Inductive types



I. What we have seen so far



AlM-calculus and AlM-calculus modulo

Permit to express all theories:
reduction rules become reduction rules
axioms (if any) become variables

In particular: Arithmetic and Simple type theory



Arithmetic

Arithmetic with Peano's symbol N

Arithmetic without Peano’s symbol N (and an induction axiom)



Il. Arithmetic without Peano’s symbol



Transform most of the axioms into reduction rules

Y € by AlXL, s Xp) — A
x=y—Vc(xec=yec)
Pred(0) — 0
Pred(S(x)) — x
O+y —vy
S(x)+y — S(x+vy)
Oxy—0
S(X)xy — xxy+y
Null(0) —s T
Null(S(x)) — L



Induction

Remains an axiom

Ve(Oec=VYx(xec=5(x)ec)=Vyyec)

or a deduction rule

N-0ec THVx(xec= S(x)ec)
Ftec




Expressing proofs as terms

A symbol for this axiom or this rule

If ¢ class, m proof of 0 € ¢, 7’ proof of Vx (x € ¢ = S(x) € ¢), and
t a term

Rec(c,m, 7', t) proof of the proposition t € ¢



Last rule property in jeopardy

Class ¢ = fy (y=0v3z (y=5(2)))

o proof of 0 =0

m = i(c) proof of 0 € ¢

o’ proof of S(x) = S(x)

' = M Aa (j({x,0’))) proof of Vx (x € c = S(x) € c)

Rec(c,m, 7', S(5(0))) proof of S(5(0)) € ¢
that is S(S(0)) =0V 3z (5(5(0)) = S(2))

Irreducible proof and does not end with an introduction



Recover: closed cut-free proofs end with an introduction

Extend the notion of cut (mimic proofs by induction in the
formulation of arithmetic with Peano’s predicate symbol)

Two rules
Rec(c,m,7',0) — 7

Rec(c,m, 7', S(x)) — (7' x Rec(c,m, 7', x))

This way:
Rec(c, 7,7, 5(5(0))) reduces to j({5(0),(5(0)/x)c’))



I1l. Godel System T



Simply typed A-calculus + Rec

A single base type nat, constants 0 : nat, S : nat — nat, Rec? of
arity (A, nat - A — A, nat, A)

(A At) u) — (u/x)t
Rec*(a,g,0) — a

Rec”(a, g, (S n)) — (g n Rec’(a, g, n))



Examples

Multiplication by two
d = X\a: nat Rec™"(0,\x : nat Ay : nat (S (S y)),a)
Addition, multiplication, power
+ = Xa: nat Ab: nat Rec"(a, A\x : nat \y : nat (S y), b)

X = Aa: nat Ab: nat Rec™"(0,\x : nat \y : nat (+ y a), b)
1= Aa: nat A\b: nat Rec"®*((S 0), A\x : nat \y : nat (x y a), b)



Predecessor

pred = \a : nat Rec"(

0, Ax : nat Ay : nat x, a)
Characteristic functions
X{o} = Aa: nat Rec"*((S 0),Ax : nat Ay : nat 0, a)

XN\{o} = Aa: nat Rec™(0, Ax : nat Ay : nat (S 0), a)
Xon = Aa : nat Rec™((S 0),Ax : nat Ay : nat (x{o} ) a)



Primitive recursive functions

Definition by induction
f(Xl, <oy Xp—1, 0) = a(xl, ceey Xp—l)

f(x1,..., Xp—1,5(n)) = g(x1, ..., Xp—1, N, F(x1, ..., Xp—1, N))
In the System T
f = AXx1...AXp—1AXp
Rec™@((a x1 ... Xp—1), A\nAm (g X1 ... Xp—1 N M), Xp)
All primitive recursive functions



Non primitive recursive functions

Ackermann’s function A defined by
A(0,x) = 2%

A(S(n),0) =1
A(S(n), 5(x)) = A(n, A(5(n), x))

An Rec™ M (P ApAfAm (Rec™ (S 0) (AgAs (f s)) m), n)

where P = x +—» 2%



IV. The termination of Gédel System T



Simulate the recursor with Parigot numbers

The theory T
A language with a unary predicate symbol €, a constant nat and a
binary function symbol =

