
Inductive types



I. What we have seen so far



λΠ-calculus and λΠ-calculus modulo

Permit to express all theories:
reduction rules become reduction rules
axioms (if any) become variables

In particular: Arithmetic and Simple type theory



Arithmetic

Arithmetic with Peano’s symbol N

Arithmetic without Peano’s symbol N (and an induction axiom)



II. Arithmetic without Peano’s symbol



Transform most of the axioms into reduction rules

y ε fx1,...,xn,y ,A(x1, ..., xn) −→ A

x = y −→ ∀c (x ε c ⇒ y ε c)

Pred(0) −→ 0

Pred(S(x)) −→ x

0 + y −→ y

S(x) + y −→ S(x + y)

0× y −→ 0

S(x)× y −→ x × y + y

Null(0) −→ >

Null(S(x)) −→ ⊥



Induction

Remains an axiom

∀c (0 ε c ⇒ ∀x (x ε c ⇒ S(x) ε c)⇒ ∀y y ε c)

or a deduction rule

Γ ` 0 ε c Γ ` ∀x (x ε c ⇒ S(x) ε c)
Γ ` t ε c



Expressing proofs as terms

A symbol for this axiom or this rule

If c class, π proof of 0 ε c , π′ proof of ∀x (x ε c ⇒ S(x) ε c), and
t a term
Rec(c, π, π′, t) proof of the proposition t ε c



Last rule property in jeopardy

Class c = fy ,(y=0∨∃z (y=S(z)))

σ proof of 0 = 0
π = i(σ) proof of 0 ε c
σ′ proof of S(x) = S(x)
π′ = λx λα (j(〈x , σ′〉)) proof of ∀x (x ε c ⇒ S(x) ε c)

Rec(c, π, π′, S(S(0))) proof of S(S(0)) ε c
that is S(S(0)) = 0 ∨ ∃z (S(S(0)) = S(z))
Irreducible proof and does not end with an introduction



Recover: closed cut-free proofs end with an introduction

Extend the notion of cut (mimic proofs by induction in the
formulation of arithmetic with Peano’s predicate symbol)

Two rules
Rec(c , π, π′, 0) −→ π

Rec(c , π, π′, S(x)) −→ (π′ x Rec(c , π, π′, x))

This way:
Rec(c, π, π′, S(S(0))) reduces to j(〈S(0), (S(0)/x)σ′〉)



III. Gödel System T



Simply typed λ-calculus + Rec

A single base type nat, constants 0 : nat, S : nat → nat, RecA of
arity 〈A, nat → A→ A, nat,A〉

((λx : A t) u) −→ (u/x)t

RecA(a, g , 0) −→ a

RecA(a, g , (S n)) −→ (g n RecA(a, g , n))



Examples

Multiplication by two

d = λa : nat Recnat(0, λx : nat λy : nat (S (S y)), a)

Addition, multiplication, power

+ = λa : nat λb : nat Recnat(a, λx : nat λy : nat (S y), b)

× = λa : nat λb : nat Recnat(0, λx : nat λy : nat (+ y a), b)

↑= λa : nat λb : nat Recnat((S 0), λx : nat λy : nat (× y a), b)



Predecessor

pred = λa : nat Recnat(0, λx : nat λy : nat x , a)

Characteristic functions

χ{0} = λa : nat Recnat((S 0), λx : nat λy : nat 0, a)

χN\{0} = λa : nat Recnat(0, λx : nat λy : nat (S 0), a)

χ2N = λa : nat Recnat((S 0), λx : nat λy : nat (χ{0} y), a)



Primitive recursive functions

Definition by induction

f (x1, ..., xp−1, 0) = a(x1, ..., xp−1)

f (x1, ..., xp−1,S(n)) = g(x1, ..., xp−1, n, f (x1, ..., xp−1, n))

In the System T
f = λx1...λxp−1λxp

Recnat((a x1 ... xp−1), λnλm (g x1 ... xp−1 n m), xp)
All primitive recursive functions



Non primitive recursive functions

Ackermann’s function A defined by

A(0, x) = 2x

A(S(n), 0) = 1

A(S(n), S(x)) = A(n,A(S(n), x))

λn Recnat→nat(P, λpλf λm (Recnat (S 0) (λqλs (f s)) m), n)

where P = x 7→ 2x



IV. The termination of Gödel System T



Simulate the recursor with Parigot numbers

The theory T :
A language with a unary predicate symbol ε, a constant nat and a
binary function symbol ⇒̇

