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In this note we give the proof of 53 easy lemmas used to establish Theorem
1 in our paper entitled Cut elimination for Zermelo set theory.

Proposition 1. The twenty seven formulæ of Table 1 are derivable.

Proof. 1. The formula x = x reduces to ∀p (mem(x, p) ⇒ mem(x, p)) that is
derivable by purely logical means.

2. The formula y = z rewrites to ∀p (mem(y, p) ⇒ mem(z, p)). We apply it
to the term gx,y1,...,yn,P (y1, ..., yn) and we get (P (x ← y) ⇒ P (x ← z)) (where
y1, . . . , yn are the remaining variables of P ).

3. The formula a ≈ a rewrites to

∃r [ rel(root(a), root(a), r) ∧
∀x∀x′∀y ((x′ ηa x ∧ rel(x, y, r))⇒ ∃y′ (y′ ηa y ∧ rel(x′, y′, r))) ∧
∀y∀y′∀x ((y′ ηa y ∧ rel(x, y, r))⇒ ∃x′ (x′ ηa x ∧ rel(x′, y′, r))) ]

We prove it for the relation g′x,y,x=y.
4. Assume a ≈ b. There exists a relation r which is a bisimulation from a

to b. Then take
r′ = g′x,y,r,rel(y,x,r)(r)

as a bisimulation from b to a.
5. Assume a ≈ b and b ≈ c. Consider bisimulations r and r′ from a to b and

from b to c, respectively. Then take

r′′ = g′x,z,r,r′,∃y (rel(x,y,r)∧rel(y,z,r′))(r, r
′)

as a bisimulation from a to c.
6. The formula a ≈ (a/ root(a)) is convertible to the formula a ≈ a, which

holds since 3.
7.–13. For injectivity of S, i and j, we use the function symbols Pred , i′

and j′. For non confusion, we use the predicate symbols Null , I and J .
14.–27. The formula x ηS

(a) i(y′), that rewrites to

(∃y∃z′ (x = i(y) ∧ i(y′) = i(z′) ∧ y ηa z′))
∨ (∃y∃z (x = i(y) ∧ i(y′) = o ∧ y ηa z ∧ z ηa root(a)),
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Node identity

1. x = x
2. y = z ⇒ (P (x← y)⇒ P (x← z)) (∗)

Bisimilarity

3. a ≈ a
4. a ≈ b⇒ b ≈ a
5. (a ≈ b ∧ b ≈ c)⇒ a ≈ c
6. a ≈ (a/ root(a))

Injectivity and non confusion

7. S(x) = S(y)⇒ x = y
8. ¬0 = S(x)
9. i(x) = i(y)⇒ x = y
10. j(x) = j(y)⇒ x = y
11. ¬i(x) = o
12. ¬j(x) = o
13. ¬i(x) = j(y)

Eta simplification

14. x ηS

(a) i(y′)⇔ ∃y (x = i(y) ∧ y ηa y′)
15. x ηS

(a) o⇔ ∃y ∃z (x = i(y) ∧ y ηa z ∧ z ηa root(a))
16. x η{a,b} i(y′)⇔ ∃y (x = i(y) ∧ y ηa y′)
17. x η{a,b} j(y′)⇔ ∃y (x = j(y) ∧ y ηb y′)
18. x η{a,b} o⇔ (x = i(root(a)) ∨ x = j(root(b)))
19. x ηP(a) i(y′)⇔ ∃y (x = i(y) ∧ y ηa y′)
20. x ηP(a) j(ρ(c))⇔ ∃y (x = i(y) ∧ y ηa root(a) ∧ (a/y) ∈ c)
21. x ηP(a) o⇔ ∃c (x = j(ρ(c)))
22. x ηfx,y1,...,yn,P (y1,...,yn,a) i(y′)⇔ ∃y (x = i(y) ∧ y ηa y′)

23. x ηfx,y1,...,yn,P (y1,...,yn,a) o⇔ ∃y (x = i(y) ∧ y ηa root(a) ∧ P (x← (a/y)))

24. x ηΩ i(y′)⇔ ∃y (x = i(y) ∧ y < y′)
25. x ηΩ o⇔ ∃y (x = i(y) ∧Nat(y))
26. x ηCl(a) i(y′)⇔ ∃y (x = i(y) ∧ y ηa y′)
27. x ηCl(a) o⇔
∃y (x = i(y)∧

∀c [∀z (z ηa root(a)⇒ mem(z, c)) ∧
∀z ∀z′ ((z ηa z′ ∧mem(z′, c))⇒ mem(z, c)) ⇒ mem(y, c)])

(∗) Where P is any formula of the language of IZ
mod that contains no function symbol

of the form g... or g′
....

