Dependent types

I. What we have seen so far

A notion of proof (proof-term)

Termination proof-reduction for many theories (model-theoretic criterion: super-consistency)

But

Term, proposition, proof: distinct notions For instance $\lambda x \times \text{or } SKK$ a function of type $\iota \to \iota$, $\lambda \alpha \alpha$ a proof of $A \Rightarrow A$ A single notion of function?

Easier to implement: only one syntactic category, substitution function, type-checking algorithm, etc. What happens if we mix everything? More theorems?

The λ -calculus with dependent types ($\lambda\Pi$ -calculus)

II. The λ -calculus with dependent types

Independently of the notions of term, proposition, proof, etc.

The size of an array of natural numbers part of its type

Not a single type *array*

A type family (array 0), (array 1), (array 2), etc.

 $(f \ 0) = [], (f \ 1) = [0], (f \ 2) = [0, 0], (f \ 3) = [0, 0, 0], \text{ etc.}$ type of the argument of f: nattype of the result: not always the same: depends on the argument: $(array \ x)$ where x is the argument of the function

```
nat \rightarrow (array x)
x?
\Pi x : nat (array x)
```

 $A \rightarrow B$ becomes a particular case of $\Pi x : A B$ when x not used in B (needs not be indicated)

Typing types

(array 0), Πn : nat (array n) types (array 0 0), (array true) not well-formed Types must be typed

Context y : (array x) not well-formed (x not declared) Type formation, context formation rules, like term formation rules

Types are terms

Types are just terms A constant *Type* for the type of types

```
Judgments \Gamma \vdash t : A (particular case: \Gamma \vdash t : Type)
and \Gamma well-formed
```

The Simply typed λ -calculus revisited

[] well-formed

 $\frac{\Gamma \text{ well-formed}}{\Gamma, A: Type \text{ well-formed}}$

 $\frac{\Gamma \vdash A: Type \quad \Gamma \vdash B: Type}{\Gamma \vdash A \rightarrow B: Type}$

$$\frac{\Gamma \vdash A : Type}{\Gamma, x : A \text{ well-formed}}$$

$$\frac{\Gamma \text{ well-formed}}{\Gamma \vdash x : A} x : A \in \Gamma$$

$$\frac{\Gamma \vdash A : Type \quad \Gamma, x : A \vdash B : Type \quad \Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \ t : A \rightarrow B}$$

$$\frac{\Gamma \vdash t : A \rightarrow B \quad \Gamma \vdash t' : A}{\Gamma \vdash (t \ t') : B}$$

Kinds

```
(array 0), (array 1) have type Type
the variable array has type nat \rightarrow Type
nat \rightarrow Type is a type / has type Type ?
```

```
(array 0) has type Type
Type is a type / has type Type ?
```

Type : Type \longrightarrow Girard's paradox Non terminating terms, inconsistent

A new constant Kind for the type of Type, nat \rightarrow Type, ...

Four categories of terms

- Kind
- kinds: Type, $nat \rightarrow Type$, ... whose type is Kind
- types and type families: nat, (array 0), array, ... whose type is a kind
- objects: 0, [0], ... whose type is a type

Terms in each category

- Kind only term in its category
- ► Kinds: Type and products (nat → Type, that is Πx : nat Type)
- Types and type families: variables (*nat*, *array*), applications ((*array* 0)), abstractions (λn : *nat* (*array* (S n))), and products (Πn : *nat* (*array* n) and *nat* → *nat*, that is Πx : *nat nat*)
- Objects: variables (0), applications ((S 0)) and abstractions (\lambda x : nat x)

Typing rules

[] well-formed $\Gamma \vdash A : Kind$ $\overline{\Gamma, x} : A$ well-formed $\Gamma \vdash A : Type$ $\overline{\Gamma, x}$: A well-formed Γ well-formed $\overline{\Gamma \vdash Type : Kind}$ $\Gamma \vdash A$: Type $\Gamma, x : A \vdash B$: Kind $\Gamma \vdash \Pi x : A B : Kind$

