
Teaching Gödel’s incompleteness theorems

Gilles Dowek∗

1 Introduction

The basic notions of logic—predicate logic, Peano arithmetic, incompleteness theo-
rems, etc.—have for long been an advanced topic. In the last decades, they became
more widely taught, in philosophy, mathematics, and computer science departments,
to graduate and to undergraduate students. Many textbooks now present these no-
tions, in particular the incompleteness theorems.

Having taught these notions for several decades, our community can now stand
back and analyze the choices faced when designing such a course. In this note, we
attempt to analyze the choices faced when teaching the incompleteness theorems.
In particular, we attempt to defend the following points.

• The incompleteness theorems are a too rich subject to be taught in only one
course. It is impossible to reach, in a few weeks, the second incompleteness
theorem and Löb’s theorem with students who have never been exposed to the
basics of predicate logic, exactly in the same way that it is impossible to reach
in a few weeks the notion of analytic function with students who have never
had been exposed to the notions of function and complex number.

Thus, the incompleteness theorems must be taught several times, at different
levels, for instance, first, in an elementary course, in the third year of university,
then in an advanced one, in the fourth year. The goals and focus of theses
courses are different.

• When the incompleteness theorems are taught in isolation, they are often
viewed as a “promised land” and the notions of computability, representa-
tion, reduction, diagonalization, etc. are introduced in order to prove these
theorems.

In contrast, we defend that these notions should be motivated and taught
independently, possibly in different courses. This way, the chapter on the
incompleteness theorems remains small and focused on the specifics of incom-
pleteness.

∗Inria and École normale supérieure de Paris-Saclay, 61, avenue du Président Wilson, 94235
Cachan Cedex, France, gilles.dowek@ens-paris-saclay.fr.



• Making the proofs too concrete, for instance by defining explicit numberings,
so that the students can put their hands on this notion, often overloads the
proofs with irrelevant idiosyncratic details.

The proofs need to be made abstract enough so that the students can focus
on the meaningful points. Tools to make the proof abstract enough—abstract
syntax, articulation, general fixed-point theorems, provability logic notations,
etc.—exist and can be used.

2 Which theories ?

The incompleteness theorems do not apply to all theories. They do not apply to
some theories because they are too weak, such as the theory containing a binary
predicate symbol = and an axiom ∀x∀y (x = y), that is complete. They do not
apply to some theories because they are too strong, such as inconsistent theories,
that also are complete.

2.1 Strong enough

Although Gödel’s original proofs applied to the Principia Mathematica, a natural
choice for proving the incompleteness theorems is Peano arithmetic, that already
permits to represent computable functions.

Yet, for the first incompleteness theorem, it is traditional to consider a much
weaker theory: Robinson’s arithmetic that is essentially Peano arithmetic, minus
the induction axiom, plus a few consequences of induction. This generalization is
indeed interesting, but it should not be considered as mandatory, when teaching
the incompleteness theorem, specially in an elementary course, as it may divert the
students from the meaningful points in the proof of this theorem.

Moreover, proving the Hilbert-Bernays lemmas and hence the second incom-
pleteness theorem seems to require a theory stronger than Robinson’s arithmetic,
for instance Peano arithmetic.

2.2 Weak enough

A natural, but false, idea of the students discovering the incompleteness of arithmetic
is that some axiom has been forgotten and that adding this axiom will make the
theory complete.

So, it is important to remark that adding a finite number of axioms cannot make
arithmetic complete. The right way to formulate this remark is to prove essential
incompleteness, that is that any extension of arithmetic verifying, some properties,
is incomplete. The first condition can be formulated as the fact that the set of
axioms is decidable, that proof-checking is decidable, or as the fact that the set of
theorems is semi-decidable. The second is the consistency of the theory.

Yet, assuming only consistency requires to prove the Gödel-Rosser theorem, in-
troducing some unneeded complexity. An alternative is to assume ω-consistency,

2



that is that each time a proposition of the form ∃x A is provable, there exists a nat-
ural number n such that ¬(n/x)A is not provable. But, this property also introduces
some unneeded complexity.

A simpler option is to assume a stronger hypothesis: that the theory has a
standard model. An advantage of this choice is that it forces us to introduce the
notion of standard model, preparing a corollary of incompleteness: the existence of
non standard models. Another is that having a standard model M permits, as we
shall see, to prove easily the weak representation theorem.

As for many theorems, we should not attempt to have the weakest hypotheses
in an elementary course, and the discussion of the most general form of the theorem
can be left for an advanced course.