Table 1.
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Membership

28. x ηa root(a)⇒ (a/x) ∈ a
29. a ≈ b⇒ ∀x (x ηa root(a)⇒ ∃y (y ηb root(b) ∧ (a/x) ≈ (b/y)))
30. (a ∈ b ∧ a ≈ c)⇒ c ∈ b
31. (a ∈ b ∧ b ≈ c)⇒ a ∈ c

Substitutivity

32. (P (x← a) ∧ a ≈ b)⇒ P (x← b) (∗)

Bisimilarity by relocation

33. (root(b) = i(root(a)) ∧ ∀x∀y′ (y′ ηb i(x)⇔ ∃x′ (y′ = i(x′) ∧ x′ ηa x)))⇒ a ≈ b
34. (root(b) = j(root(a)) ∧ ∀x∀y′ (y′ ηb j(x)⇔ ∃x′ (y′ = j(x′) ∧ x′ ηa x)))⇒ a ≈ b

Embedding

35.
S

(a)/i(y) ≈ (a/y)
36. ({a, b}/i(root(a))) ≈ a
37. ({a, b}/j(root(b))) ≈ b
38. P(a)/i(y) ≈ (a/y)
39. fx,y1,...,yp,P (a1, ..., ap, b)/i(y) ≈ (b/y)
40. Cl(a)/i(y) ≈ (a/y)

Extensionality

41. P (c, d)
∧ (∀a∀a′∀b ((a′ ∈ a ∧ P (a, b))⇒ ∃b′(b′ ∈ b ∧ P (a′, b′))))
∧ (∀a∀b∀b′ ((b′ ∈ b ∧ P (a, b))⇒ ∃a′(a′ ∈ a ∧ P (a′, b′))))
⇒ (c ≈ d) (∗)

Finitary existence axioms

42. c ∈
S

(a)⇔ ∃b (c ∈ b ∧ b ∈ a)
43. c ∈ {a, b} ⇔ (c ≈ a ∨ c ≈ b)
44. a ∈ P(b)⇔ ∀c (c ∈ a⇒ c ∈ b)
45. a ∈ fx,y1,...,yp,P (y1, ..., yp, b)⇔ a ∈ b ∧ P (x← a) (∗)

Infinity

46. ¬a ∈ ∅

47. ∅ ≈ (Ω/i(0))
48. (a ≈ (Ω/i(y)))⇒

S

({a, {a}}) ≈ (Ω/i(S(y)))
49. ∅ ∈ Ω
50. a ∈ Ω ⇒

S

({a, {a}}) ∈ Ω
51. Ind(Ω)

Transitive closure

52. a ∈ c⇒ a ∈ Cl(c)
53. a ∈ b⇒ b ∈ Cl(c)⇒ a ∈ Cl(c)

(∗) Where P is any formula expressed in the language ≈, ∈ and where all the
quantifiers are of sort G.

Table 2.
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is equivalent, using injectivity of i (9.) and non confusion of i and o (11.) to

(∃y∃z′ (x = i(y) ∧ y′ = z′ ∧ y ηa z′))
∨ (∃y∃z (x = i(y) ∧⊥ ∧ y ηa z ∧ z ηa root(a))

Using trivial properties of connectors and quantifiers, this formula simplifies to

∃y∃z′ (x = i(y) ∧ y′ = z′ ∧ y ηa z′)

and finally to

∃y (x = i(y) ∧ y ηa y′)

The other formulæ are proved in the same way. ⊓⊔

Proposition 2. The twenty-six formulæ of table 2 are derivable.

Proof. 28. Assume x ηa root(a), the formula (a/x) ∈ a rewrites to

∃y (y ηa root(a) ∧ (a/x) ≈ (a/y))

that holds for y = x using reflexivity of bisimilarity.

