
Dependent types



I. What we have seen so far



A notion of proof (proof-term)

Termination proof-reduction for many theories (model-theoretic
criterion: super-consistency)



But

Term, proposition, proof: distinct notions
For instance λx x or SKK a function of type ι→ ι, λα α a proof
of A⇒ A
A single notion of function?

Easier to implement: only one syntactic category, substitution
function, type-checking algorithm, etc.
What happens if we mix everything? More theorems?

The λ-calculus with dependent types (λΠ-calculus)



II. The λ-calculus with dependent types



Independently of the notions of term, proposition, proof,
etc.

The size of an array of natural numbers part of its type

Not a single type array

A type family (array 0), (array 1), (array 2), etc.



(f 0) = [ ], (f 1) = [0], (f 2) = [0, 0], (f 3) = [0, 0, 0], etc.
type of the argument of f : nat
type of the result: not always the same: depends on the argument:
(array x) where x is the argument of the function

nat → (array x)
x?
Πx : nat (array x)

A→ B becomes a particular case of Πx : A B when x not used in
B (needs not be indicated)



Typing types

(array 0), Πn : nat (array n) types
(array 0 0), (array true) not well-formed
Types must be typed

Context y : (array x) not well-formed (x not declared)
Type formation, context formation rules, like term formation rules



Types are terms

Types are just terms
A constant Type for the type of types

Judgments Γ ` t : A (particular case: Γ ` t : Type)
and Γ well-formed



The Simply typed λ-calculus revisited

[ ] well-formed

Γ well-formed
Γ,A : Type well-formed

Γ ` A : Type Γ ` B : Type
Γ ` A→ B : Type



Γ ` A : Type
Γ, x : A well-formed

Γ well-formed
x : A ∈ Γ

Γ ` x : A

Γ ` A : Type Γ, x : A ` B : Type Γ, x : A ` t : B
Γ ` λx : A t : A→ B

Γ ` t : A→ B Γ ` t ′ : A

Γ ` (t t ′) : B



Kinds

(array 0), (array 1) have type Type
the variable array has type nat → Type
nat → Type is a type / has type Type ?

(array 0) has type Type
Type is a type / has type Type ?

Type : Type −→ Girard’s paradox
Non terminating terms, inconsistent

A new constant Kind for the type of Type, nat → Type, ...



Four categories of terms

I Kind

I kinds: Type, nat → Type, ... whose type is Kind

I types and type families: nat, (array 0), array , ... whose type
is a kind

I objects: 0, [0], ... whose type is a type



Terms in each category

I Kind only term in its category

I Kinds: Type and products (nat → Type, that is
Πx : nat Type)

I Types and type families: variables (nat, array), applications
((array 0)), abstractions (λn : nat (array (S n))), and
products (Πn : nat (array n) and nat → nat, that is
Πx : nat nat)

I Objects: variables (0), applications ((S 0)) and abstractions
(λx : nat x)



Typing rules

[ ] well-formed

Γ ` A : Kind
Γ, x : A well-formed

Γ ` A : Type
Γ, x : A well-formed

Γ well-formed
Γ ` Type : Kind

Γ ` A : Type Γ, x : A ` B : Kind
Γ ` Πx : A B : Kind



Γ ` A : Type Γ, x : A ` B : Type
Γ ` Πx : A B : Type

Γ well-formed
x : A ∈ Γ

Γ ` x : A

Γ ` A : Type Γ, x : A ` B : Kind Γ, x : A ` t : B
Γ ` λx : A t : Πx : A B

Γ ` A : Type Γ, x : A ` B : Type Γ, x : A ` t : B
Γ ` λx : A t : Πx : A B

Γ ` t : Πx : A B Γ ` t ′ : A

Γ ` (t t ′) : (t ′/x)B



The conversion rules

Γ ` t : A Γ ` A : Type Γ ` B : Type
A ≡ B

Γ ` t : B

Γ ` t : A Γ ` A : Kind Γ ` B : Kind
A ≡ B

Γ ` t : B

A little bit of Deduction modulo theory
array ′ = λn : nat (array (S n))
[0] has the type (array (S 0))
and also (λn : nat (array (S n)) 0) (i.e. (array ′ 0))