 $\Gamma \vdash A$: Type $\Gamma, x : A \vdash B$: Type $\Gamma \vdash \Pi x : A B : \overline{Type}$ $\frac{\Gamma \text{ well-formed}}{\Gamma \vdash x \cdot A} x : A \in \Gamma$ $\Gamma \vdash A$: Type $\Gamma, x : A \vdash B : Kind \quad \Gamma, x : A \vdash t : B$ $\Gamma \vdash \lambda x : A t : \Pi x \cdot A B$ $\Gamma \vdash A$: Type $\Gamma, x : A \vdash B$: Type $\Gamma, x : A \vdash t : B$ $\Gamma \vdash \lambda x : A t : \Pi x : A B$ $\Gamma \vdash t : \Pi x : A B \quad \Gamma \vdash t' : A$ $\Gamma \vdash (t \ t') : (t'/x)B$

The conversion rules

$$\frac{\Gamma \vdash t : A \quad \Gamma \vdash A : Type \quad \Gamma \vdash B : Type}{\Gamma \vdash t : B} A \equiv B$$
$$\frac{\Gamma \vdash t : A \quad \Gamma \vdash A : Kind \quad \Gamma \vdash B : Kind}{\Gamma \vdash t : B} A \equiv B$$

A little bit of Deduction modulo theory $array' = \lambda n : nat (array (S n))$ [0] has the type (array (S 0)) and also ($\lambda n : nat (array (S n))$ 0) (i.e. (array' 0))

No polymorphism

Product rule: $nat \rightarrow Type$ But not $Type \rightarrow Type$

Arrays parametrized by the number of their elements but not by the type of their elements

An extension: the Calculus of Constructions

III. The termination of reduction in the $\lambda\Pi\text{-calculus}$

Candidates in the $\lambda \Pi$ -calculus

Only one "connective": Π

C set of terms, *S* set of sets of terms $\Pi(C, S)$ set of strongly terminating terms *t* such that if $t \longrightarrow^* \lambda x : E \ t_1$ then for all *t'* in *C*, and for all *D* in *S*, $(t'/x)t_1 \in D$ Candidates inductively defined by:

- the set of all strongly terminating terms in a candidate
- ▶ if C is a candidate and S is a set of candidates, then Π(C, S) is a candidate
- if S is a set of candidates, then $\bigcap S$ is a candidate

Four easy lemmas

If C is a candidate, then all the elements of C strongly terminate

Let *C* be a candidate and *x* be a variable, then $x \in C$

If C is a candidate, t is an element of C, and $t \longrightarrow^* t'$, then t' is an element of C

Let C be a candidate. If all the one-step reducts of the term $(u_1 \ u_2)$ are in C, then $(u_1 \ u_2)$ is in C

Terms of $\lambda\Pi$ are at the same time sorts, terms and propositions, and proofs

 $(\mathcal{M}_t)_t$ indexed by terms of $\lambda \Pi$

- if t is an object or a type family, then $\mathcal{M}_t = \{e\}$
- ▶ if *t* is a kind or t = Kind, then $M_t = C$

In a more systematic way

Valuations

Let $\Gamma = x_1 : A_1, ..., x_n : A_n$ be a well-formed context. A Γ -valuation ϕ is a function mapping every variable x_i to an element of \mathcal{M}_{A_i}

$\llbracket t \rrbracket_{\phi}$ of \mathcal{M}_A defined as follows

- $[Type]_{\phi}$ is the set of strongly terminating terms
- $[[Kind]]_{\phi}$ is the set of strongly terminating terms

$$\blacktriangleright \ \llbracket x \rrbracket_{\phi} = \phi(x)$$

- $[\![\lambda x : C t]\!]_{\phi}$ is the function of domain \mathcal{M}_C mapping *a* in \mathcal{M}_C to $[\![t]\!]_{\phi,x=a}$, except if $[\![t]\!]_{\phi,x=a} = e$ for all *a*, in which case $[\![\lambda x : C t]\!]_{\phi} = e$, or if $\mathcal{M}_C = \{e\}$, in which case $[\![\lambda x : C t]\!]_{\phi} = [\![t]\!]_{\phi,x=e}$
- $[[(t \ u)]]_{\phi} = [[t]]_{\phi} [[u]]_{\phi}, \text{ except if } [[t]]_{\phi} = e, \text{ in which case} \\ [[(t \ u)]]_{\phi} = e, \text{ or if } [[u]]_{\phi} = e, \text{ in which case } [[(t \ u)]]_{\phi} = [[t]]_{\phi}$

