℄, `Higher order uni�ation revisited: Complete sets of tranfor-

mations', Journal of Symboli Computation 8(1 & 2), 101{140. Speial issue on uni�ation.

Part two.

Springintveld J. [1995a℄, Algorithms for type theory. Dotoral thesis, Utreht University.

Springintveld J. [1995b℄, Third-order mathing in presene of type onstrutors, in M. Dezani-

Cianagliani and G. Plotkin, eds, `Typed Lambda Caluli and Appliations', Vol. 902 of Le-

ture Notes in Computer Siene, Springer-Verlag, pp. 428{442.

Springintveld J. [1995℄, Third-order mathing in the polymorphi lambda alulus, in

G. Dowek, J. Heering, K. Meinke and B. M�oller, eds, `Higher-order Algebra, Logi and Term

Rewriting', Vol. 1074 of Leture Notes in Computer Siene, Springer-Verlag, pp. 221{237.

Statman R. [1982℄, `Completeness, invariane and �-de�nability', The Journal of Symboli Logi

47(1), 17{28.

Statman R. and Dowek G. [1992℄, On Statman's ompleteness theorem, Tehnial Report

CMU-CS-92-152, Carnegie Mellon University.

Takahashi M. O. [1967℄, `A proof of ut-elimination in simple type theory', Journal of the

Mathematial Soiety of Japan 19, 399{410.

Werner B. [1994℄, Une th�eorie des onstrutions indutives. Th�ese de Dotorat, Universit�e de

Paris VII.

Whitehead A. N. and Russell B. [1910-1913, 1925-1927℄, Prinipia mathematia, Cambridge

University Press.

Wolfram D. A. [1989℄, The lausal theory of types. Dotoral thesis, University of Cambridge.

Zaion M. [1987℄, `The regular expression desription of uni�er set in the typed �-alulus',

Fundementa Informatiae X, 309{322.

Zaion M. [1988℄, `Mehanial proedure for proof onstrution via losed terms in typed �-

alulus', Journal of Automated Reasoning 4, 173{190.

Higher-Order Unifiation and Mathing 1061

Index

A

abstration . 1012

aounting equation 1051

�-equivalene . 1021

automated theorem proving 1052

automaton . 1027, 1048

B

��-normal form . 1022

��-redution . 1022

�-onversion . 1016

�-normal form . 1023

�-redution 1016, 1034

Brouwer-Heyting-Kolmogorov notion

of proof 1050

C

Calulus of Construtions 1050

Churh number . 1024

losed solution 1028, 1033, 1052

losed term .1020

losure . 1039

ombinator .1037

omprehension sheme 1011

omputational linguistis 1018

ontext .1043

onversion sheme 1012

Crabb�e ounter-example1015

ut elimination . 1014

D

de Bruijn index . 1040

deidability . 1041

dependent type .1049

desriptions axiom 1016

desriptions operator 1016

E

elementary substitution 1029

empty type .1033

equational higher-order uni�ation . . 1017,

1035, 1041

equational uni�ation 1013, 1035

�-redution .1017

expliit substitution 1039

extended polynomial 1024

extensionality . 1011

F

Fail rule .1030

�nite model . 1046

�rst-order uni�ation 1041

exible term . 1030

G

G�odel's system T .1017

generate and test . 1028

Generate rule . 1031

Goldfarb number . 1026

H

head symbol . 1022

higher-order logi 1011

higher-order logi programming 1018

higher-order rewriting 1018

higher-order uni�ation1014

Hilbert's tenth problem 1024

I

imitation . 1031

interative proof onstrution system 1018

interpolation problem 1047

Intuitionisti type theory 1050

L

linear ourrene . 1043

logial framework 1018

long normal form .1023

M

metavariable . 1039

minimal uni�er . 1023

mixed pre�x .1036

monadi seond-order uni�ation 1042

more general substitution 1022

most general uni�er 1023

N

naive set theory . 1011

non-determinism 1029, 1033

O

our-hek . 1041

ourrene onstraint1036

order . 1019

P

parametri term . 1043

pattern .1041

pattern mathing .1044

1062 Gilles Dowek

Peano number .1024

Plotkin-Andrews quotient 1012

polymorphi types1050

program transformation 1018

projetion . 1031

proof theory .1018

pumping . 1046

R

regular solution . 1034

relativization . 1014

replaement 1020, 1039

rewrite system . 1013

rigid term . 1030

Russell's paradox .1013

S

sope .1035

seond-order mathing 1044

seond-order uni�ation 1026

set theory . 1011

simple type theory 1011

Simplify rule . 1031

size . 1019, 1022

smallest uni�er . 1023

solution . 1023

solved problem . 1032

substitution . 1020

T

term . 1019

third-order mathing 1047

type .1018

type onstrutors .1050

type reonstrution1018

U

undeidability . 1024

uni�ability . 1032

uni�ation . 1023

uni�ation logi . 1033

uni�ation problem1023

uni�ation tree . 1033

uni�er .1023

W

well-typed term . 1019