No polymorphism

Product rule: nat → Type
But not Type → Type

Arrays parametrized by the number of their elements but not by
the type of their elements

An extension: the Calculus of Constructions



III. The termination of reduction in the λΠ-calculus



Candidates in the λΠ-calculus

Only one “connective”: Π

C set of terms, S set of sets of terms
Π̃(C , S) set of strongly terminating terms t such that if
t −→∗ λx : E t1 then for all t ′ in C , and for all D in S ,
(t ′/x)t1 ∈ D



Candidates inductively defined by:

I the set of all strongly terminating terms in a candidate

I if C is a candidate and S is a set of candidates, then Π̃(C , S)
is a candidate

I if S is a set of candidates, then
⋂
S is a candidate



Four easy lemmas

If C is a candidate, then all the elements of C strongly terminate

Let C be a candidate and x be a variable, then x ∈ C

If C is a candidate, t is an element of C , and t −→∗ t ′, then t ′ is
an element of C

Let C be a candidate. If all the one-step reducts of the term
(u1 u2) are in C , then (u1 u2) is in C



Terms of λΠ are at the same time sorts, terms and propositions,
and proofs
(Mt)t indexed by terms of λΠ

I if t is an object or a type family, then Mt = {e}
I if t is a kind or t = Kind , then Mt = C



In a more systematic way

I MType =MKind = C
I Mx = {e}, an arbitrary singleton

I Mλx :A t =Mt , M(t u) =Mt

I MΠx :A B is the set of functions f from MA to MB except if
MB = {e}, in which case MΠx :A B = {e}, or if MA = {e},
in which case MΠx :A B =MB



Valuations

Let Γ = x1 : A1, ..., xn : An be a well-formed context. A Γ-valuation
φ is a function mapping every variable xi to an element of MAi



JtKφ of MA defined as follows

I JTypeKφ is the set of strongly terminating terms

I JKindKφ is the set of strongly terminating terms

I JxKφ = φ(x)

I Jλx : C tKφ is the function of domain MC mapping a in MC

to JtKφ,x=a, except if JtKφ,x=a = e for all a, in which case
Jλx : C tKφ = e, or if MC = {e}, in which case
Jλx : C tKφ = JtKφ,x=e

I J(t u)Kφ = JtKφ JuKφ, except if JtKφ = e, in which case
J(t u)Kφ = e, or if JuKφ = e, in which case J(t u)Kφ = JtKφ

I JΠx : C DKφ is the candidate Π̃(JCKφ, {JDKφ,x=c | c ∈MC})



If t ≡ u then JtKφ = JuKφ

Let Γ = x1 : A1, ..., xn : An be a context, φ be a Γ-valuation, σ be a
substitution mapping every xi to an element of JAiKφ and t a term
of type B in Γ. Then σt ∈ JBKφ

Let Γ be a context and t be a term well-typed in Γ. Then t
strongly terminates



IV. Representation of terms, propositions, and proofs of minimal
logic



Minimal Logic

Fragment of Predicate logic
Only ⇒ and ∀
Only rules: axiom, introduction and elimination of ⇒ and of ∀



Languages

A language L of Predicate logic
Associate a context Ξ containing

I for each sort s of L a variable s of type Type

I for each function symbol f of arity 〈s1, ..., sn, s
′〉, a variable,

also written f , of type s1 → ...→ sn → s ′

I for each predicate symbol P of arity 〈s1, ..., sn〉 a variable, also
written P, of type s1 → ...→ sn → Type



Terms and propositions

I Φ(x) = x

I Φ(f (t1, ..., tn)) = f (Φ(t1), ...,Φ(tn))