(nat) — p ((p) = (=(nat) = £(p) = £(p)) = =(p))
e(x = y) — e(x) = e(y)

T super-consistent, hence its proofs strongly terminate



Termination

Strong termination for proofs of 7 implies strong termination for
terms of System T

Types of the System T are terms of the theory T

Terms of type A in the System T translate to proofs of ¢(A)

> x| =x, |uv|=lu||v], |Ax: A ul = Ax |u]|
> (0] = APAXAF x

> |S| = AnApAxAf (f n (n p x f))

> [Rec’(t,u, )| = (|n] A [t] [ul)



If t —* u in the System T then [t| — |u| in the theory T

|Rec(x f 0)] —* (|0] A x f) = (APAXAf x) Ax f —T x

|RecA(x, f, (S n))|

—* (J(S n)| Ax )= (ApAxAf (f |n] (|n| px F))) A x )
—F(F |n| (In] Ax £)) = (f |n] [Rec(x, f,n)]) =

|(f n Rec”(x, f, n))|



V. Martin-Lof Type theory



In Deduction modulo, reduction on terms and propositions

In the AlMN-calculus and in the Al-calculus reduction on terms,
propositions and proofs

Arithmetic without Peano’s symbol, induction as a deduction rule,
reduction rules of System T: Martin-Lof Type theory



Equality

Instead of
refl : Vx : nat (x = x)

a deduction rule: the reflexivity rule

MN-t=t

To interpret this rule, a symbol refl such that for all t of type nat,
refl(t) is a proof of t =t



Second axiom of equality
VeVxVy (x=y=xec=y€c)

a sort for classes and a comprehension scheme?

Instead: nat — Type, write (P t) the proposition formerly written
teP

Yet, no way to express
VP : nat — Type Vx : nat Vy : nat (x =y = (P x) = (P y))
For each term P of type nat — Type, an axiom
Vx:natVy :nat (x=y = (P x)=(Py))
or a deduction rule

NNEx=y TE(Px)
r=(Py)

To interpret this rule, we introduce a symbol L such that if
m:(t=u)and 7' : (P t), the L(P,t,u,m,7") : (P u)



Recursion

Rec such that

if P:nat — Type

m: (P 0)

7' (Vn: nat (P n) = (P (S n))))
t: nat

then Rec(P,m, 7', n): (P t)



Reduction

L(P,a,a,refl(a),7) —

refl: intro, L: elim

Rec(P,a,g,0) — a
ReC(P7avg7(5 n)) — (g n ReC(P7aag7 n))

0,S: intro, Rec: elim



Predecessor, the addition and the multiplication can be defined
No need to take them as primitive symbols

But cannot define by induction the predicate symbol
Null : nat — Type (kind) keep the axiom

Py :Vx :nat (0= (S x) = 1)



Termination

All terms in Martin-Lof type theory strongly terminate



Final rule

If t irreducible closed term, then
> the term t does not have the type L
» if the term t has type Xx : A B then it has the form (v, w)
» if the term t has type A+ B then it has the form i(v) or j(w)

» if the term t has type v = w then it has the form refl(v),
hence the terms v and w are identical

» if the term t has type nat then it has the form 0 or S(v)



By induction on the structure of t
The term t has the form (u ¢ ... ¢,) where u is not an
application. We consider the following cases:

> u is the constant 0 : nat,

» u is the constant S : nat — nat, in which case n =1,

» u has the form Rec(P, a, g, t), in which case, by induction

hypothesis t = 0 or t = S(v), contradicting the fact that the
term is irreducible,



Witness

If a proposition of the form Jx : A B has a closed proof, then there
exists a term t such that the proposition (t/x)B is provable



VI. Inductive types



Besides natural numbers, other datatypes: lists, trees, etc.
For instance
nil : list

cons : nat — list — list

and a rule

a:(Pnil) g:Va:natVl:list (P 1)— (P (cons al)))) I:list
Rec(P,a,g,1): (P I)

Build functions by induction on the structure of lists
Prove properties of list by induction



After the break

Polymorphism