3 Which language ?

The choice of the language is a delicate problem. To be able to associate to each
natural number n a term n, we need to assume that the language in which the theory
is expressed contains enough function symbols to express the natural numbers. This
forbids to apply the incompleteness theorem to theories, such as set theory, that has
no function symbols.

An alternative is to use a theory where it is possible to construct propositions
with free variables characterizing the natural number 0, the successor relation, ad-
dition, multiplication, etc. such that some propositions—essentially the axioms of
Robinson’s arithmetic—are provable. Then, for each natural number p, it is possible
to build a proposition Np characterizing the number p and write ∀x (Np[x]⇒ A[x])
or ∃x (Np[x] ∧ A[x]) instead of A[p].

This is the choice made in [4]. In retrospect, it is a bit heavy and it could have
been left for an exercise.

4 Numbering

A first step in a proof of an incompleteness theorem is often the introduction of
the notion of numbering. For the students, this notion is often both surprising and
trivial. Surprising because theories, algorithms, computers, etc. manipulate various
datatypes without numbering them. Trivial because, today, everyone knows that
texts, images, sounds, etc. are eventually coded as digits, hence numbers.

Often, propositions, proofs, programs, Turing machines, etc. are numbered inde-
pendently of each other. This leads to introduce many definitions. We defend that
this notion of numbering should be made general enough, so that the numbering of
propositions, proofs, etc. are just instances of this general definition.

On the other hand, this notion of numbering cannot be made too general because
composing a numbering with a non computable function yields another function,
that should not be considered as a numbering [2].

In [4], we have proposed to restrict numberings to articulated sets, using the
notion, common in linguistics [6], of articulation. A set is said to be 0-articulated
when it is finite. It is said to be (n + 1)-articulated when it is a set of finite trees

3



labeled with elements of a n-articulated set. So, the set containing the connectors,
the quantifiers, the function symbols, and the predicate symbols a of theory is 0-
articulated, the set containing these symbols and the variables is 1-articulated, the
set of terms and propositions is 2-articulated, the set of sequents is 3-articulated,
the set of proofs is 4-articulated, etc. More generally, all the objects we need to
number are elements of an articulated set.

Using Cantor’s bijection ; from N2 to N \ {0}

n; p = (n+ p)(n+ p+ 1)/2 + n+ 1

we can number any tree of a (n+1)-articulated set, f(t1, ..., tp), whose root is labeled
with f and whose immediate subtrees are t1, ..., tp as

pf(t1, ..., tp)q = pfq; (pt1q; (...; (ptpq; 0)...))

where the first p.q is the numbering of the n-articulated set the label f belongs
to and the others are the function currently defined by induction. This way, the
numbering depends only on the numbering of the elements of the 0-articulated set
we start with. And it is easy to prove that, as this set is finite, changing this
numbering does not change the set of computable functions from an articulated set
to another.

This is an example of an abstraction mechanism that permits to avoid arbitrary
definitions and tedious repetitions. Of course, as all general notions, it must be
illustrated with concrete examples, but these concrete examples should not replace
the general notion in the definitions and the proofs.

Using this notion of articulation also forces us to define all the objects we want
to number—propositions, proofs, programs, etc.—as trees. This means that the
abstract syntax of these objects is emphasized, and not their concrete syntax. We
believe this is a good thing and the notions of parenthese, unique reading, prefix,
infix, and postfix operator, precedence, etc., that are not specific to logic languages
should not be addressed in a logic course, but in a language theory course.

Finally, when a proposition A is numbered as pAq, this number n is often used
to build the term Sn(0), written n. So, many expressions in the proofs are of
the form pAq. Although the functions p.q and . are sometimes used in isolation,
introducing a notation ‘A’ for pAq clarifies the proofs. Indeed, this composition of
the functions p.q and ., mapping a proposition of arithmetic to terms of arithmetic,
is the homogeneous reflection notion.

5 Gödel’s β function and the definition of com-

putable functions

A second step in a proof of an incompleteness theorem is often the association of a
proposition to each computable function.

In fact, we do not associate one proposition to each computable function, but to
each construction of a computable function. For instance, the binary null function
and the composition of the unary null function with a binary projection are exten-
sionnally equal, but different propositions are associated to these constructions.

4



We thus can introduce first a notion of construction of a computable function, in
such a way that Z2 and ◦21(Z1, π2

1) are different constructions of the same function.
Such a construction is a tree, labeled with symbols Zn for the zero function of arity
n, Succ for the successor function, µn for the minimization of a function of arity
n + 1, etc. It may be called a “program”, as it is a syntactic object expressing a
computable function. It is in fact the derivation tree, labeled with rule names [4]
associated to the inductive definition of computable functions, that is a proof that
the function is computable.

