Deduction modulo rewriting I
An exercise

Take the axiom

$$\forall x \forall y \forall z \ ((x + y) + z = x + (y + z))$$

Can you prove (for example, in Natural deduction)

$$(a + b) + ((c + (d + e)) + (f + g)) = (a + (b + c)) + ((d + (e + f)) + g)$$

?
An exercise

\[(a+b) + ((c + (d + e)) + (f + g)) = (a + (b + c)) + ((d + (e + f)) + g)\]
\[a + (b + ((c + (d + e)) + (f + g))) = (a + (b + c)) + ((d + (e + f)) + g)\]
\[a + (b + (c + ((d + e) + (f + g)))) = (a + (b + c)) + ((d + (e + f)) + g)\]
\[a + (b + (c + (d + (e + (f + g))))) = (a + (b + c)) + ((d + (e + f)) + g)\]
\[a + (b + (c + (d + (e + (f + g))))) = a + ((b + c) + ((d + (e + f)) + g))\]
\[a + (b + (c + (d + (e + (f + g))))) = a + (b + (c + ((d + (e + f)) + g)))\]
\[a + (b + (c + (d + (e + (f + g))))) = a + (b + (c + (d + ((e + f) + g))))\]
\[a + (b + (c + (d + (e + (f + g))))) = a + (b + (c + (d + (e + (f + g)))))\]

8 steps: at each step \(\sim 9\) possibilities

A search space of \(\sim 9^8 \sim 50,000,000\) possibilities

One per microsecond: \(\sim 1\)mn to solve this problem
No need to explore such a large search space

Knuth-Bendix: orient the axiom

$$(x + y) + z = x + (y + z)$$

into a rewrite rule

$$(x + y) + z \rightarrow x + (y + z)$$

Reduces (by a factor of 2) branching, but does not eliminate it

Confluence: completely eliminates branching
Another example

\[\forall y \ (0 + y = y) \]
\[\forall x \forall y \ (S(x) + y = S(x + y)) \]
\[\forall y \ (0 \times y = 0) \]
\[\forall x \forall y \ (S(x) \times y = x \times y + y) \]

Prove

\[S^{10}(0) + S^{10}(0) = S^{20}(0) \]

\[S^{10}(0) + S^{10}(0) = S^{20}(0 \times 0) \]
\[S^{10}(0) + S^{10}(0) = S^{19}(0 \times 0 + 0) \]

...
Don’t use deduction rules for that

Natural deduction (Sequent calculus, Frege-Hilbert systems, Resolution...) permit to build proofs with deduction rules

Not enough: proof is made of deduction and computation

But a proof is not just made of computation: 221
Another example: definitions

1: abbreviation for the term $S(0)$

What does this mean?
(a) add a constant 1 an axiom $1 = S(0)$
(b) pretend you have read $S(0)$ each time you read 1
\[
\Gamma \vdash \forall x \forall y \ (x = y \Rightarrow P(x) \Rightarrow P(y)) \quad \text{axiom}
\]
\[
\Gamma \vdash \forall y \ (1 = y \Rightarrow P(1) \Rightarrow P(y)) \quad \text{\forall-elim}
\]
\[
\Gamma \vdash 1 = S(0) \Rightarrow P(1) \Rightarrow P(S(0)) \quad \text{\forall-elim}
\]
\[
\Gamma \vdash P(1) \Rightarrow P(S(0)) \quad \text{\Rightarrow-elim}
\]

where \(\Gamma = \{1 = S(0), \forall x \forall y \ (x = y \Rightarrow P(x) \Rightarrow P(y))\} \)
Replace 1 by $S(0)$

\[
\frac{P(1) \vdash P(S(0))}{\vdash P(1) \Rightarrow P(S(0))} \text{ axiom} \Rightarrow \text{- into}
\]
I. Deduction modulo theory
 (a.k.a. Deduction modulo rewriting)
\[P(1) \vdash P(S(0)) \] \text{axiom}