I Φ(P(t1, ..., tn)) = P(Φ(t1), ...,Φ(tn))

I Φ(A⇒ B) = Φ(A)→ Φ(B), that is Πx : Φ(A) Φ(B)

I Φ(∀x A) = Πx : s Φ(A)



Proofs

A sequent A1, ...,An ` B
A context Γ containing

I Ξ

I for each variable x of sort s free in A1, ...,An ` B, a variable,
also written x , of type s

I for each hypothesis Ai a variable αi of type Φ(Ai )

A1, ...,An ` B has a proof iff there exists π such that Γ ` π : Φ(B)



A / the logical framework

Like Predicate logic
Like Deduction modulo theory



Why stick to minimal logic: the λ1-calculus

Besides Π

Sums (∧, ∃)
Disjoint unions (∨)
Unit type (>)
Empty type (⊥)



V. The λΠ-calculus modulo theory



Variables Ξ then reduction rules on the symbols of Ξ then more
variables Γ
Then replace ≡β by ≡βR

Γ ` A : Type Γ ` B : Type Γ ` t : A
A ≡βR B

Γ ` t : B

Γ ` A : Kind Γ ` B : Kind Γ ` t : A
A ≡βR B

Γ ` t : B

Proofs of minimal Deduction modulo theory can be expressed as
terms in the λΠ-calculus modulo theory



Minimal Simple type theory in λΠ-modulo theory

Drop >̇, ⊥̇, ∧̇, ∨̇, and ∃̇A and the associated reduction rules

In minimal Deduction modulo theory, hence in λΠ-calculus modulo
theory



But: an infinite number of sorts and symbols
Instead of: a variable for each sort
Two variables ι and o of type Type
Translate the simple type as

I |ι| = ι, |o| = o,

I |A→ B| = |A| → |B|, that is Πx : |A| |B|.



A notation for terms based on λ-calculus and not on combinators
we translate terms as

I |x | = x ,

I |(t u)| = (|t| |u|),

I |(λx : A t)| = λx : |A| |t|.
λΠ-calculus already contains a notion of function that may be
reused instead of redefining one for Simple type theory
β-reduction of Simple type theory: β-reduction of λΠ-calculus



But keep ε, ⇒̇ and ∀̇A and

ε(⇒̇ x y) −→ ε(x)→ ε(y)

ε(∀̇A x) −→ Πy : |A| ε(x y)

Still an infinite number of symbols: can be avoided
Expression of proofs of HOL in Dedukti



Termination

I MType =MKind =Mo = C
I Mι =Mε =Mx =M⇒̇ =M∀̇A = {e}, an arbitrary

singleton
I Mλx :A t =Mt

I M(t u) =Mt

I MΠx :A B is the set of functions f from MA to MB , except if
MB = {e}, in which case MΠx :A B = {e}, or if MA = {e}
in which case MΠx :A B =MB

I JTypeKφ is the set of strongly terminating terms
I JKindKφ is the set of strongly terminating terms
I JoKφ is the set of strongly terminating terms
I JιKφ is the set of strongly terminating terms
I JxKφ = φ(x)
I Jλx : C tKφ is the function of domain MC mapping a in MC

to JtKφ,x=a, except if JtKφ,x=a = e for all a, in which case
Jλx : C tKφ = e, or if MC = {e}, in which case
Jλx : C tKφ = JtKφ,x=e



I J(t u)Kφ = JtKφ(JuKφ), except if JtKφ = e, in which case
J(t u)Kφ = e, or if JuKφ = e, in which case J(t u)Kφ = JtKφ,

I JΠx : C DKφ is the candidate Π̃(JCKφ, {JDKφ,x=c | c ∈MC})
I JεKφ is the identity on C
I J⇒̇Kφ = ⇒̃
I J∀̇AKφ is the function mapping the function f from M|A| to C

to the candidate Π̃(J|A|Kφ, {f (a) | a ∈M|A|})



Next time

Inductive types


