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In this note we give the proof of 53 easy lemmas used to establish Theorem
1 in our paper entitled Cut elimination for Zermelo set theory.

Proposition 1. The twenty seven formule of Table 1 are derivable.

Proof. 1. The formula x = 2 reduces to Vp (mem(z,p) = mem(x,p)) that is
derivable by purely logical means.

2. The formula y = z rewrites to Vp (mem(y, p) = mem(z,p)). We apply it
to the term gz ;... .y..P(Y1, .-, Yn) and we get (P(z < y) = P(z < z)) (where
Y1,- -, Yn are the remaining variables of P).

3. The formula a = a rewrites to

Ir [ rel(root(a), root(a), )

VaVa'Yy (' ma 2 Avel(z,y,7)) = 3y (Y na y Arel(z’,y',7)))
VyVy'Ye ((y' ne y Arel(z,y,r)) = 32’ (2" 9 x Avel(a’,y’,7)))

> >

We prove it for the relation g, , ,_,.
4. Assume a ~ b. There exists a relation r which is a bisimulation from a
to b. Then take

/ /
"= G yrel(y.an)(7)
as a bisimulation from b to a.

5. Assume a =~ b and b =~ c. Consider bisimulations r and ' from a to b and
from b to ¢, respectively. Then take

= galv,z,r,r’,fly (rel(x,y,r)/\rel(y,z,r’))(r7 T./)

as a bisimulation from a to c.

6. The formula a ~ (a/root(a)) is convertible to the formula a ~ a, which
holds since 3.

7.—13. For injectivity of S, ¢ and j, we use the function symbols Pred, ¢’
and j’. For non confusion, we use the predicate symbols Null, I and .J.

14.-27. The formula = 7, i(y’), that rewrites to

(By3' (z =i(y) Nily')

=i(2') ANy na 2'))
vV (Fy3z (z=i(y) Ni(y') = o

ONY Ng 2N 2 1g root(a)),



o CUk
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11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

Node identity
=2
y=z=(Plx —y)= Pz —2) (¥
Bisimilarity

axa

axb=>bra
(ambAb=c)=amc
a ~ (a/root(a))

Injectivity and non confusion

Eta simplification

T Y@ 1Y) Iy (@ =1i(y) Ay na y')
TNy 0 Fy 3z (. =1i(y) Ay na 2 A z 10 100t(a))
T ey W(y) & 3y (x=i(Y) ANy 10 y')
T ey 1) & 3y (@=jy) Ay m y')
T Ngapy 0 (x =1i(root(a)) vV x = j(root(d)))
T Np) (y) &y (@ =19y) Ay na y')
T Myp(a) J(p(e)) & Jy (z =i(y) Ay na root(a) A (a/y) € c)
T Mg (a) 0 Je (z = j(p(c)))
TNfy v b (Y)Y (2 =1i(y) Ay 10 y')
TNfy g b Wisyna) O Jy (x =i(y) Ay na root(a) A P(x — (a/y)))
e i(y) ey (@ =iy) Ny <y)
x ne o< Jy (x =1i(y) A Nat(y))
T neia) W(y) &y (@ =9(y) Ay na y')
T 7Ci(a) O <&
Jy (z =i(y)A

Ve [Vz (2 na root(a) = mem(z,c)) A

Vz V2" ((# 1o 2’ Amem(Z’, c)) = mem(z,c)) = mem(y,c)])

() Where P is any formula of the language of 1Z™°? that contains no function symbol
of the form g or ¢’ .
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30.
31.

32.

33.
34.

35.
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37.
38.
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41.

42.
43.
44.
45.

46.
47.
48.
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Membership

x 1Mq root(a) = (a/x) € a
a b= Vz (x n, root(a) = Iy (y m root(b) A (a/x) =~ (b/y)))
(aebhaxc)=ced

(aebAbx=c)=acc
Substitutivity

(P(x —a)ANamb)= P(z—b) (x)

Bisimilarity by relocation
(root(b) = i(root(a)) AVzVy (¥ my i(z) < Fz' (v =i(z') A2’ ne z))) = a=b
(root(b) = j(root(a)) AVxVy (v m j(x) & 32’ (v =j(@') A2’ e x))) = a=Db