ε(nat) −→ ∀p (ε(p)⇒ (ε(nat)⇒ ε(p)⇒ ε(p))⇒ ε(p))

ε(x ⇒̇ y) −→ ε(x)⇒ ε(y)

T super-consistent, hence its proofs strongly terminate



Termination

Strong termination for proofs of T implies strong termination for
terms of System T
Types of the System T are terms of the theory T
Terms of type A in the System T translate to proofs of ε(A)

I |x | = x , |u v | = |u| |v |, |λx : A u| = λx |u|
I |0| = λpλxλf x

I |S | = λnλpλxλf (f n (n p x f ))

I |RecA(t, u, n)| = (|n| A |t| |u|)



If t −→1 u in the System T then |t| −→+ |u| in the theory T

|RecA(x f 0)| −→∗ (|0| A x f ) = (λpλxλf x) A x f −→+ x

|RecA(x , f , (S n))|
−→∗ (|(S n)| A x f ) = (λpλxλf (f |n| (|n| p x f ))) A x f )
−→+ (f |n| (|n| A x f )) = (f |n| |RecA(x , f , n)|) =
|(f n RecA(x , f , n))|



V. Martin-Löf Type theory



In Deduction modulo, reduction on terms and propositions

In the λΠ-calculus and in the λ1-calculus reduction on terms,
propositions and proofs

Arithmetic without Peano’s symbol, induction as a deduction rule,
reduction rules of System T : Martin-Löf Type theory



Equality

Instead of
refl : ∀x : nat (x = x)

a deduction rule: the reflexivity rule

Γ ` t = t

To interpret this rule, a symbol refl such that for all t of type nat,
refl(t) is a proof of t = t



Second axiom of equality

∀c∀x∀y (x = y ⇒ x ε c ⇒ y ε c)

a sort for classes and a comprehension scheme?
Instead: nat → Type, write (P t) the proposition formerly written
t ε P
Yet, no way to express

∀P : nat → Type ∀x : nat ∀y : nat (x = y ⇒ (P x)⇒ (P y))

For each term P of type nat → Type, an axiom

∀x : nat ∀y : nat (x = y ⇒ (P x)⇒ (P y))

or a deduction rule
Γ ` x = y Γ ` (P x)

Γ ` (P y)

To interpret this rule, we introduce a symbol L such that if
π : (t = u) and π′ : (P t), the L(P, t, u, π, π′) : (P u)



Recursion

Rec such that
if P : nat → Type
π : (P 0)
π′ : (∀n : nat ((P n)⇒ (P (S n))))
t : nat
then Rec(P, π, π′, n) : (P t)



Reduction

L(P, a, a, refl(a), π) −→ π

refl : intro, L: elim

Rec(P, a, g , 0) −→ a

Rec(P, a, g , (S n)) −→ (g n Rec(P, a, g , n))

0,S : intro, Rec : elim



Predecessor, the addition and the multiplication can be defined
No need to take them as primitive symbols

But cannot define by induction the predicate symbol
Null : nat → Type (kind) keep the axiom

P4 : ∀x : nat (0 = (S x)⇒ ⊥)



Termination

All terms in Martin-Löf type theory strongly terminate



Final rule

If t irreducible closed term, then

I the term t does not have the type ⊥
I if the term t has type Σx : A B then it has the form 〈v ,w〉
I if the term t has type A + B then it has the form i(v) or j(w)

I if the term t has type v = w then it has the form refl(v),
hence the terms v and w are identical

I if the term t has type nat then it has the form 0 or S(v)



By induction on the structure of t
The term t has the form (u c1 ... cn) where u is not an
application. We consider the following cases:

I u is the constant 0 : nat,

I u is the constant S : nat → nat, in which case n = 1,

I u has the form Rec(P, a, g , t), in which case, by induction
hypothesis t = 0 or t = S(v), contradicting the fact that the
term is irreducible,

I ...



Witness

If a proposition of the form ∃x : A B has a closed proof, then there
exists a term t such that the proposition (t/x)B is provable



VI. Inductive types



Besides natural numbers, other datatypes: lists, trees, etc.
For instance

nil : list

cons : nat → list → list

and a rule

a : (P nil) g : ∀a : nat ∀l : list ((P l)→ (P (cons a l)))) l : list
Rec(P, a, g , l) : (P l)

Build functions by induction on the structure of lists
Prove properties of list by induction



After the break

Polymorphism