29. Assume a ≈ b and x ηa root(a). We want to prove

∃y (y ηb root(b) ∧ (a/x) ≈ (b/y))

We have a ≈ b hence there is r such that

(i) rel(root(a), root(b), r)

(ii) ∀x∀x′∀y (x′ ηa x ∧ rel(x, y, r)⇒ ∃y′ (y′ ηb y ∧ rel(x′, y′, r)))

(iii) ∀y∀y′∀x (y′ ηb y ∧ rel(x, y, r)⇒ ∃x′ (x′ ηa x ∧ rel(x′, y′, r)))

We apply (ii) to root(a), x, root(b), and to the assumptions x ηa root(a) and
(i) and we get a node y such that y ηb root(b) and rel(x, y, r). We then have to
prove

(a/x) ≈ (b/y)

This is a consequence of (ii), (iii) and rel(x, y, r), which is equivalent to
rel(root(a/x), root(b/y), r).

30. is a consequence of 29. and transitivity of bisimilarity.

31. is a consequence of symmetry and transitivity of bisimilarity.

32. By induction on the structure of P , using properties of bisimilarity and
compatibility of ∈ w.r.t. ≈.

33. Assume

(i) root(b) = i(root(a))

(ii) ∀x∀y′ (y′ ηb i(x)⇒ ∃x′ (y′ = i(x′) ∧ x′ ηa x))

(iii) ∀x∀y′ ((∃x′ (y′ = i(x′) ∧ x′ ηa x))⇒ y′ ηb i(x))
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We prove a ≈ b by showing that the relation g′x,y,y=i(x) is a bisimulation. The

fact that root(b) = i(root(a)) is hypothesis (i). We have to prove

∀x∀x′ (x′ ηa x⇒ i(x′) ηb i(x))

and
∀x∀y′ (y′ ηb i(x)⇒ ∃x′ (x′ ηa x ∧ y′ = i(x′)))

The second formula is (ii). Let us prove the first. In (iii), we instantiate y′ by
i(x′) and x by x we obtain

∃z (i(x′) = i(z) ∧ z ηa x)⇒ i(x′) ηb i(x)

that is equivalent, using injectivity of i, to

x′ ηa x⇒ i(x′) ηb i(x) .

34. Similar to 33.
35. We use 33. with the terms a/y and

⋃
(a)/i(y). Thus we have to prove

root(
⋃

(a)/i(y)) = i(root(a/y))

and
y′ ηS

(a)/i(y) i(x)⇔ ∃x′ (y′ = i(x′) ∧ x′ ηa/y x)

The first formula rewrites to i(y) = i(y) and the second to

y′ ηS

(a) i(x)⇔ ∃x′ (y′ = i(x′) ∧ x′ ηa x)

The formula y′ ηS

(a) i(x) rewrites to the disjunction

(∃x′∃w (y′ = i(x′) ∧ i(x) = i(w) ∧ x′ ηa w))
∨ (∃x′∃z (y′ = i(x′) ∧ i(x) = o ∧ x′ ηa z ∧ z ηa root(a)))

whose second alternative vanishes (from non confusion) and whose remaining
alternative is equivalent to

∃x′ (y′ = i(x′) ∧ x′ ηa x) .

36.–40. are proved in a similar way, using 33. and 34.
41. Assume

(i) P (c, d)
(ii) ∀a∀a′∀b ((a′ ∈ a ∧ P (a, b))⇒ ∃b′ (b′ ∈ b ∧ P (a′, b′)))

(iii) ∀a∀b∀b′ ((b′ ∈ b ∧ P (a, b))⇒ ∃a′ (a′ ∈ a ∧ P (a′, b′)))

We prove c ≈ d by showing that the relation g′x,y,P (c/x,d/y) is a bisimulation, i.e.

– P (c/ root(c), d/ root(d))
– ∀x ∀x′ ∀y (x′ ηc x ∧ P (c/x, d/y) ⇒ ∃y′ (y′ ηd y ∧ P (c/x′, d/y′)))
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– ∀y ∀y′ ∀x (y′ ηd y ∧ P (c/x, d/y) ⇒ ∃x′ (x′ ηc x ∧ P (c/x′, d/y′)))

The first formula is a consequence of (i), 6. and 32. To prove the second, assume
x′ ηc x and P (c/x, d/y). We have to prove

∃y′ (y′ ηd y ∧ P (c/x′, d/y′))

We apply (ii) to (c/x), (c/x′) and (d/y). We obtain

(c/x′ ∈ c/x ∧ P (c/x, d/y))⇒ ∃b′ (b′ ∈ d/y ∧ P (c/x′, b′))

By 28., (c/x′) ∈ (c/x) (since x′ ηc x) and P (c/x, d/y) is an hypothesis, thus
there exists b′ such that

b′ ∈ d/y ∧ P (c/x′, b′).

