
The Notion of theory



I. What we have seen before the break



Natural deduction rules

Introductions, eliminations, axiom, excluded-middle
Define a notion of provable sequent Γ ` A (and of proof)

A is provable (without any axioms), if ` A provable
Axiomatic theory T : set of closed propositions (axioms)
A provable in T if finite subset Γ of T , Γ ` A provable



Classical and constructive proofs

Set of provable propositions: no witness property. Proof of

∃x (P(0)⇒ ¬P(S(S(0)))⇒ (P(x) ∧ ¬P(S(x))))

but no term t such that a proof of

P(0)⇒ ¬P(S(S(0)))⇒ (P(t) ∧ ¬P(S(t)))

Origin: excluded-middle rule
Proofs without the excluded-middle: constructive
Set of constructively provable propositions: witness property



How to prove it?

Cut: proof ending with an elimination rule whose main premise is
proved by an introduction rule on the same symbol

π
Γ ` A

π′

Γ ` B ∧-intro
Γ ` A ∧ B

∧-elim
Γ ` A

and a cut-elimination algorithm
Prove the termination of this algorithm



A proof π that is (1.) constructive, (2.) cut-free, and (3.) without
any axioms ends with an introduction rule

A proof π of ∃x A that is (1.) constructive, (2.) cut-free, and (3.)
without any axioms ends with a ∃-intro rule:

Γ ` (t/x)A
∃-intro

Γ ` ∃x A

witness t



Why do we care? Programming with proofs

A constructive proof π of

∀x∃y (x = 2× y ∨ x = 2× y + 1)

A proof of the proposition

∃y (25 = 2× y ∨ 25 = 2× y + 1)

Extract a witness from this proof
By construction, correct with respect to specification

x = 2× y ∨ x = 2× y + 1



II. Deduction modulo theory



Final rule

An introduction (hence witness property)

(1) constructive (2) cut-free (3) without any axioms

(2) is not a restriction once we have proved cut-elimination
(1) many proofs do not use the excluded-middle
(3) is a real limitation: to prove

∀x∃y (x = 2× y ∨ x = 2× y + 1)

need to know something about =, +, ×...



In general: failure

axiom∃x P(x) ` ∃x P(x)

Final rule: axiom rule
Also: failure of the witness property

But in some cases...



An example: definitions

1: abbreviation for the the term S(0)

What does this mean?
(a) add a constant 1 an axiom 1 = S(0)
(b) pretend you have read S(0) each time you read 1



Constant + axiom

axiom
Γ ` ∀x∀y (x = y ⇒ P(x)⇒ P(y))

∀-elim
Γ ` ∀y (1 = y ⇒ P(1)⇒ P(y))

∀-elim
Γ ` 1 = S(0)⇒ P(1)⇒ P(S(0))

axiom
Γ ` 1 = S(0)

⇒-elim
Γ ` P(1)⇒ P(S(0))

where Γ = {1 = S(0), ∀x∀y (x = y ⇒ P(x)⇒ P(y))}
Cut-free, but ends but with an elimination rule



Replace 1 by S(0)

axiom
P(1) ` P(S(0)) ⇒-intro` P(1)⇒ P(S(0))

uses no axioms
ends with an introduction rule



Deduction modulo theory

axiom
P(1) ` P(S(0))

a constant 1
an equivalence relation ≡ such that 1 ≡ S(0)

axiom if A ∈ Γ and A ≡ B
Γ ` B

and the same for the other Natural deduction rule



The rules of Natural Deduction modulo theory

Γ ` A Γ ` B ∧-intro
Γ ` A ∧ B

Γ ` A Γ ` B
∧-intro if C ≡ A ∧ B

Γ ` C



Besides definitions

Instead of the axiom

∀x∀y∀z ((x + y) + z = x + (y + z))

(t + u) + v ≡ t + (u + v)
and even t + u + v



But not too much

All provable propositions A ≡ >

All provable propositions (including existential ones): a trivial proof

>-intro` A



The conditions on the equivalence relation

1. Congruence: if A ≡ A′ and B ≡ B ′ then (A ∧ B) ≡ (A′ ∧ B ′),
etc.

2. Decidable: proof-checking must be decidable

3. Non confusing: if A ≡ A′, then either one is atomic or they have
the same head symbol (∧, ∨, etc.) and sub-trees are equivalent
(e.g. A = B ∧ C , A′ = B ′ ∧ C ′, B ≡ B ′, and C ≡ C ′)



Why is non confusion important?

