
The termination of proof reduction
in Deduction modulo theory



I. What we have seen so far



Proof, theory, model

Examples of theories

Termination of proof-reduction in Predicate logic



Connecting the notions

Termination of proof-reduction in some theories

Main tool: the notion of model



II. Counter-examples and examples



Counter-examples

As we have seen

P −→ P ⇒ Q
P −→ Q ∧ ¬P

consistent but no termination of proof-reduction



Example

P −→ Q ⇒ Q

P abbreviation for Q ⇒ Q
Replace P by Q ⇒ Q everywhere

Or direct proof: RQ set of all strongly terminating proof-terms
RP = RQ⇒Q

Instead of: RP set of all strongly terminating proof-terms



Key idea

Same proof as for predicate logic: associate a set RA of
proof-terms to each proposition A
Such that RA⇒B the set of proof-terms π such that π strongly
terminates and when π reduces to λα : A π1, then for every π′ in
RA, (π′/α)π1 in RB , etc.

Extra condition: if A ≡ B then RA = RB



III. Sets candidates to be associated to propositions



Naming operations

RA∧B = set of proof-terms π, such that π strongly terminates and
if π reduces to 〈π1, π2〉 then π1 in RA and π2 in RB

E ∧̃ F = set of proof-terms π, such that π strongly terminates and
if π reduces to 〈π1, π2〉 then π1 in E and π2 in F

Then define RA∧B as RA ∧̃ RB



Operations on sets of proof-terms

∧̃ maps E and F to the set of proof-terms π, such that π strongly
terminates and if π reduces to 〈π1, π2〉 then π1 ∈ E and π2 ∈ F

⇒̃ maps E and F to the set of proof-terms π, such that π strongly
terminates and if π reduces to λα : A π1 then for every π′ in E ,
(π′/α)π1 ∈ F

>̃, ⊥̃, ∨̃, ∀̃, ∃̃



Candidates

The set C of candidates (reducibility candidates) inductively
defined as the smallest set of set of proof terms closed by these
operations and intersection

I >̃ and ⊥̃ are candidates

I if E and F are candidates, then E ∧̃ F , E ∨̃ F , and E ⇒̃ F
are candidates

I if S is a set of candidates, then ∀̃ S and ∃̃ S are candidates

I if S is a set of candidates, then
⋂
S is a candidate



IV. The algebra of candidates



To prove that proof-reduction terminates in ≡

I Define a function R mapping every proposition A to a
candidate RA s.t.

1. RA∧B = RA ∧̃ RB , RA⇒B = RA ⇒̃ RB , etc.
2. if A ≡ B, then RA = RB

I prove all proofs of A are in RA, hence strongly terminate



Because RA∧B = RA ∧̃ RB , RA⇒B = RA ⇒̃ RB , etc.
Once R defined on atomic propositions, it extends in a unique way

A function mapping atomic propositions to candidates

For each predicate symbol P, a function P mapping tuples of
terms to candidates: RP(t1,...,tn) = P(t1, ..., tn)

In a first step associate, to each term t, an element of an arbitrary
set M and then define a function P̂ from Mn to C

Just a model valued in the algebra C, RA = JAK



Condition (2.) rephrases:
if A ≡ B then JAK = JBK

The model is a model of the congruence



The algebra C

Trivial pre-order relation ≤ defined by C ≤ C ′ always
operations >̃, ⊥̃, ∧̃, ∨̃, ⇒̃, ∀̃ and ∃̃ pre-Heyting algebra
(any set is)

Ordered ⊆, complete (
⋂

)

Not a Heyting algebra
>̃ 6= >̃ ⇒̃ >̃
λα : A (α α) in >̃ but not in >̃ ⇒̃ >̃



V. The termination of proof-term reduction



If T ,≡ has a model valued in the algebra C
Then every proof-term this theory strongly terminates



Four easy lemmas

If C is a candidate, then all the elements of C strongly terminate

Let C be a candidate and α a variable, then α ∈ C

If C is a candidate, π is an element of C and π −→∗ π′, then π′ is
an element of C

