Arithmetic

I. What we have seen so far

The notion of proof: constructivity, witness property, termination of proof reduction

The notion of theory: axioms spoil the last rule property, replace them by a congruence

The notion of model: many valued, constructive proofs, deduction modulo theory, super-consistency

Super-consistency

A theory is consistent if it has a model valued in some non-trivial algebra

A theory is super-consistent if it has a model valued in all (full, ordered, and complete) pre-Heyting algebras Example: $P \longrightarrow (Q \Rightarrow Q)$ In any \mathcal{B} a model: $\hat{Q} = \tilde{\top}, \hat{P} = (\tilde{\top} \Rightarrow \tilde{\top})$

Full, ordered, and complete

Full: the domains \mathcal{A} of $\tilde{\forall}$ and \mathcal{E} of $\tilde{\exists}$ is $\mathcal{P}^+(\mathcal{B})$

Ordered pre-Heyting algebra: pre-Heyting algebra equipped with an extra order relation \sqsubseteq such that $\tilde{\wedge}$, $\tilde{\vee}$, $\tilde{\forall}$, and $\tilde{\exists}$ are monotone, $\tilde{\Rightarrow}$ is left anti-monotone and right monotone

A ordered pre-Heyting algebra is complete if every subset of ${\cal B}$ has a greatest lower bound for \sqsubseteq

Super-consistency implies termination of proof-reduction

Today and in the next lectures

Examples of theories

Arithmetic, set theory, simple type theory

II. Arithmetic

Examples of propositions

$$\forall x \exists y \ (x = 2 \times y \lor x = 2 \times y + 1)$$
$$\exists y \ (4 = 2 \times y)$$
$$\exists x \exists y \ (7 = (x + 2) \times (y + 2))$$
$$\forall x \exists y \ (y \ge x \land prime(y))$$

 \geq , prime?

2, 4, etc.

not constants not terms expressing numbers in binary or decimal notation

Terms expressing numbers in unary notation: with a constant 0 and a unary function symbol S

4 is *S*(*S*(*S*(*S*(0))))

Several axiomatic theories

Classical logic: Peano arithmetic (PA) Constructive logic: Heyting arithmetic (HA)

Several formulations: with or without a sort κ for classes with or without a predicate symbol N for natural numbers

Our goal: $HA^{\kappa N}$ both κ and N (back to Peano) Transformed into a purely computational theory Full witness property III. HA^{κ}

0, S, Pred, +, \times , Null, =

$$Pred(0) = 0$$

$$\forall x \ (Pred(S(x)) = x)$$

$$\forall y \ (0 + y = y)$$

$$\forall x \ \forall y \ (S(x) + y = S(x + y))$$

$$\forall y \ (0 \times y = 0)$$

$$\forall x \ \forall y \ (S(x) \times y = (x \times y) + y)$$

$$Null(0)$$

$$\forall x \ \neg Null(S(x))$$

Induction

No other numbers than those constructed with 0 and S Every class containing 0 and closed by S contains everything Besides ι , a sort κ for classes, a predicate symbol ϵ

$$\forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow \forall y \ y \ \epsilon \ c)$$

Comprehension axiom scheme: existence of some classes

$$\forall x_1 ... \forall x_n \exists c \forall y \ (y \ \epsilon \ c \Leftrightarrow A)$$

if A does not contain ϵ (predicative arithmetic)

Equality

Classes also used to express the properties of equality

$$\forall x \forall y \ (x = y \Leftrightarrow \forall c \ (x \ \epsilon \ c \Rightarrow y \ \epsilon \ c))$$

Exercise: prove reflexivity, symmetry, transitivity, and substitutivity

How to use these axioms to prove $\forall y \ (y + 0 = y)$?