The set of computable functions is often defined as the smallest set containing

• the projections,

• the null function,

• and the successor function

and closed by

• composition,

• definitions by induction,

• and minimization,

leading to the language πn
i , Zn, Succ, ◦ni , Recn, µn.

Associating a proposition to each program is straightforward—y = 0 for the pro-
gram Zn, y = S(x1) for program Succ, etc.—except for the definitions by induction,
that require the use of Gödel’s β function and the Chinese remainder theorem.

This difficulty can be avoided, if we use an alternative definition of the set of
computable functions, adding three more functions: addition, multiplication, and
the characteristic function of the order relation, that is the function χ≤, such that
χ≤(n, p) = 1 if n ≤ p, and χ≤(n, p) = 0 otherwise, and dropping definitions by
induction.

The representation of programs is simplified.

• To πn
i , we associate the proposition y = xi.

• To Zn, we associate the proposition y = 0.

• To Succ, we associate the proposition y = S(x1).

• To +, we associate the proposition y = x1 + x2.

• To ×, we associate the proposition y = x1 × x2.

• To χ≤, we associate the proposition

(x1 ≤ x2 ∧ y = 1) ∨ (x2 < x1 ∧ y = 0)

where the proposition x ≤ y abbreviates ∃z (z+x = y) and x < y abbreviates
S(x) ≤ y.

5



• To ◦nm(h, g1, . . . , gm), we associate the proposition

∃w1 . . . ∃wm (B1[x1, . . . , xn, w1] ∧ . . . ∧Bm[x1, . . . , xn, wm] ∧ C[w1, . . . , wm, y])

where B1, ..., Bm, and C, represent the programs g1, ..., gm, and h.

• To µn(g), we associate the proposition

∀z (z < y ⇒ ∃w (B[x1, . . . , xn, z, S(w)])) ∧B[x1, . . . , xn, y, 0]

where B represents the program g.

Fundamentally, what makes this notion of representation easy is the similarity be-
tween the symbols allowing to construct terms in arithmetic: variables, 0, S, +, and
×, and five of the eight clauses defining the set of computable functions: projections,
the null functions, the successor function, addition, and multiplication.

But, of course, we need to prove the equivalence of these two definitions of the
set of computable functions, and this requires the use of Gödel’s β function and
the Chinese remainder theorem. Proving this equivalence [4]1 is even slightly more
difficult than directly using Gödel’s β function and the Chinese remainder theorem
to represent programs as propositions, but it makes the proof more modular. When
proving this equivalence, only functions mapping natural numbers to natural num-
bers are used and the notion of proposition is not mentioned. This equivalence can
also be proved long before the incompleteness theorem is discussed. It can be mo-
tivated by other goals than the incompleteness theorems: for instance it simplifies
the proof of other theorems such as the representation theorem of computable func-
tions as rewrite systems, terms of the λ-calculus [5], Turing machines, etc. When
computability is taught in a different course than logic, this equivalence should, of
course, be taught in the computability course, and not in the logic course.

Computable functions could even be defined with these eight clauses, and Gödel’s
β function and the Chinese remainder theorem would then be used only to prove
that the set of computable functions is closed by definitions by induction.

6 The form of the representation theorem

6.1 The weak representation theorem

Let T be a theory that has a decidable set of axioms, is an extension of Robinson’s
arithmetic, and has a standard model M.

We want to prove that if a proposition A represents a program f , then the
proposition A[p1, ..., pn, q] expresses that the program f terminates at p1, ..., pn and
returns q, that is that this proposition is provable in T if and only if f(p1, ..., pn) = q.

A simple induction on the structure of the program permits to prove that if
f(p1, ..., pn) = q, then the proposition A[p1, ..., pn, q] is provable in T . The com-
pleteness theorem shows that if this proposition is provable in T , it is valid in M.
And a simple induction on the structure of the program f shows that, if this propo-
sition is valid in M, then q = f(p1, ..., pn).

1The original proof contained a few gaps, a corrected proof—in French—is available online
http://www.lsv.fr/˜dowek/Books/Lc/prop317.pdf

6



6.2 The undecidability of provability

In the same way, we can prove that the proposition ∃y A[p1, ..., pn, y] expresses that
the program f terminates at p1, ..., pn, that is that this proposition is provable in
T if and only if f terminates at p1, ..., pn.

The computable function F mapping f and p1, ..., pn to the proposition ∃y A[p1, ..., pn, y]
thus reduces the halting problem to provability in T .