Embedding
U(@)/i(y) ~ (a/y)
({a,b}/i(xo0t(a))) ~ a
({a, b}/j(root(b))) ~ b
PB(a)/i(y) = (a/y)
frn e up, P (@1, s ap, 0) [i(y) ~ (b/y)
Cl(a)/i(y) = (a/y)
Extensionality

P(c,d)
A (Vava'Vb ((a’ € a A P(a,b)) = 36’ (b € bA P(a’,}V))))
A (VavbWb' ((b' € bA P(a,b)) = 3ad'(a’ € a A P(a’,}"))))
S (emd) ()

Finitary existence axioms
celJl@) =T (cebrbea)
cefa,b} e (craVerbd)
a€Pb) Ve (cea=cebd)
aefﬂhyl ----- yp»P(ylv"'vyP7b)<:>aeb/\P(‘rHG‘) (*)

Infinity
—a € J
@ =~ (2/i(0))
(a~ (£2/i(y)) = U({a,{a}}) = (£2/i(5(y)))
gen
a € R=U{a,{a}}) € N2
Ind(£2)
Transitive closure

a€c=acClc)
a€b=0beCl(c) = ac€ Clc)

(*) Where P is any formula expressed in the language =, € and where all the
quantifiers are of sort G.

Table 2.



is equivalent, using injectivity of 4 (9.) and non confusion of ¢ and o (11.) to

(Fy3z’ (z=iy) Ny = 2" Ny na 2))
V (Fy3z (z =i(y) AN LAy ne 2 Az ng root(a))

Using trivial properties of connectors and quantifiers, this formula simplifies to

3 (x=ily) Ay =2 ANy ng 2)

and finally to
Yy (z=1i(y) Ay nay')

The other formulee are proved in the same way. ad
Proposition 2. The twenty-siz formule of table 2 are derivable.

Proof. 28. Assume x 1, root(a), the formula (a/x) € a rewrites to

Fy (y na root(a) A (a/x) = (a/y))

that holds for y = x using reflexivity of bisimilarity.
29. Assume a ~ b and z 1, root(a). We want to prove

Fy (y m root(b) A (a/z) = (b/y))

We have a ~ b hence there is r such that

(1) rel(root(a),root(b),r)
(17) VaVa'Vy (2’ ne x Arel(x,y,r) = Jy' (v m y Arel(2’,y',r)))
(i5i) Yyvy'Va (v m y Arel(z,y,r) = 32’ (' ny x Arel(a’,y', 1))

We apply (i¢) to root(a), x, root(b), and to the assumptions x 7, root(a) and
(1) and we get a node y such that y 7, root(b) and rel(x,y,r). We then have to
prove

(a/z) ~ (b/y)

This is a consequence of (1), (i7i) and rel(x,y,r), which is equivalent to
rel(root(a/x), root(b/y),r).

30. is a consequence of 29. and transitivity of bisimilarity.

31. is a consequence of symmetry and transitivity of bisimilarity.

32. By induction on the structure of P, using properties of bisimilarity and
compatibility of € w.r.t. &

33. Assume

(1) root(b) = i(root(a))
(i) vavy’ (y" my i(x) = 3
(iid) Vavy' ((32' (y' =

' (y =i(z") N2’ na x))
i(@) Na' ng ) =y np i(x))



!
z,y,y="4i(z)
fact that root(b) = i(root(a)) is hypothesis (). We have to prove

We prove a ~ b by showing that the relation g is a bisimulation. The

Vava' (' n, x = i(2") ny i(x))

and
Vavy' (v np i(x) = 32’ (2 ne x Ay =i(2))))

The second formula is (i¢). Let us prove the first. In (iii), we instantiate y’ by
i(2") and x by z we obtain

3z (i(2)) = i(2) Az na ) = i(2") np i(z)
that is equivalent, using injectivity of 7, to
' ne x=i(x") ni(x).

34. Similar to 33.
35. We use 33. with the terms a/y and |J(a)/i(y). Thus we have to prove

root(U(a)/i(y)) = i(root(a/y))
and
Y M)/ (@) & 32 (y = i(@) A’ oy, )
The first formula rewrites to i(y) = i(y) and the second to
Y Ny i(x) 32" (Y =i(a") Az’ n, x)

The formula 3’ 1 j(q) i(x) rewrites to the disjunction

whose second alternative vanishes (from non confusion) and whose remaining
alternative is equivalent to

A (v =i )N 0, x).