High school proof:

$$0 + 0 = 0$$

 $\forall x (x + 0 = x \Rightarrow S(x) + 0 = S(x))$
hence $\forall y (y + 0 = y)$

Using the axioms

$$\forall y \ (0 + y = y)$$
$$\forall x \ \forall y \ (S(x) + y = S(x + y))$$

How do we know

$$0 + 0 = 0 \Rightarrow \forall x \ (x + 0 = x \Rightarrow S(x) + 0 = S(x))$$

$$\Rightarrow \forall y \ (y + 0 = y) ?$$

How do we know

$$0 + 0 = 0 \Rightarrow \forall x \ (x + 0 = x \Rightarrow S(x) + 0 = S(x))$$
$$\Rightarrow \forall y \ (y + 0 = y) ?$$

$$\forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow \forall y \ y \ \epsilon \ c)$$

How do we know

$$0 + 0 = 0 \Rightarrow \forall x \ (x + 0 = x \Rightarrow S(x) + 0 = S(x))$$
$$\Rightarrow \forall y \ (y + 0 = y) ?$$

$$\forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow \forall y \ y \ \epsilon \ c)$$

$$\exists c \forall y \ (y \in c \Leftrightarrow y + 0 = y)$$

Another exercise

Prove

$$\forall x \forall y \ (S(x) = S(y) \Rightarrow x = y)$$

 $\forall x \neg (0 = S(x))$

HA: avoiding classes

Instead of a sort κ , a comprehension scheme, an induction axiom: an induction scheme

$$\forall x_1 ... \forall x_n ((0/y)A \Rightarrow \forall p ((p/y)A \Rightarrow (S(p)/y)A) \Rightarrow \forall q (q/y)A)$$

(same thing for equality) For instance A = y + 0 = y: $0 + 0 = 0 \Rightarrow \forall p \ (p + 0 = p \Rightarrow S(p) + 0 = S(p))$ $\Rightarrow \forall q \ (q + 0 = q)$

Equivalent

Equivalent: in what sense?

A proposition A provable in HA iff it is provable in HA^{κ} No way: the language of HA^{κ} contains more symbols If A in the language of HA: A is provable in HA iff provable in HA^{κ}

If A provable in HA then A is provable in HA^{κ} easy (extension) If A provable in HA^{κ} then provable in HA (conservative extension): not so easy

Conservative extension of an axiomatic theory

 $\begin{aligned} \mathcal{L} &\subseteq \mathcal{L}' \\ \mathcal{T} \text{ in } \mathcal{L}, \ \mathcal{T}' \text{ in } \mathcal{L}' \end{aligned}$

 \mathcal{T}' is an extension of \mathcal{T} if all propositions provable in \mathcal{T} are provable in \mathcal{T}'

 \mathcal{T}' is a conservative extension of \mathcal{T} if all the propositions of \mathcal{L} provable in \mathcal{T}' provable in \mathcal{T}

To prove that a theory is a conservative extension of another: extension of a model

$$\label{eq:L} \begin{split} \mathcal{L} \subseteq \mathcal{L}' \\ \mathcal{M} \text{ model of } \mathcal{L} \text{ and } \mathcal{M}' \text{ of } \mathcal{L}' \end{split}$$

 \mathcal{M}' is an extension of $\mathcal M$ if for all sorts and symbols of $\mathcal L$ interpreted in the same way in both models

If for all models \mathcal{M} of \mathcal{T} , there exists an extension \mathcal{M}' of \mathcal{M} that is a model of \mathcal{T}' , then \mathcal{T}' conservative extension of \mathcal{T}

A proposition in \mathcal{L} provable in \mathcal{T}' We want: A provable in \mathcal{T} , i.e. A valid in all models of \mathcal{T}

 $\begin{array}{l} \mathcal{M} \text{ any model of } \mathcal{T} \\ \text{There exists } \mathcal{M}' \text{ model of } \mathcal{T}' \text{ extension of } \mathcal{M} \\ \mathcal{A} \text{ is valid in } \mathcal{M}' \left(\mathcal{M}' \text{ model of } \mathcal{T}' \right) \\ \text{Same interpretation of } \mathcal{A} \text{ in } \mathcal{M} \text{ and } \mathcal{M}' \left(\mathcal{M}' \text{ extension of } \mathcal{M} \right) \\ \mathcal{A} \text{ valid in } \mathcal{M} \end{array}$

 $\begin{array}{l} \mathsf{HA}^{\kappa} \text{ is a conservative extension of HA} \\ \mathsf{Any model of HA extends to a model of HA}^{\kappa} \\ \mathsf{Need to define } \mathcal{M}_{\kappa} \text{ and } \hat{\epsilon} \end{array}$

First idea \mathcal{M}_{κ} : the set of all functions from \mathcal{M}_{ι} to \mathcal{B} No way to prove the validity of the induction axiom

$$\forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow \forall y \ y \ \epsilon \ c)$$