The latter formula rewrites to

∃y′ (y′ ηd y ∧ b′ ≈ (d/y′)) ∧ P (c/x′, b′) .

We conclude with 32. The third item is proved in a similar way.
Equivalence by elementary means. In the remaining proofs we will need to use

the same proof pattern several times. We have a formula of the form t ∈ u where
u is a term formed with a function symbol, for instance the formula c ∈

⋃
(a).

We can first rewrite such a formula with the rule defining the symbol ∈. In our
example, this yields the formula

∃x (x ηS

(a) root(
⋃

(a)) ∧ c ≈ (
⋃

(a)/x))

then we rewrite the term root(
⋃

(a)) to o

∃x (x ηS

(a) o ∧ c ≈ (
⋃

(a)/x))

and we use 14.–37. (in this case 15.) to replace the formula x ηS

(a) o by an
equivalent one involving simpler sets

∃y∃z (y ηa z ∧ z ηa root(a) ∧ c ≈ (
⋃

(a)/i(y)))

Finally, we use embedding (35.–40.), the fact that bisimilarity is an equivalence
relation (3.–5.) and that it is compatible with ∈ (30.–31.) to simplify terms such
as

⋃
(a)/i(y) to a/y. In this case, we get

∃y∃z (y ηa z ∧ z ηa root(a) ∧ c ≈ (a/y))

We shall say that the formula obtained this way is equivalent by elementary

means to the formula we started with.
42. As we said above, c ∈

⋃
(a) is equivalent by elementary means to

∃y∃z (y ηa z ∧ z ηa root(a) ∧ c ≈ (a/y))



7

Then it remains to prove that this formula is equivalent to

∃b (c ∈ b ∧ b ∈ a) .

(Direct implication) First assume that there are y and z such that y ηa z,
z ηa root(a) and c ≈ (a/y). Take b = a/z. We check easily that c ∈ b (by 28.
and 30.) and b ∈ a (by 28.).

(Converse implication) Assume that c ∈ b and b ∈ a. As b ∈ a, there exists
z such that z ηa root(a) and b ≈ (a/z). Similarly, there exists x such that
x ηb root(b) and c ≈ (b/x). Applying 29. to b, (a/z) and x, we get that there
exists y such that y ηa z and (b/x) ≈ (a/y). Thus c ≈ (a/y).

43. The formula c ∈ {a, b} is equivalent by elementary means to

c ≈ a ∨ c ≈ b .

44. The formula a ∈ P(b) is equivalent by elementary means to

∃e (a ≈ (P(b)/j(ρ(e))))

Using extensionality (that follows from 41. as noticed in section 1) this formula
is equivalent to

∃e∀c (c ∈ a⇔ c ∈ (P(b)/j(ρ(e))))

Then notice that this formula is equivalent by elementary means again to

∃e∀c (c ∈ a⇔ ∃y (y ηb root(b) ∧ (b/y) ∈ e ∧ c ≈ (b/y)))

This formula is equivalent by 30. to

∃e∀c (c ∈ a⇔ (∃y (y ηb root(b) ∧ c ∈ e ∧ c ≈ (b/y))))

that is equivalent to
∃e∀c (c ∈ a⇔ (c ∈ b ∧ c ∈ e))

that is logically equivalent to ∀c (c ∈ a⇒ c ∈ b).
45. First notice that the formula a ∈ fx,y1,...,yp,P (y1, ..., yp, b) is equivalent by

elementary means to

∃y (y ηb root(b) ∧ P (x← (b/y)) ∧ a ≈ (b/y))

Using formula 32. this is equivalent to

∃y (y ηb root(b) ∧ P (x← a) ∧ a ≈ (b/y))

and thus to a ∈ b ∧ P (x← a).
46. Is a consequence of 45.
47. Using extensionality, we prove that the formula c ∈ (Ω/i(0)) is contra-

dictory. First notice that this formula is equivalent by elementary means to

∃y (y < 0 ∧ c ≈ (Ω/i(y)))
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which rewrites to ∃y (⊥ ∧ c ≈ (Ω/i(y))).
48. Assume a ≈ (Ω/i(y)) we want to prove