a constant 1

a congruence \(\equiv \) such that \(1 \equiv S(0) \)

\[\Gamma \vdash B \] \text{axiom if } A \in \Gamma \text{ and } A \equiv B

and the same for the other Natural deduction rule
The rules of Natural deduction modulo theory

\[\Gamma \vdash A \quad \Gamma \vdash B \quad \text{\&-intro} \]

\[\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \quad \text{\&-intro} \]

\[\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash C} \quad \text{\&-intro if } C \equiv A \land B \]
The conditions on the equivalence relation

1. **Congruence:** if $A \equiv A'$ and $B \equiv B'$ then $(A \land B) \equiv (A' \land B')$, etc.

2. **Decidable:** proof-checking must be decidable

3. **Non confusing:** if $A \equiv A'$, then either one is atomic or they have the same head symbol (\land, \lor, etc.) and sub-trees are equivalent (for example, $A = B \land C$, $A' = B' \land C'$, $B \equiv B'$, and $C \equiv C'$)
Congruences defined with rewrite rules

\equiv: same normal form for confluent and terminating rewrite system

\equiv: smallest congruence containing one step reduction

\[
\begin{align*}
0 + y & \rightarrow y \\
S(x) + y & \rightarrow S(x + y) \\
0 \times y & \rightarrow 0 \\
S(x) \times y & \rightarrow x \times y + y
\end{align*}
\]

\[
\Gamma \vdash \forall x \ (x = x) \quad \text{axiom} \\
\Gamma \vdash S^{10}(0) + S^{10}(0) = S^{20}(0) \quad \forall\text{-elim}
\]
Another example

\[(x + y) + z \rightarrow x + (y + z)\]
The oldest arithmetic algorithm

\[0 = 0 \rightarrow \top \]
\[S(x) = 0 \rightarrow \bot \]
\[0 = S(y) \rightarrow \bot \]
\[S(x) = S(y) \rightarrow x = y \]

Rewrites terms to terms (atomic) propositions to propositions
An example

\[(2 \times 2 = 4) \rightarrow^* \top\]

In \emptyset, \equiv, the number 4 can be proved even

\[
\begin{align*}
& \vdash 2 \times 2 = 4 \quad \top\text{-intro} \\
& \vdash \exists x \ (2 \times x = 4) \quad \exists\text{-intro}
\end{align*}
\]

Decidable congruence: congruence $=$ computation part of proofs, deduction rules $=$ deduction part
Another example

\[x \subseteq y \quad \rightarrow \quad (\forall z \ (z \in x \Rightarrow z \in y)) \]
A set of *axioms* + a decidable and non confusing congruence

Purely axiomatic, purely computational

A provable in \mathcal{T}, \equiv, if there exists finite subset Γ of \mathcal{T} s.t. $\Gamma \vdash A$

has a proof modulo \equiv
For every theory \mathcal{T}, \equiv, a purely axiomatic theory \mathcal{T}' s.t. A provable in \mathcal{T}, \equiv if and only if A provable in \mathcal{T}'

Not more provable propositions... better proofs
II. Arithmetic in Deduction modulo theory
Comprehension

A two sorted-theory with a sort of natural numbers and one for classes of natural numbers

A comprehension axiom scheme: existence of some classes

$$\forall x_1 \ldots \forall x_n \exists c \forall y \ (y \in c \iff A)$$

if A does not contain ϵ (predicative arithmetic)
Equality

Classes used to express the properties of equality

$$\forall x \forall y \ (x = y \iff \forall c \ (x \in c \implies y \in c))$$

Exercise: prove reflexivity, symmetry, transitivity, and substitutivity
0 and S

$Pred(0) = 0$

$\forall x (Pred(S(x)) = x)$

$Null(0)$

$\forall x \neg Null(S(x))$

Exercise: prove

$\forall x \forall y (S(x) = S(y) \Rightarrow x = y)$

$\forall x \neg (0 = S(x))$
Being a natural number

Being a natural number: being in the smallest class containing 0 and closed by S

$$\forall y \ (N(y) \Leftrightarrow \forall c \ (0 \epsilon c \Rightarrow \forall x \ (x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow y \epsilon c))$$

