Dependent types

I. What we have seen so far

A notion of proof (proof-term)

Termination proof-reduction for many theories (model-theoretic
criterion: super-consistency)

But

Term, proposition, proof: distinct notions

For instance Ax x or SKK a function of type ¢« — ¢, Aa « a proof
of A= A

A single notion of function?

Easier to implement: only one syntactic category, substitution
function, type-checking algorithm, etc.
What happens if we mix everything? More theorems?

The A-calculus with dependent types (AlM-calculus)

Il. The A-calculus with dependent types

Independently of the notions of term, proposition, proof,
etc.

The size of an array of natural numbers part of its type

Not a single type array

A type family (array 0), (array 1), (array 2), etc.

(Fo0)=1[] (f1)=10], (f 2) =10,0], (f 3) =[0,0,0], etc.

type of the argument of f: nat

type of the result: not always the same: depends on the argument:
(array x) where x is the argument of the function

nat — (array x)
x?
Mx : nat (array x)

A — B becomes a particular case of [1x : A B when x not used in
B (needs not be indicated)

Typing types

(array 0), Mn : nat (array n) types
(array 0 0), (array true) not well-formed
Types must be typed

Context y : (array x) not well-formed (x not declared)
Type formation, context formation rules, like term formation rules

Types are terms

Types are just terms
A constant Type for the type of types

Judgments I -t : A (particular case: T F t: Type)
and [well-formed

The Simply typed A-calculus revisited

[] well-formed

I well-formed
I, A: Type well-formed

'=A:Type TF B: Type
N-A— B: Type

N=A: Type
I, x: A well-formed

[well-formed
NEx: A

=A:Type T)x:AFB:Type T',x:AFt:B

x:AeTl

EXx:At:A— B

r-t:A—=B TFHt:A
Fr=(tt): B

Kinds

(array 0), (array 1) have type Type
the variable array has type nat — Type
nat — Type is a type / has type Type ?

(array 0) has type Type
Type is a type / has type Type ?

Type : Type — Girard's paradox
Non terminating terms, inconsistent

A new constant Kind for the type of Type, nat — Type, ...

Four categories of terms

> Kind
» kinds: Type, nat — Type, ... whose type is Kind

» types and type families: nat, (array 0), array, ... whose type
is a kind

» objects: 0, [0], ... whose type is a type

Terms in each category

Kind only term in its category

Kinds: Type and products (nat — Type, that is

Mx : nat Type)

Types and type families: variables (nat, array), applications
((array 0)), abstractions (An : nat (array (S n))), and
products (Mn : nat (array n) and nat — nat, that is

Mx : nat nat)

Objects: variables (0), applications ((S 0)) and abstractions
(Ax : nat x)

Typing rules

[] well-formed

I+ A: Kind
I, x : A well-formed

M= A: Type
I, x : A well-formed

[well-formed
I+ Type : Kind

NN=A:Type TI,x:AF B: Kind
N=MNx:AB: Kind

N=A:Type T,x:AF B: Type
N=MNx:AB: Type

" well-formed
NEx: A

NrN-A:Type T',x:AFB:Kind I,x:A+t:B

x:AeTl

NINEXx:At:Mx:AB
FrN-A:Type T)x:AFB:Type I',x:AFt:B

Fr-Xx:At:Mx:AB

TFt:Nx:AB THt:A
Fre(tt):(t'/x)B

The conversion rules

FN-t:A THA: Type FI—B:TypeA

FEt: B =B
rFt:A THA:Kind [FB:Kind ,
Frt B =

A little bit of Deduction modulo theory

array’ = An : nat (array (S n))

[0] has the type (array (S 0))

and also (An : nat (array (S n)) 0) (i.e. (array’ 0))

No polymorphism

Product rule: nat — Type
But not Type — Type

Arrays parametrized by the number of their elements but not by
the type of their elements

An extension: the Calculus of Constructions

Il1. The termination of reduction in the Al-calculus

Candidates in the All-calculus

Only one “connective”: I

C set of terms, S set of sets of terms

M(C,S) set of strongly terminating terms t such that if
t —* Ax : E t; then for all t' in C, and for all D in S,
(t'/x)ty € D

Candidates inductively defined by:
> the set of all strongly terminating terms in a candidate

> if C is a candidate and S is a set of candidates, then M(C, S)
is a candidate

» if S is a set of candidates, then (S is a candidate

Four easy lemmas

If C is a candidate, then all the elements of C strongly terminate

Let C be a candidate and x be a variable, then x € C

If C is a candidate, t is an element of C, and t —* t/, then t’ is
an element of C

Let C be a candidate. If all the one-step reducts of the term
(u1 wp) arein C, then (u; up)isin C

Terms of Al are at the same time sorts, terms and propositions,
and proofs
(M) indexed by terms of Al

» if t is an object or a type family, then M; = {e}

» if tis a kind or t = Kind, then M; =C

In a more systematic way

> MType = Mkind =C

» M, = {e}, an arbitrary singleton

> Moxat =My, M yy =M,

» Mnyx.a B is the set of functions f from M4 to Mp except if
Mp = {e}, in which case Mp,.a g = {e}, or if M = {e},
in which case Mpy.a B = Mg