36.—40. are proved in a similar way, using 33. and 34.
41. Assume

(i) P(c,d)
(it) YaVa'Vb ((a’ € a A P(a,b)) = 30" (b € bA P(d,V)))
(i4i) YavbWb' ((b' € bA P(a,b)) = Ja’ (a/ € a A P(d/, b))

We prove ¢ = d by showing that the relation g/, v, P(c/n,d/y) is a bisimulation, i.e.

— P(c/root(c),d/ root(d))
= Va Va' Vy (o' n. 2 A P(c/z,d/y) = 3y (Y nay A Plc/x',d/y")))



— Yy Yy’ Vz (v ng y A Pe/z,d/y) = T2’ (2’ n. x A P(c/2',d/y")))

The first formula is a consequence of (i), 6. and 32. To prove the second, assume
x’ ne x and P(c/x,d/y). We have to prove

3y (v nay AP(c/a',d/y))
We apply (ii) to (¢/x), (¢/x’) and (d/y). We obtain
(c/a" € cJx AN P(c/z,d/y)) = T (b € d/y P(c/a', b))

By 28., (¢/2') € (¢/z) (since &’ n. z) and P(c/x,d/y) is an hypothesis, thus
there exists b’ such that
b ed/yn P(c/x'b).

The latter formula rewrites to
I (Y nay AV = (d)y) A P(c/a',b).

We conclude with 32. The third item is proved in a similar way.

Equivalence by elementary means. In the remaining proofs we will need to use
the same proof pattern several times. We have a formula of the form ¢ € v where
u is a term formed with a function symbol, for instance the formula ¢ € (J(a).
We can first rewrite such a formula with the rule defining the symbol €. In our
example, this yields the formula

3z (2 () root(| J(a) Aer (| (a)/z))

then we rewrite the term root(|J(a)) to o

3z (2 Yy oNe (U(a)/x))

and we use 14.-37. (in this case 15.) to replace the formula z 7 ) o by an
equivalent one involving simpler sets

Fy3z (y Ma 2 Az na root(a) A= (| J(a)/i(y)))

Finally, we use embedding (35.—40.), the fact that bisimilarity is an equivalence
relation (3.-5.) and that it is compatible with € (30.-31.) to simplify terms such
as J(a)/i(y) to a/y. In this case, we get

Jy3z (y e 2 A 2z 1g ToOt(a) A c= (a/y))

We shall say that the formula obtained this way is equivalent by elementary
means to the formula we started with.
42. As we said above, ¢ € | J(a) is equivalent by elementary means to

Jy3z (y na 2 A z Ng root(a) Ac= (a/y))



Then it remains to prove that this formula is equivalent to
B (cebrbea).

(Direct implication) First assume that there are y and z such that y n, z,
z Ng root(a) and ¢ ~ (a/y). Take b = a/z. We check easily that ¢ € b (by 28.
and 30.) and b € a (by 28.).

(Converse implication) Assume that ¢ € b and b € a. As b € a, there exists
z such that z n, root(a) and b = (a/z). Similarly, there exists x such that
x mp root(b) and ¢ = (b/x). Applying 29. to b, (a/z) and x, we get that there
exists y such that y 1, z and (b/x) =~ (a/y). Thus ¢ = (a/y).

43. The formula ¢ € {a, b} is equivalent by elementary means to

cxaVerb.
44. The formula a € (b) is equivalent by elementary means to

e (a = (PB(b)/1(p(e))))

Using extensionality (that follows from 41. as noticed in section 1) this formula
is equivalent to

Feve (cea e ce (P(b)/i(p(e))))

Then notice that this formula is equivalent by elementary means again to
JdeVe (c € a < 3y (y mpy root(b) A (b/y) e eNec= (b/y)))
This formula is equivalent by 30. to
JeVe (c€a< (3y (y np root(b) Ac€enecr(b/y))))

that is equivalent to
JeVe (c€as (cebAcEe))

that is logically equivalent to Ve (¢ € a = ¢ € b).
45. First notice that the formula a € fy 4, ...y, P(y1, .-, Yp, b) is equivalent by
elementary means to

Jy (y m root(b) A Pz — (b/y)) Aa= (b/y))
Using formula 32. this is equivalent to
Jy (y mp root(b) A P(x «—a) Aa = (b/y))

and thus to a € bA P(z < a).