If G is the function mapping a proposition A to 1 if it is provable and to 0
otherwise, then the function G ◦ F maps f and p1, ..., pn to 1 is f terminates at
p1, ..., pn, and to 0 otherwise. Using the contrapositive of the closure of computable
functions by composition, as G ◦F is not computable and F is, G is not. Thus, the
undecidability of provability in T is a mere consequence of the undecidability of the
halting problem and of this representation theorem.

6.3 A stronger representation theorem

In some proofs of the incompleteness theorems, we need a stronger theorem express-
ing that if f terminates at p1, ..., pn then the proposition

∀y (A[p1, ..., pn, y]⇔ y = f(p1, ..., pn))

is provable. For this theorem, we do not need the theory T to have a standard
model, or even to be consistent. All we need it that it has a decidable set of axioms
an it is an extension of Robinson’s arithmetic.

Note that this representation theorem is both stronger and weaker than that
of Section 6.1. It is stronger because the equivalence with f is internalized, it is
expressed by an equivalence in the language, that holds for all y. But, it is weaker
because it says nothing when f does not terminate at p1, ..., pn, while the theorem
of Section 6.1 shows that A[p1, ..., pn, q] is not provable in this case.

But, assuming that the theory T is moreover consistent, when the function
terminates at p1, ..., pn, the weak representation theorem is a consequence of the
strong one as

A[p1, ..., pn, q]

is provable if and only if q = f(p1, ..., pn) is, that is if and only if q = f(p1, ..., pn).
The statement of this strong representation theorem is slightly less natural than

that of the weak one, as it introduces a asymmetry between the arguments and the
value of the program. The arguments are closed terms p1, ..., pn quantified outside
the language, while the value is a variable y quantified in the language itself.

As a consequence, if the proof of the strong representation is direct for the seven
of the eight cases, it is slightly less direct for minimization, µn(g), where an argument
of the function g becomes the value of the function µn(g). We need to prove

∀y ((∀z (z < y ⇒ ∃w B[p1, . . . , pn, z, S(w)]) ∧B[p1, . . . , pn, y, 0])⇔ y = r)

assuming µn(g) terminates and takes the value r at p1, ..., pn. Proving

∀y (y = r ⇒ (∀z (z < y ⇒ ∃w B[p1, . . . , pn, z, S(w)]) ∧B[p1, . . . , pn, y, 0]))

7



that is equivalent to

∀z (z < r ⇒ ∃w B[p1, . . . , pn, z, S(w)]) ∧B[p1, . . . , pn, r, 0]

is easy, as the bounded quantification can be reduced to a finite conjunction. But
to prove the converse

∀y ((∀z (z < y ⇒ ∃w B[p1, . . . , pn, z, S(w)]) ∧B[p1, . . . , pn, y, 0])⇒ y = r)

we need to use the fact that from the hypothesis ∀z (z < y ⇒ ∃w B[p1, . . . , pn, z, S(w)])
we can deduce r < y ⇒ ∃w B[p1, . . . , pn, r, S(w)] thus r < y ⇒ ∃w 0 = S(w) and
y ≤ r, to show that it is sufficient to prove the proposition

∀y (y ≤ r ⇒ (B[p1, . . . , pn, y, 0]⇒ y = r))

that reduces to a finite conjunction.
As we shall see, the weak representation theorem is enough for several proofs of

the first incompleteness theorem and in an elementary course, we can restrict to this
theorem, while the strong theorem is needed for an advanced course.

7 The various proofs of the first incompleteness

theorem

There are two families of proofs of the first incompleteness theorem.

7.1 The computer scientist’s proofs

In the first family, the incompleteness of the theory is seen as a consequence of the
undecidability of provability in this theory. Let T be a theory that has a decidable
set of axioms, is an extension of Robinson’s arithmetic, and has a standard model
M. As we have seen, provability in T is undecidable.

If this theory were complete, then the computable function mapping pAq to the
least x such that proof(x, pAq) = 1 or proof(x, p¬Aq) = 1, where the computable
function proof maps n and p to 1 if n = pπq, p = pAq and π is a proof of A, and to 0
otherwise, would be total and would return a proof of A if and only if A is provable.
Thus it would permit to build an algorithm deciding provability in T .

This theorem can even be made more abstract as the fact that a semi-decidable
set whose complement is also semi-decidable is decidable.

This proof uses many notions of theoretical computer science: the notion of
computable function, the notion of reduction, and the notion of proof search: the
function mapping pAq to the least x such that proof(x, pAq) = 1 is a generate-
and-test proof search algorithm and that mapping pAq to the least x such that
proof(x, pAq) = 1 or proof(x, p¬Aq) = 1 is a similar algorithm searching simultane-
ously for a proof of A and ¬A. So, this proof may be called the computer scientist’s
proof.