If ∃x A ≡ > then a proof of ∃x A that ends with an introduction
rule, may end with a >-intro rule. The final rule property may fail
to imply the witness property.

If (A ∨ B) ≡ (C ∧ D)
...
` A ∨-intro` C ∧ D

∧-elim` C

How can we reduce this cut?



Theories in Deduction modulo theory

A set of axioms + a decidable and non confusing congruence
Purely axiomatic, purely computational

A provable in T ,≡, if there exists finite subset Γ of T s.t. Γ ` A
has a proof modulo ≡



An example

(2× 2 = 4) ≡ >

In ∅,≡, the number 4 can be proved even

>-intro` 2× 2 = 4 〈x , 2× x = 4, 2〉 ∃-intro` ∃x (2× x = 4)

Decidable congruence: congruence = computation part of proofs,
deduction rules = deduction part



Another example

x ⊆ y ≡ (∀z (z ∈ x ⇒ z ∈ y))

axiom
z ∈ A ` z ∈ A ⇒-intro` z ∈ A⇒ z ∈ A

∀-intro` A ⊆ A



Not more... better

For every theory T ,≡, a purely axiomatic theory T ′ s.t. A
provable in T ,≡ iff A provable in T ′

Not more provable propositions... better proofs



On-going research

((A⇒ B) ∧ (A⇒ C )) ≡ (A⇒ (B ∧ C ))



III. Congruences defined with reduction rules



(2× 2 = 4) ≡ > ?
Congruences often defined with reduction (rewrite) rules, e.g.

0 + y −→ y
S(x) + y −→ S(x + y)

0× y −→ 0
S(x)× y −→ x × y + y

0 = 0 −→ >
S(x) = 0 −→ ⊥
0 = S(y) −→ ⊥

S(x) = S(y) −→ x = y



An exercise

Reduce S(S(0))× S(S(0)) = S(S(S(S(0))))



Reduction rules

Reduction rule: ordered pair l −→ r of terms or propositions

Reduction system: set of reduction rules

t reduces in one step at the root to u: t = σl , u = σr

t reduces in one step to u (t −→1 u): t = C [σl ] u = C [σr ]

reducible: reduces in one step to some u, irreducible otherwise



reduction sequence: (finite or infinite) sequence t0, t1... s.t.
ti −→1 ti+1

t reduces to u (t −→∗ u): a finite reduction sequence from t to u

t reduces in at least one step to u (t −→+ u): t −→1 v −→∗ u

u is a irreducible form of t: t −→∗ u and u irreducible

congruence sequence: finite or infinite sequence t0, t1... s.t.
ti −→1 ti+1 or ti+1 −→1 ti

t and u are congruent (t ≡ u): a finite congruence sequence from
t to u



Decidability

≡: a congruence by construction

t terminates: it has a irreducible form, i.e. a finite reduction
sequence from t to a irreducible expression

t strongly terminates: all reduction sequences starting from t finite

R terminates (resp. strongly terminates) if all t do

R confluent: whenever t reduces to u1 and u2, there exists v s.t.
u1 reduces to v and u2 reduces to v



Decidability

R strongly terminating and confluent

I each t has exactly one irreducible form

I this irreducible form can be computed from t

I t ≡ u if t and u same irreducible form

Thus ≡ decidable



Non confusion

R confluent and reduces terms to terms and atomic propositions to
propositions, the congruence is non confusing

x ⊆ y −→ ∀z (z ∈ x ⇒ z ∈ y)

A ∧ ¬A −→ ⊥



IV. Cuts in Deduction modulo theory



What is a cuts in Deduction modulo theory?

Same as in Predicate logic:

A proof ending with an elimination rule whose main premise is
proved by an introduction rule on the same symbol



Failure of termination of proof reduction

For some theories: e.g. P −→ (P ⇒ Q)

axiom
P ` P ⇒ Q

axiom
P ` P

⇒-elim
P ` Q ⇒-intro` P ⇒ Q

axiom
P ` P ⇒ Q

axiom
P ` P

⇒-elim
P ` Q ⇒-intro` P

⇒-elim` Q



An exercise

Prove that the sequent ` Q has no cut-free proof



But when proof-reduction terminates

Cut-free proofs have the same properties than in Predicate logic
A proof that is (1) constructive (2) cut-free and (3) in a purely
computational theory ends with an introduction rule

All (1) purely computational theories where (2) proof-reduction
terminates have the witness property



Next time

The notion of model