Let C be a candidate and π a proof-term that is an elimination
and such that all one-step reducts of π are in C , then π is in C



Main theorem

≡ a congruence
M a model valued in the algebra C of ≡
π a proof-term of type A in a context Γ
θ a substitution mapping variables to terms
φ a valuation mapping variables to elements of M
σ a substitution mapping any proof-term variable bound to
proposition B in Γ to an element of JBKφ

Then σθπ is an element of JAKφ



Corollaries

If T ,≡ has a model valued in the algebra C
Then every proof-term this theory strongly terminates

If T ,≡ is super-consistent
Then, every proof-term this theory strongly terminates



More corollaries

∅,≡ purely computational and super-consistent

If there exists a proof of A, then there exists one that ends with an
introduction rule
If there exists a proof of ∃x A, then there exists a term t and a
proof of (t/x)A



And corollaries of corollaries

Every proof-term in Arithmetic strongly terminates
Arithmetic has the witness property

Every proof-term in Simple type theory (with Peano numbers)
strongly terminates
Simple type theory (with Peano numbers) has the witness property



VI. Proof-terms reduction in Arithmetic



A class that contains zero that is closed by successor
Two proofs that 100 is in this class

Express these proofs in HA−→ or in Simple type theory with Peano
numbers
Eliminating cuts in one yields the other



Proofs by induction

π proof of 0 ε c
π′ proof of ∀x (N(x)⇒ x ε c ⇒ S(x) ε c)

λy λα (α c π π′) proof of ∀y (N(y)⇒ y ε c)



((λy λα (α c π π′)) S100(0) ρ100)

where ρ100 : N(S100(0))

Second

(π′ S99(0) ρ99 (π′ S98(0) ρ98 (... (π′ 0 ρ0 π))))

where ρ0 : N(0), ρ1 : N(S(0)), ρ2 : N(S2(0)), etc.



Parigot numbers

N(S100(0)) is

∀c (0 ε c ⇒ ∀x (N(x)⇒ x ε c ⇒ S(x) ε c)⇒ S100(0) ε c)

Only one irreducible proof of this proposition

ρ100 = λcλxλf (f S99(0) ρ99 (f S98(0) ρ98 (... (f 0 ρ0 x))))



((λy λα (α c π π′)) S100(0) ρ100)
reduces to
(ρ100 c π π′)
and then to
(π′ S99(0) ρ99 (π′ S98(0) ρ98 (... (π′ 0 ρ0 π))))

Iterator: ρ100, not S100(0)



VII. Proofs as programs



π proof of

∀x (N(x)⇒ ∃y (N(y) ∧ (x = 0⇒ y = 0) ∧ (¬x = 0⇒ y = S(0))))

(π Sn(0) ρn) proof of

∃y (N(y) ∧ (Sn(0) = 0⇒ y = 0) ∧ (¬Sn(0) = 0⇒ y = S(0)))



Irreducible form of this proof 〈t, 〈π1, π2〉〉
where t is a irreducible term expressing a natural number (Sp(0))
π1 proof of N(t)
π2 proof of

(Sn(0) = 0⇒ t = 0) ∧ (¬Sn(0) = 0⇒ t = S(0))

Thus if n = 0, then p = 0 and if n 6= 0, then p = 1
Computing the function χ: proofs are programs and
proof-reduction an interpreter



Provably total computable function

Specification of χ:

(x = 0⇒ y = 0) ∧ (¬x = 0⇒ y = S(0))

Any computable function f can be specified by a proposition A,
s.t. (n/x , p/y)A provable if and only if p = f (n)
When

∀x (N(x)⇒ ∃y (N(y) ∧ A))

provable, f provably total in arithmetic



Irreducible form of (π Sn(0) ρn): 〈t, 〈π1, π2〉〉
t = Sp(0) for p = f (n)
All functions that are provably total in arithmetic, can be expressed
in this programing language

Much more expressive than Simply typed lambda-calculus

N(y) −→ ∀c (0 ε c ⇒ ∀x (N(x)⇒ x ε c ⇒ S(x) ε c)⇒ y ε c)

permits to type iterators



Next time

Dependent types