Considering a theory that has a decidable set of axioms, is an extension of
Robinson’s arithmetic, or Peano arithmetic, and has a standard model, proving

8



the weak representation theorem for this theory, deducing the undecidability of
provability in this theory, and then its incompleteness as a corollary is probably a
sufficient goal for an elementary course, giving a first exposition to incompleteness.

7.2 The quick mathematician’s proof

The second family of proofs effectively constructs a proposition G such that neither
G nor ¬G are provable.

It gives a less central rôle to the notion of computable function. Often the
representation of a few functions such as the function proof, the substitution function
mapping n and p to m if n = pAq and m = p(p/x)Aq, and the negation function
mapping n to m if n = pAq and m = p¬Aq are sufficient.

A simple formulation of this proof, which can be given as an exercise, even in an
elementary course, is to consider only one function, that is a mixture of the proof
function and of the substitution function, mapping n, p, and q to 1 if n = pπq,
p = pAq and π is a proof of (q/x)A.

Let T be a theory that has a decidable set of axioms, is an extension of Robinson’s
arithmetic, and has a standard model M.

Calling F the proposition representing the function f , T the diagonal proposition
∀x ¬F [x,w,w, 1] and G the proposition T [‘T ’], it is easy to prove that neither G
nor ¬G is provable, in a theory that has a decidable set of axioms, is an extension
of Robinson’s arithmetic, and has a standard model.

IfG is provable, then ∀x ¬F [x, ‘T ’, ‘T ’, 1] is provable, thus for all n, f(n, pTq, pTq) =
0, thus T [‘T ’], that is G, is not provable. A contradiction. If ¬G is provable, then
there exists a natural number n such that f(n, pTq, pTq) = 1 thus G is provable,
thus ⊥ is provable. A contradiction.

7.3 The thorough mathematician’s proof

This quick proof is still a bit mysterious because the proof function and the substitu-
tion function are mixed in this function f and the meaning of the proposition G—its
relation to the liar’s paradox, to the diagonal argument, and to self reference—are
not explicit.

A more thorough proof, which also prepares the proof of the second incomplete-
ness theorem better, is to use the proof function and the substitution function s to
decompose this function f .

Then, we can introduce a provability proposition

Bew = ∃z Proof[z, x, 1]

and introduce the notation, inspired by provability logic, 2A for Bew[‘A’].
It is easy to prove the necessitation lemma: if A is provable, then 2A is provable.

Indeed, if A has a proof π, then, by the representation theorem, Proof[‘π’, ‘A’, 1].
Thus, ∃z Proof[z, ‘A’, 1], that is Bew[‘A’], that is 2A, is provable.

The converse of this lemma is false in general: a theory can prove 2⊥ with-
out proving ⊥, but this converse holds if the theory is ω-consistent. Indeed from
2A, that is ∃z Proof[z, ‘A’, 1] we can deduce that there exists an n such that

9



¬Proof[n, ‘A’, 1] is not provable, thus using the strong representation theorem ¬1 =
proof(n, pAq) is not provable, thus proof(n, pAq) 6= 0, proof(n, pAq) = 1 and A is
provable.

Let T be a theory that has a decidable set of axioms, is an extension of Robinson’s
arithmetic, and is ω-consistent.

Using the strong representation theorem, we can now build the liar’s proposi-
tion G such that G ⇔ ¬2G is provable. To do so, we introduce a proposition D
expressing that A[p] is not provable,

∃z (¬Bew[z] ∧ S[x1, x2, z])

a proposition E expressing that A[‘A’] is not provable

D[w,w]

and G
E[‘E’]

that is
∃z (¬Bew[z] ∧ S[‘E’, ‘E’, z])

then G is provably equivalent to

∃z (¬Bew[z] ∧ z = ‘E[‘E’]’)

that is
¬Bew[‘G’]

So, the proposition G is a fixed point of the proposition ¬Bew[x]. This theorem
can be generalized [7]. We consider any proposition C containing a variable x and
we prove that there exists a proposition G such that G⇔ C[‘G’] is provable. Instead
of defining D as ∃z (¬Bew[z] ∧ S[x1, x2, z]) we define it as

∃z (C[z] ∧ S[x1, x2, z])

E as
D[w,w]

and G as
E[‘E’]

that is
∃z (C[z] ∧ S[‘E’, ‘E’, z])

The proposition G is provably equivalent to

∃z (C[z] ∧ z = ‘E[‘E’]’)

hence to
C[‘G’]

Taking the proposition C = ¬Bew[x], we get the liar’s proposition above.