⋃
({a, {a}}) ≈ (Ω/i(S(y)))

Using extensionality, 42. and 43. and 30. this is equivalent to

∀c [(c ∈ a ∨ c ≈ a)⇔ c ∈ (Ω/i(S(y)))]

The formula
c ∈ (Ω/i(S(y)))

is equivalent by elementary means to

∃z (z < S(y) ∧ c ≈ (Ω/i(z)))

This rewrites to
∃z ((z < y ∨ z = y) ∧ c ≈ (Ω/i(z)))

which is equivalent to

∃z (z < y ∧ c ≈ Ω/i(z)) ∨ c ≈ Ω/i(y)

Notice that the formula c ∈ Ω/i(y) is equivalent by elementary means to

∃z (z < y ∧ c ≈ (Ω/i(z)))

Hence the formula c ∈ Ω/i(S(y)) is equivalent to

c ∈ Ω/i(y) ∨ c ≈ Ω/i(y)

and finally, by 31., to c ∈ a ∨ c ≈ a.
49. Using 47. and 30. it suffices to prove that i(0) ηΩ o which is equivalent

by elementary means to Nat(0), which rewrites to ⊤.
50. The formula a ∈ Ω is equivalent to

∃y (Nat(y) ∧ a ≈ (Ω/i(y)))

consider such a y, we have
Nat(y)

and
a ≈ (Ω/i(y)))

From 48., we deduce ⋃
({a, {a}}) ≈ (Ω/i(S(y)))

and since Nat(S(y)) rewrites to Nat(y), we have

∃z (Nat(z) ∧
⋃
{a, {a}} ≈ (Ω/z))
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thus
⋃

({a, {a}}) ∈ Ω.
51. Ind(Ω) is equivalent to

∅ ∈ Ω ∧ ∀a (a ∈ Ω ⇒
⋃

({a, {a}}) ∈ Ω))

that have been proved in 49. and 50.
52. Assume a ∈ c. There exists an x such that x ηc root(c) and a ≈ (c/x).
Then, let H(c, e) be the formula

∀z (z ηc root(c)⇒ mem(z, e)) ∧ ∀z∀z′ (z ηc z′ ∧mem(z′, e)⇒ mem(z, e))

We have to prove the formula a ∈ Cl(c). This formula is equivalent by elementary
means to

∃y (∀e (H(c, e)⇒ mem(y, e)) ∧ a ≈ (c/y)) .

We prove it for the object x. Thus we have to prove ∀e (H(c, e) ⇒ mem(x, e))
and a ≈ (c/x). The second formula is already proved. To prove the first, consider
e such that H(c, e), we have to prove mem(x, e) that is a consequence of H(c, e)
and x ηc root(c).

53. Assume a ∈ b and b ∈ Cl(c). Again, let H(c, e) be the formula

∀z (z ηc root(c)⇒ mem(z, e)) ∧ ∀z∀z′ (z ηc z′ ∧mem(z′, e)⇒ mem(z, e))

The formula b ∈ Cl(c) is equivalent by elementary means to

∃x (∀e (H(c, e)⇒ mem(x, e)) ∧ b ≈ (c/x))

Consider such an x, we have ∀e (H(c, e)⇒ mem(x, e)) and b ≈ (c/x).
As a ∈ b there exists y such that y ηb root(b) and a ≈ (b/y). We have

b ≈ (c/x) and y ηb root(b), hence by 29. there exists z such that z ηc/x root(c/x)
and (b/y) ≈ ((c/x)/z). Thus z ηc x and (b/y) ≈ (c/z).

We have to prove the formula a ∈ Cl(c). This formula is equivalent by ele-
mentary means to

∃w (∀e (H(c, e)⇒ mem(w, e)) ∧ a ≈ (c/w))

we prove it for the object z. Thus we have to prove ∀e (H(c, e) ⇒ mem(z, e))
and a ≈ (c/z). The second formula is a consequence of a ≈ (b/y), (b/y) ≈ (c/z)
and transitivity of bisimilarity (5.). To prove the first, consider e such that
H(c, e). We have to prove mem(z, e). From H(c, e) and ∀e (H(c, e)⇒ mem(x, e))
we deduce mem(x, e). Then, from H(c, e), z ηc x and mem(x, e), we deduce
mem(z, e). ⊓⊔