46. Is a consequence of 45.

47. Using extensionality, we prove that the formula ¢ € (£2/i(0)) is contra-
dictory. First notice that this formula is equivalent by elementary means to

Jy (y <0Ac=(£2/i(y)))



which rewrites to Jy (L A c= (2/i(y))).
48. Assume a ~ (£2/i(y)) we want to prove

Ula, {a}}) = (2/i(S(v)))
Using extensionality, 42. and 43. and 30. this is equivalent to
Vel[(c€eaVera) e ce (22/i(S(y))))

The formula
c € (2/i(5(y)))
is equivalent by elementary means to

Jz (2 < S(y) Aem (2/i(2)))

This rewrites to
Iz ((z<yVz=y) Aec= (2/i(2)))

which is equivalent to
Jz (z<ynce=R/i(z))Ver 2/i(y)
Notice that the formula ¢ € £2/i(y) is equivalent by elementary means to
Jz (z <yANc= (2/i(z)))
Hence the formula ¢ € £2/i(S(y)) is equivalent to
c € 2/i(y)Ver 2/i(y)

and finally, by 31., toc€aV c=~ a.

49. Using 47. and 30. it suffices to prove that i(0) 1 o which is equivalent
by elementary means to Nat(0), which rewrites to T.

50. The formula a € {2 is equivalent to

Jy (Nat(y) Aa= (22/i(y)))

consider such a y, we have
Nat(y)

and
a = (2/i(y)))
From 48., we deduce

Ua. {a}}) = (2/i(5(y)))

and since Nat(S(y)) rewrites to Nat(y), we have

3z (Nat(z) A J{a, {a}} = (12/2))



thus J({a,{a}}) € 2.

51. Ind(f2) is equivalent to
FgeNAVa(a€ = U({a, {a}}) € 2))

that have been proved in 49. and 50.
52. Assume a € ¢. There exists an x such that x 7. root(c) and a = (¢/x).
Then, let H(c,e) be the formula

Vz (2 ne root(c) = mem(z,e)) AV2V2' (2 0. 2’ Amem(z’,e) = mem(z,e))

We have to prove the formula a € Cl(c). This formula is equivalent by elementary
means to
Ty (Ve (H(c,e) = mem(y,e)) Aa = (c/y).

We prove it for the object . Thus we have to prove Ve (H(c,e) = mem(z, ¢))
and a &~ (¢/z). The second formula is already proved. To prove the first, consider
e such that H(c, e), we have to prove mem(z, e) that is a consequence of H(c,e)
and z 7. root(c).

53. Assume a € b and b € Cl(c). Again, let H(c, e) be the formula

Vz (2 ne root(c) = mem(z,e)) AV2V2' (2 0. 2’ Amem(z’,e) = mem(z,e))
The formula b € Cl(c) is equivalent by elementary means to
Jx (Ve (H(c,e) = mem(x,e)) Ab = (c/z))

Consider such an z, we have Ve (H(c,e) = mem(z,e)) and b =~ (¢/x).

As a € b there exists y such that y m root(b) and a ~ (b/y). We have
b= (c/x) and y ny root(b), hence by 29. there exists z such that z 7./, root(c/x)
and (b/y) =~ ((¢/x)/z). Thus z n. = and (b/y) =~ (¢/z).

We have to prove the formula a € Cl(c). This formula is equivalent by ele-
mentary means to

Jw (Ve (H(c,e) = mem(w,e)) Aa = (c/w))

we prove it for the object z. Thus we have to prove Ve (H(c,e) = mem(z,e))
and a & (¢/z). The second formula is a consequence of a = (b/y), (b/y) = (¢/z)
and transitivity of bisimilarity (5.). To prove the first, consider e such that
H(c, e). We have to prove mem(z, e). From H(c, e) and Ve (H(c, e) = mem(z, €))
we deduce mem(z,e). Then, from H(c,e), z . = and mem(z,e), we deduce
mem(z, e). O