10



Taking the proposition C = Bew[x], we get Henkin’s truth-teller’s proposition
H such that H ⇔ 2H is provable.

Taking the proposition C = Bew[x] ⇒ P , we get Löb’s proposition such that
L⇔ (2L⇒ P ) is provable.

Taking the proposition

C = ∀y (Proof[y, x]⇒ ∃z (z ≤ y ∧ (∃w (Neg[x,w] ∧ Proof[z, w]))))

we get Rosser’s proposition such that

R⇔ ∀y (Proof[y, ‘R’]⇒ ∃z (z ≤ y ∧ (∃w (Neg[‘R’, w] ∧ Proof[z, w]))))

is provable, that is

R⇔ ∀y (Proof[y, ‘R’]⇒ ∃z (z ≤ y ∧ (Proof[z, ‘¬R’])))

is provable.
This fixed point theorem is another example where abstraction—considering an

arbitrary proposition—simplifies proofs, avoiding redundancy.
The proof that neither G nor ¬G are provable in T is then quite direct using G⇔

¬2G, the necessitation and its converse: ifG is provable then 2G (necessitation) and
¬2G (equivalence) also. Thus ⊥ is provable. A contradiction. If ¬G is provable,
then 2G also (equivalence) hence G also (converse of necessitation). Thus ⊥ is
provable. A contradiction.

As this proof uses the converse of necessitation, it requires the theory T to be
ω-consistent.

8 Consistency and ω-consistency

The three proofs discussed above use an hypothesis stronger than consistency: ω-
consistency or the existence of a standard model. The Gödel-Rosser theorem permits
to weaken this hypothesis to consistency. Thus, we consider a theory T that has a
decidable set of axioms, is an extension of Robinson’s arithmetic, and is consistent.

This proof uses “the little converse of necessitation”: if the proposition

∃x (x ≤ n ∧ Proof[x, ‘A’])

is provable then so is A. Indeed from

∃x (x ≤ n ∧ Proof[x, ‘A’])

we can deduce

Proof[0, ‘A’] ∨ Proof[1, ‘A’] ∨ ... ∨ Proof[n, ‘A’]

and if A were not be provable, then ¬Proof[0, ‘A’], ¬Proof[1, ‘A’], ..., ¬Proof[n, ‘A’]
would be provable. Then ⊥ would be provable and A also. A contradiction.

Then, the proof that neither R not ¬R is provable is quite direct. If R has a
proof π then the proposition

Proof[‘π’, ‘R’]

11



is provable and the proposition

∀y (Proof[y, ‘R’]⇒ ∃z (z ≤ y ∧ Proof[z, ‘¬R’]))

also. Thus, the proposition

∃z (z ≤ ‘π’ ∧ Proof[z, ‘¬R’])

is provable and, by the little converse of necessitation, ¬R also. Thus ⊥ is provable,
contradicting the consistency of the theory.

If ¬R has a proof π, then the proposition

Proof[‘π’, ‘¬R’]

is provable and the proposition

∃y (Proof[y, ‘R’] ∧ ∀z (¬z ≤ y ∨ ¬Proof[z, ‘¬R’]))

also. So, the proposition

∃y (Proof[y, ‘R’] ∧ (¬‘π’ ≤ y ∨ ¬Proof[‘π’, ‘¬R’]))

is provable. Hence the proposition

∃y (y < ‘π’ ∧ Proof[y, ‘R’])

is provable and by the little converse of necessitation R also. Thus ⊥ is provable,
contradicting the consistency of the theory.

Introducing this little converse of necessitation permits to make this proof more
modular.

Yet, because, not only the notion of provability, but also the notion of proof is
used in this proof, it cannot be formulated abstractly using the notation 2A.

9 The second incompleteness theorem

The second incompleteness theorem shows that a consistent extension of Peano
arithmetic does not prove its own consistency.

9.1 The Hilbert-Bernays lemmas

Besides the necessitation lemma: if A is provable, so is 2A, the proof of the second
incompleteness theorem requires two more lemmas: the internalization of modus
ponens

2(A⇒ B)⇒ 2A⇒ 2B

is provable and the internalization of necessitation

2A⇒ 22A

is provable.

12



The proofs of these two lemmas use induction and cannot be proved in Robinson’s
arithmetic. So, we consider a theory T that has a decidable set of axioms, is an
extension of Peano arithmetic, and is consistent.