 \mathcal{M}_{κ} : the set of definable functions from \mathcal{M}_{ι} to \mathcal{B} , i.e. of the form $a \mapsto \llbracket A \rrbracket_{\phi,x=a}$ for some A (not using ϵ) and ϕ Validity of HA-induction scheme: validity of HA^{κ}-induction axiom IV. Peano's predicate symbol

Induction axiom: all objects of sort ι are natural numbers Alternative: not all objects are natural numbers, a predicate symbol N for the natural numbers

$$\forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow \forall y \ (N(y) \Rightarrow y \ \epsilon \ c))$$

or even (equivalent)

 $\forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (N(x) \Rightarrow x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow \forall y \ (N(y) \Rightarrow y \ \epsilon \ c))$

More axioms

N(0) $\forall x \ (N(x) \Rightarrow N(S(x)))$ $\forall y \ (N(y) \Rightarrow \forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (N(x) \Rightarrow x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow y \ \epsilon \ c))$

Converse provable (with N(0) and $\forall x (N(x) \Rightarrow N(S(x)))$) Alternative:

 $\forall y \ (N(y) \Leftrightarrow \forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (N(x) \Rightarrow x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow y \ \epsilon \ c))$ $(N(0) \text{ and } \forall x \ (N(x) \Rightarrow N(S(x))) \text{ dropped})$ $\mathsf{HA}^{\kappa N}$

A conservative extension of HA^{κ} ?

Not even an extension

$$\forall x \ (x = 0 \lor \exists y \ (x = S(y)))$$

provable in HA^{κ} (by induction), but not in HA^{κN}

$$\forall x \ (N(x) \Rightarrow (x = 0 \lor \exists y \ (x = S(y))))$$

is

Translation

$$\begin{aligned} |\forall x \ A| &= \forall x \ (N(x) \Rightarrow |A|) \\ |\exists x \ A| &= \exists x \ (N(x) \land |A|) \end{aligned}$$

$$|P| = P$$
, if P is atomic, $|A \wedge B| = |A| \wedge |B|$, etc. $|\forall c A| = \forall c |A|$,
 $|\exists c A| = \exists c |A|$

A closed proposition in the language of HA^κ

If A provable in HA^{κ} then |A| provable in HA^{κN} (\simeq extension)

If |A| provable in HA^{κN} then A provable in HA^{κ} (\simeq conservative extension)

What is so great about Peano predicate symbol N?

(as we shall see) $HA^{\kappa N}$: disjunction and witness property HA^{κ} : restricted to closed propositions

$$\forall x \ (x = 0 \lor \exists y \ (x = S(y)))$$
$$x = 0 \lor \exists y \ (x = S(y))$$
but neither $x = 0$ nor $\exists y \ (x = S(y))$ provable

In $HA^{\kappa N}$

$$\forall x \ (x = 0 \lor \exists y \ (x = S(y)))$$

not provable

$$\forall x \ (N(x) \Rightarrow (x = 0 \lor \exists y \ (x = S(y))))$$
$$N(x) \Rightarrow (x = 0 \lor \exists y \ (x = S(y)))$$

provable but not disjunctions ${\rm HA}^\kappa$ cannot be transformed into a purely computational theory where proof reduction terminates ${\rm HA}^{\kappa N}$ can

V. Arithmetic as a purely computational theory

$$Pred(0) \longrightarrow 0$$

$$Pred(S(x)) \longrightarrow x$$

$$0 + y \longrightarrow y$$

$$S(x) + y \longrightarrow S(x + y)$$

$$0 \times y \longrightarrow 0$$

$$S(x) \times y \longrightarrow (x \times y) + y$$

$$Null(0) \longrightarrow \top$$

$$Null(S(x)) \longrightarrow \bot$$

 $\begin{aligned} x &= y \longrightarrow \forall c \ (x \ \epsilon \ c \Rightarrow y \ \epsilon \ c) \\ \mathcal{N}(y) &\longrightarrow \forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (\mathcal{N}(x) \Rightarrow x \ \epsilon \ c \Rightarrow \mathcal{S}(x) \ \epsilon \ c) \Rightarrow y \ \epsilon \ c) \end{aligned}$

The comprehension scheme

$$\forall x_1...\forall x_n \exists c \forall y \ (y \ \epsilon \ c \Leftrightarrow A)$$