Exercise: prove

$$N(0)$$

$$\forall y \ (N(y) \Rightarrow N(S(y)))$$

$$\forall c \ (0 \epsilon c \Rightarrow \forall x \ (x \epsilon c \Rightarrow S(x) \epsilon c) \Rightarrow \forall y \ (N(y) \Rightarrow y \epsilon c))$$
Addition and multiplication

∀y (0 + y = y)
∀x ∀y (S(x) + y = S(x + y))
∀y (0 × y = 0)
∀x ∀y (S(x) × y = (x × y) + y)
How to use these axioms to prove $\forall y (y + 0 = y)$?

High school proof:
$0 + 0 = 0$
$\forall x (x + 0 = x \Rightarrow S(x) + 0 = S(x))$

hence $\forall y (y + 0 = y)$

Using the axioms

$\forall y (0 + y = y)$

$\forall x \forall y (S(x) + y = S(x + y))$
How do we know

\[0 + 0 = 0 \Rightarrow \forall x \ (x + 0 = x \Rightarrow S(x) + 0 = S(x)) \]
\[\Rightarrow \forall y \ (y + 0 = y) \ ? \]
How do we know

\[0 + 0 = 0 \Rightarrow \forall x \ (x + 0 = x \Rightarrow S(x) + 0 = S(x)) \]
\[\Rightarrow \forall y \ (y + 0 = y) \ ? \]

\[\forall c \ (0 \in c \Rightarrow \forall x \ (x \in c \Rightarrow S(x) \in c) \Rightarrow \forall y \ y \in c) \]
How do we know

\[
0 + 0 = 0 \Rightarrow \forall x \ (x + 0 = x \Rightarrow S(x) + 0 = S(x)) \\
\Rightarrow \forall y \ (y + 0 = y) \ ?
\]

\[
\forall c \ (0 \in c \Rightarrow \forall x \ (x \in c \Rightarrow S(x) \in c) \Rightarrow \forall y \ y \in c)
\]

\[
\exists c \forall y \ (y \in c \iff y + 0 = y)
\]
Differences with other formulations of arithmetic

- Classes and comprehension scheme (just like Peano did)
- A symbol N (just like Peano did)
- Slight variation in the axioms
Orienting the axioms as rewrite rules

\[x = y \rightarrow \forall c \ (x \in c \Rightarrow y \in c) \]
Orienting the axioms as rewrite rules

\[\text{Pred}(0) \rightarrow 0 \]
\[\text{Pred}(S(x)) \rightarrow x \]
\[\text{Null}(0) \rightarrow \top \]
\[\text{Null}(S(x)) \rightarrow \bot \]
Orienting the axioms as rewrite rules

\[0 + y \longrightarrow y \]
\[S(x) + y \longrightarrow S(x + y) \]
\[0 \times y \longrightarrow 0 \]
\[S(x) \times y \longrightarrow (x \times y) + y \]
Orienting the axioms as rewrite rules

\[N(y) \rightarrow \forall c \ (0 \in c \Rightarrow \forall x \ (x \in c \Rightarrow S(x) \in c) \Rightarrow y \in c) \]
The comprehension scheme

$$\forall x_1 \ldots \forall x_n \exists c \forall y \ (y \in c \iff A)$$

Introduce a notation for this class: $f_{x_1, \ldots, x_n, y, A}(x_1, \ldots, x_n)$

$$\forall x_1 \ldots \forall x_n \forall y \ (y \in f_{x_1, \ldots, x_n, y, A}(x_1, \ldots, x_n) \iff A)$$

$$y \in f_{x_1, \ldots, x_n, y, A}(x_1, \ldots, x_n) \rightarrow A$$
III. Cuts in Deduction modulo theory
Natural deduction rules