Many books just say that these two lemmas have long and tedious proofs. Some
insist on the fact the informal statements

If A⇒ B and A are provable, then B is provable.

and

If A is provable, then 2A is provable.

can be expressed in arithmetic as the two propositions above and that their proofs
can be formalized in arithmetic—formalizing these proofs being long and tedious.

As remarked by Miquel [7], these proofs depend on the choice of the proposition
Proof, that is of the proof-checking program expressing the function proof. The
program we use transforms trees whose leaves are labeled with proofs or with the
symbols 0 and 1 and whose internal nodes are all labeled with a symbol and.

In such a tree we consider two kinds of reducible expressions.

• An internal node labeled with and whose both children are labeled with 0 or 1
is a reducible expression. It reduces to 1, when both children are labeled with
1, and to 0 otherwise.

• A leaf labeled with a proof π is a reducible expression. If this proof has a root
labeled with the proposition A and immediate subproofs π1, ..., πn, we write
it A(π1, ..., πn). Let B1, ..., Bn be the propositions labelling the roots of π1,
..., πn. If there is a deduction rule allowing to deduce A from B1, ..., Bn, then
it reduces to the tree (...(π1 and π2)... and πn) and to 1 if n = 0. Otherwise,
it reduces to 0.

We first define a program step that reduces the leftmost reducible expression in
a tree. We then define a program check iterating the program step until obtaining
an irreducible tree, containing just one node, labeled with 1 or with 0, which is the
result of the algorithm.

The program proof applied to π and A applies the program check to the tree
containing just one node labeled with π. If the result is 1 and the root of π is A, it
returns 1, otherwise it returns 0.

If it easy to prove, by induction on n that if stepn(pπ1q) = pπ′1q then stepn(pπ1 and π2q) =
pπ′1 and π2q and that if stepn(pπ2q) = pπ′2q then stepn(p1 and π2q = p1 and π′2q.

Thus, if proof(pπ1q, pA ⇒ Bq) = 1 and proof(pπ2q, pAq) = 1 then there ex-
ists natural numbers n and p such that stepn(pπ1q) = p1q and stepp(pπ2q) = p1q.
Thus, stepn+p(pπ1 and π2q) = p1 and 1q and stepn+p+1(pπ1 and π2q) = p1q. As
step(pB(π1, π2)q = pπ1 and π2q,
stepn+p+2(pB(π1, π2)q) = p1q. Thus proof(pB(π1, π2)q, pBq) = 1.

This proof, which uses induction only, can be expressed in Peano arithmetic and
it is a proof of

∀x1∀x2∀y (Proof[x1, ‘A⇒ B’, 1]⇒ Proof[x2, ‘A’, 1]⇒M [‘B’, x1, x2, y]⇒ Proof[y, ‘B’, 1])

13



where M is the propositions representing the function mapping pBq, pπ1q and pπ2q
to pB(π1, π2)q.

From this proposition and the totality of the function mapping pBq, pπ1q and
pπ2q to pB(π1, π2)q, we get a proof of

(∃x1Proof[x1, ‘A⇒ B’, 1])⇒ (∃x2Proof[x2, ‘A’, 1])⇒ ∃y Proof[y, ‘B’, 1]

that is of
2(A⇒ B)⇒ 2A⇒ 2B

which is the internalization of the modus ponens.
A similar argument can be given for all the other deduction rules. This permits

to give a new proof of the necessitation lemma: if A has a proof, so does 2A,
building the proof of 2A, step by step, by induction on the proof of A.

This proof also can be formalized in arithmetic as a proof of

2A⇒ 22A

9.2 The second incompleteness theorem

The proof of the second incompleteness theorem: the theory T does not prove its
own consistency ¬2⊥, is then quite direct.

Let G a the proposition such that G⇔ ¬2G is provable.
The proposition G ⇒ 2G ⇒ ⊥ is provable, so, using the necessitation lemma

and the internalization of the modus ponens, the propositions 2(G ⇒ 2G ⇒ ⊥)
and 2G ⇒ 22G ⇒ 2⊥ also. Thus, using the internalization of necessitation, the
proposition 2G⇒ 2⊥ also.

It can be noticed that this proposition is the internalization of the first half of
the first incompleteness theorem: if G is provable, then ⊥ also.

Now, if we assume that the proposition ¬2⊥ is provable, we can deduce that
the proposition ¬2G is also provable. Thus, the proposition G also, and by neces-
sitation, 2G also, thus ⊥ also, contradicting the consistency of the theory.