Introduce a notation for this class: $f_{x_1,...,x_n,y,A}(x_1,...,x_n)$
 $\forall x_1...\forall x_n \forall y \ (y \ \epsilon \ f_{x_1,...,x_n,y,A}(x_1,...,x_n) \Leftrightarrow A)$

$$y \in f_{x_1,...,x_n,y,\mathcal{A}}(x_1,...,x_n) \longrightarrow \mathcal{A}$$

 $\mathsf{HA}^{\longrightarrow}$ conservative extension of $\mathsf{HA}^{\kappa N}$

VI. Models of arithmetic

A model valued in the algebra $\{0,1\}$

 $\mathcal{M}_{\iota} = \mathbb{N}, \ \mathcal{M}_{\kappa} = \mathbb{N} o \{0,1\}$

Ô, \hat{S} , \hat{Pred} , $\hat{+}$, $\hat{\times}$, \hat{Null} : obvious way

 $\hat{\epsilon} {\rm :}$ function mapping the number n and the function g of $\mathbb{N} \to \{0,1\}$ to g(n)

 $\hat{=}$: function mapping *n* and *p* to 1 if n = p and to 0 otherwise

 \hat{N} : constant function equal to 1

 $\hat{f}_{x_1,...,x_n,y,A}$: function mapping $a_1,...,a_n$ to function mapping b to $[\![A]\!]_{x_1=a_1,...,x_n=a_n,y=b}$

Super-consistency

 \mathcal{B} a full, ordered and complete pre-Heyting algebra build a model whose pre-Heyting algebra is \mathcal{B} :

$$\mathcal{M}_{\iota} = \mathbb{N}$$

 $\mathcal{M}_{\kappa} = \mathbb{N} \to \mathcal{B},$

 $\hat{0}$, \hat{S} , $P\hat{red}$, $\hat{+}$, $\hat{\times}$, obvious way Null function mapping 0 to $\hat{\top}$ and the other numbers to $\hat{\perp}$ $\hat{\epsilon}$ function mapping *n* and *g* to g(n) Remain to be interpreted: =, N, and $f_{x_1,...,x_n,y,A}$ Interpretation must validate the rules

$$\begin{aligned} x &= y \longrightarrow \forall c \ (x \ \epsilon \ c \Rightarrow y \ \epsilon \ c) \\ \mathcal{N}(y) &\longrightarrow \forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (\mathcal{N}(x) \Rightarrow x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow y \ \epsilon \ c) \\ y \ \epsilon \ f_{x_1,...,x_n,y,A}(x_1,...,x_n) \longrightarrow A \end{aligned}$$

$$x = y \longrightarrow \forall c \ (x \ \epsilon \ c \Rightarrow y \ \epsilon \ c)$$

definition: interpret the left-hand side like the right-hand side

$\hat{=} \text{ function mapping } n \text{ and } p \text{ to } \llbracket \forall c \ (x \ \epsilon \ c \Rightarrow y \ \epsilon \ c) \rrbracket_{x=n,y=p}$ i.e. $\tilde{\forall} \{f(n) \stackrel{\sim}{\Rightarrow} f(p) \mid f \in \mathbb{N} \rightarrow \mathcal{B} \}$

This cannot be done for the induction rule

$$N(y) \longrightarrow \forall c \ (0 \ \epsilon \ c \Rightarrow \forall x \ (N(x) \Rightarrow x \ \epsilon \ c \Rightarrow S(x) \ \epsilon \ c) \Rightarrow y \ \epsilon \ c)$$

Super-consistency: ordered and complete pre-Heyting algebras For each function f of $\mathbb{N} \to \mathcal{B}$: \mathcal{M}_f where N interpreted by f Φ mapping f to the function mapping the natural number n to

$$\llbracket \forall c \ (0 \in c \Rightarrow \forall x \ (N(x) \Rightarrow x \in c \Rightarrow S(x) \in c) \Rightarrow y \in c) \rrbracket_{n/y}^{\mathcal{M}_f}$$

The order on $\mathbb{N}
ightarrow \mathcal{B}$ complete, Φ monotone, fixed-point g, $\hat{N} = g$

 $f_{x,y_1,...,y_n,A}$ obvious way

 HA^{\longrightarrow} super-consistent

After the break

Naive set theory