Valuations

Let = x; : A1, ..., x, : A, be a well-formed context. A [-valuation
¢ is a function mapping every variable x; to an element of M4,

[t]4 of Ma defined as follows

» [Type]y is the set of strongly terminating terms

» [Kind]y is the set of strongly terminating terms

> [x]s = o(x)

» [Ax: C t]y is the function of domain M ¢ mapping a in Mc
to [t]sx=a except if [t]4 «—a = e for all a, in which case
[Ax: C t]y = e, or if Mc = {e}, in which case
Do € el = [l e
[(t u)]e = [tlg [ulg, except if [t]4s = e, in which case
[(t u)]g = e, orif [u]s = e, in which case [(t u)]s = [t]s
> [Mx: C D]y is the candidate N([C]y, {[D]px=c | c € Mc})

v

If t = u then [t]y = [u]y

Let [= xy : A1, ..., X, : A, be a context, ¢ be a [-valuation, o be a
substitution mapping every x; to an element of [A;]4 and t a term
of type Bin I'. Then ot € [B]4

Let I be a context and t be a term well-typed in I'. Then ¢t
strongly terminates

IV. Representation of terms, propositions, and proofs of minimal
logic

Minimal Logic

Fragment of Predicate logic
Only = and ¥
Only rules: axiom, introduction and elimination of = and of ¥

Languages

A language L of Predicate logic
Associate a context = containing

> for each sort s of £ a variable s of type Type

» for each function symbol f of arity (si,...,s,, s’), a variable,
also written f, of type s; — ... = s, — &'

» for each predicate symbol P of arity (s1,...,s,) a variable, also
written P, of type s; — ... = s, — Type

vyy

Terms and propositions

S(P(t1,..., tn)) = P(P(t1), ..., P(tn))
(A= B) =P(A) — ®(B), that is [x : d(A) ®(B)
d(Vx A) =TMx:s ®(A)

Proofs

A sequent Ay, ..., A, F B

A context [containing
> =

» for each variable x of sort s free in Ay, ..., A, F B, a variable,
also written x, of type s

» for each hypothesis A; a variable «; of type ®(A;)
A1, ...,An = B has a proof iff there exists 7 such that ' - 7 : ®(B)

A / the logical framework

Like Predicate logic
Like Deduction modulo theory

Why stick to minimal logic: the A1-calculus

Besides [1

Sums (A, 3)
Disjoint unions (V)
Unit type (T)
Empty type (L)

V. The All-calculus modulo theory

Variables = then reduction rules on the symbols of = then more
variables I
Then replace =g by =g

F-A:Type TEB:Type THt: A
M-t:B

AEB'RB

(-A:Kind THB:Kind THt:A,_ o
FrFt:B —BR

Proofs of minimal Deduction modulo theory can be expressed as
terms in the Al-calculus modulo theory

Minimal Simple type theory in All-modulo theory

Drop T, L, A, V, and 3,4 and the associated reduction rules

In minimal Deduction modulo theory, hence in All-calculus modulo
theory

But: an infinite number of sorts and symbols
Instead of: a variable for each sort

Two variables ¢ and o of type Type
Translate the simple type as

» || =1, |o| =o,
» |A— B|=|A|l — |B|, that is MNx : |A] |B].

A notation for terms based on A-calculus and not on combinators
we translate terms as

> |x| = x,

> |(t w)| = ([t] |u]),

> |(Ax:At) = x:|A| [t].
AlM-calculus already contains a notion of function that may be

reused instead of redefining one for Simple type theory
B-reduction of Simple type theory: S-reduction of All-calculus

But keep ¢, = and VA and
e(= xy) — e(x) = ely)

€(VA x) — My :|A] e(x y)

Still an infinite number of symbols: can be avoided
Expression of proofs of HOL in Dedukti

vy

VVvVVyYVYYVYY

Termination

MType = MKind = Mo =C

M, =M, =M, =M= = M\;A = {e}, an arbitrary
singleton

M)\X:A t = M,

Mt vy = Me

Mnx-a B is the set of functions f from M4 to Mp, except if
Mp = {e}, in which case Mpy.a g = {e}, or if Ma = {e}
in which case Mpyx.a 8 = Mg

[Type]y is the set of strongly terminating terms

[Kind], is the set of strongly terminating terms

[o]y is the set of strongly terminating terms

[¢]4 is the set of strongly terminating terms

[xls = 6(x)

[Ax : C t]y is the function of domain M ¢ mapping a in M¢
to [t]¢ x—a, except if [t]4 «—a = e for all a, in which case
[Ax: C t]y =e, or if Mc = {e}, in which case

[Ax: C tlg = [t]px=e

\4

vvyyy

[(t u)]g = [t]l([u]g), except if [t]s = e, in which case

[(t u)]g = e, orif [u]s = e, in which case [(t u)]s = [t]s,
[Mx : C D]y is the candidate N([C]y, {[D]px=c | ¢ € Mc})
[e] is the identity on C

[=]s ==

[Vale is the function mapping the function f from M, to C
to the candidate M([|A[]g, {f(a) | a € M a})

Next time

Inductive types