9.3 Provability logic

The proof of the first incompletenes theorem uses the symbol 2 but only the ne-
cessitation lemma. The proof of the second theorem, in contrast, uses more modal
logic: the lemmas K and 4

2(A⇒ B)⇒ 2A⇒ 2B

2A⇒ 22A

It is possible to mention modal logic here, and in particular provability logic,
but the notation of provability logic and its modularity—proving first the Hilbert-
Bernays lemmas, and then using them in the proof of the second incompleteness
theorem—can be used without defining provability logic per se.

14



9.4 Löb’s theorem

Using the notations of provability logic and a general fixed point theorem, Löb’s
theorem is a straightforward extension of the second incompleteness theorem. Löb’s
theorem is: for any proposition P , if 2P ⇒ P is provable then P is.

Instead of the proposition G, we use the proposition L such that L⇔ (2L⇒ P )
is provable.

The proposition L ⇒ 2L ⇒ P is provable, so, using the necessitation lemma
and the internalization of the modus ponens, the propositions 2(L⇒ 2L⇒ P ) and
2L⇒ 22L⇒ 2P also. Using the internalization of necessitation, the proposition
2L⇒ 2P also.

Now, if we assume that the proposition 2P ⇒ P is provable, we can deduce
that the proposition 2L ⇒ P is provable. Thus, the proposition L also, and by
necessitation 2L also, thus P is provable.

The second incompleteness theorem is a corollary of this theorem taking P = ⊥,
so, this theorem can also be proved before the second incompleteness theorem.

Finally, taking P = H, Henkin’s truth-teller’s proposition, such that H ⇔ 2H
is provable, another corollary is that this proposition H is provable. Indeed, as
2H ⇒ H is provable, so is H.

10 History and philosophy

As the subject itself, the history of the incompleteness theorems is very rich. One
thing the students can learn is that the notion of computable function, and the
undecidability of provability, and hence the computer scientist’s proof came in the
work of Church and Turing (1936) after the incompleness theorems (1931). So,
historically, the first proof is the mathematician’s proof. Another thing the students
can learn is the problems the second incompleteness theorem and the undecidability
solved: Hilbert’s second problem and Hilbert’s Entscheidungsproblem respectively.

On the more philosophical side, many commentators see in the incompleteness
a proof that a theory cannot speak about itself. On the contrary, the second in-
completeness theorem exists because the consistency of a theory can be formulated
in the theory itself. The incompleteness is also often presented as a disaster. If it
shows some limits to the deductive method, it is not the end of it.

11 Conclusion

As suggested in the Introduction, the incompleteness theorems are rich subject that
cannot be taught in one course. We have tried to separate what can be taught
in an elementary course: the weak representation of computable functions, the un-
decidability of provability, the first incompleteness theorem, under reasonable hy-
potheses, from what can be kept for an advanced course: the strong representation
of computable functions, the thorough proof of the first incompleteness theorem,
Hilbert-Bernays lemmas, the second incompleteness theorem, Löb’s theorem, and
the minimal hypotheses to be used in these theorems.

15



We have also defended that the notion of computable function, the equivalence
of its two definitions, using Gödel’s β function and the Chinese remainder theorem,
and concrete syntax should be taught independently and before the undecidability
and incompleteness of arithmetic.

Finally, we have defended an abstract and modular approach to these proofs,
using abstract syntax, articulation, universal numbering, provability logic notations,
the converse of necessitation, the little converse of necessitation, a general fixed point
lemma, and Hilbert-Bernays lemmas. This work needs to be continued. In particular
the Gödel-Rosser theorem and the proofs of the Hilbert-Bernays lemmas are not yet
abstract enough.

Abstract definitions and general lemmas should of course be illustrated with
concrete examples, but these concrete examples should not replace them.

References

[1] P.B. Andrews. An introduction to mathematical logic: to truth through proof.
Academic Press, 1986.

[2] U. Boker and N. Dershowitz. The Church-Turing thesis over arbitrary domains.
In A. Avron, N. Deshowitz, and A. Rabinovich, editors, Pillars of computer
science, essays dedicated to Boris (Boaz) Trakhtenbrot on the occasion of his
85th birthday, volume 4800 of Lecture Notes in Computer Science, pages 199–
229. Springer, 2008.

[3] R. Cori and D. Lascar. Mathematical logic: a course with exercises. Oxford
University Press, 2000.

[4] G. Dowek. Proofs and algorithms. Springer, 2011.

[5] J.-L. Krivine. Lambda-calculus, types and models. Ellis Horwood, 1993.

[6] A. Martinet. Éléments de linguistique générale. Colin, 1968.

[7] A. Miquel. Les théorèmes d’incomplétude de Gödel. École normale supérieure
de Lyon. Available online.

16