Introductions, eliminations, axiom, excluded-middle
Define a notion of provable sequent $\Gamma \vdash A$ (and of proof)

AxOMATIC theory \mathcal{T}: set of closed propositions (axioms)
A provable in \mathcal{T} if finite subset Γ of \mathcal{T}, $\Gamma \vdash A$ provable
Without the excluded middle: constructivity

Constructively provable propositions: witness property
Each time $\exists x \ A$ provable
a term t and a proof of $(t/x)A$
How to prove it?

Cut: proof ending with an elimination rule whose main premise is proved by an introduction rule on the same symbol

\[
\begin{align*}
\pi & \quad \pi' \\
\Gamma \vdash A & \quad \Gamma \vdash B \\
\Gamma \vdash A \land B & \\
\Gamma \vdash A & \quad \land\text{-intro} \\
\Gamma \vdash A & \quad \land\text{-elim}
\end{align*}
\]

and a proof-reduction algorithm

Prove the termination of this algorithm
Final rule property

A proof π that is (1.) constructive, (2.) cut-free, and (3.) without any axioms ends with an introduction rule

A proof π of $\exists x \ A$ that is (1.) constructive, (2.) cut-free, and (3.) without any axioms ends with a \exists-intro rule:

\[
\frac{\vdash (t/x)A}{\vdash \exists x \ A} \exists\text{-intro}
\]

witness t
Why do we care? Programming with proofs

A constructive proof \(\pi \) of

\[\forall x \exists y \ (x = 2 \times y \lor x = 2 \times y + 1) \]

A proof of the proposition

\[\exists y \ (25 = 2 \times y \lor 25 = 2 \times y + 1) \]

Extract a witness from this proof
By construction, correct with respect to specification

\[x = 2 \times y \lor x = 2 \times y + 1 \]
Final rule property

An introduction (hence witness property)

(1) constructive (2) cut-free (3) without any axioms

(2) is not a restriction once termination of proof-reduction proved
(1) many proofs do not use the excluded-middle
(3) is a real limitation: to prove

$$\forall x \exists y \ (x = 2 \times y \lor x = 2 \times y + 1)$$

need to know something about $=, +, \times \ldots$
In general: failure

\[\exists x \ P(x) \vdash \exists x \ P(x) \text{ axiom} \]

Final rule: axiom rule
Also: failure of the witness property

But in some cases...
What is a cuts in Deduction modulo theory?

Same as in Predicate logic:

a proof ending with an elimination rule whose main premise is proved by an introduction rule on the same symbol
Failure of termination of proof-reduction

For some theories: for example $P \rightarrow (P \Rightarrow Q)$

\[
\begin{align*}
\frac{P \vdash P \Rightarrow Q}{P \vdash Q} & \text{ axiom}\quad \frac{P \vdash P}{P \vdash Q} \Rightarrow\text{-elim} \\
\frac{P \vdash Q}{\vdash P \Rightarrow Q} & \Rightarrow\text{-intro} \quad \frac{P \vdash P \Rightarrow Q}{P \vdash Q} \Rightarrow\text{-elim} \\
\frac{P \vdash P}{\vdash P} & \Rightarrow\text{-intro} \quad \frac{P \vdash Q}{\vdash P} \Rightarrow\text{-elim}
\end{align*}
\]
But when proof-reduction terminates

Cut-free proofs have the same properties than in Predicate logic

A proof that is (1) constructive (2) cut-free and (3) in a purely computational theory ends with an introduction rule

All (1) purely computational theories where (2) proof-reduction terminates have the witness property

For example, arithmetic has the witness property
Thursday

How these ideas can be used to build a logical framework and an encyclopedia of formal proofs