 $\blacksquare \ \llbracket \Pi x : C \ D \rrbracket_{\phi} \text{ is the candidate } \widetilde{\Pi}(\llbracket C \rrbracket_{\phi}, \{\llbracket D \rrbracket_{\phi, x=c} \mid c \in \mathcal{M}_C\})$

If $t \equiv u$ then $\llbracket t \rrbracket_{\phi} = \llbracket u \rrbracket_{\phi}$

Let $\Gamma = x_1 : A_1, ..., x_n : A_n$ be a context, ϕ be a Γ -valuation, σ be a substitution mapping every x_i to an element of $\llbracket A_i \rrbracket_{\phi}$ and t a term of type B in Γ . Then $\sigma t \in \llbracket B \rrbracket_{\phi}$

Let Γ be a context and t be a term well-typed in Γ . Then t strongly terminates

IV. Representation of terms, propositions, and proofs of minimal logic

Minimal Logic

 $\begin{array}{l} \mbox{Fragment of Predicate logic} \\ \mbox{Only} \Rightarrow \mbox{and} \ \forall \\ \mbox{Only rules: axiom, introduction and elimination of} \Rightarrow \mbox{and of} \ \forall \end{array}$

Languages

A language \mathcal{L} of Predicate logic Associate a context Ξ containing

- for each sort s of \mathcal{L} a variable s of type Type
- For each function symbol f of arity (s₁,..., s_n, s'), a variable, also written f, of type s₁ → ... → s_n → s'
- For each predicate symbol P of arity (s₁,..., s_n) a variable, also written P, of type s₁ → ... → s_n → Type

Terms and propositions

•
$$\Phi(x) = x$$

• $\Phi(f(t_1, ..., t_n)) = f(\Phi(t_1), ..., \Phi(t_n))$

Proofs

A sequent $A_1, ..., A_n \vdash B$ A context Γ containing

ÞΞ

- For each variable x of sort s free in A₁,..., A_n ⊢ B, a variable, also written x, of type s
- for each hypothesis A_i a variable α_i of type $\Phi(A_i)$

 $A_1, ..., A_n \vdash B$ has a proof iff there exists π such that $\Gamma \vdash \pi : \Phi(B)$

A / the logical framework

Like Predicate logic Like Deduction modulo theory Why stick to minimal logic: the λ 1-calculus

Besides Π

Sums (\land, \exists) Disjoint unions (\lor) Unit type (\top) Empty type (\bot) V. The $\lambda\Pi$ -calculus modulo theory

Variables
$$\equiv$$
 then reduction rules on the symbols of \equiv then more
variables Γ
Then replace \equiv_{β} by $\equiv_{\beta\mathcal{R}}$
$$\frac{\Gamma \vdash A : Type \ \Gamma \vdash B : Type \ \Gamma \vdash t : A}{\Gamma \vdash t : B} A \equiv_{\beta\mathcal{R}} B$$
$$\frac{\Gamma \vdash A : Kind \ \Gamma \vdash B : Kind \ \Gamma \vdash t : A}{\Gamma \vdash t : B} A \equiv_{\beta\mathcal{R}} B$$

Proofs of minimal Deduction modulo theory can be expressed as terms in the $\lambda\Pi$ -calculus modulo theory

Minimal Simple type theory in $\lambda \Pi$ -modulo theory

Drop $\dot{\top},\ \dot{\perp},\ \dot{\wedge},\ \dot{\vee},\ \text{and}\ \dot{\exists}_{A}$ and the associated reduction rules

In minimal Deduction modulo theory, hence in $\lambda\Pi\text{-calculus}$ modulo theory

But: an infinite number of sorts and symbols Instead of: a variable for each sort Two variables ι and o of type *Type* Translate the simple type as

$$\blacktriangleright |\iota| = \iota, |o| = o,$$

$$\blacktriangleright |A \rightarrow B| = |A| \rightarrow |B|, \text{ that is } \Pi x : |A| |B|.$$

A notation for terms based on $\lambda\text{-calculus}$ and not on combinators we translate terms as

$$\blacktriangleright |x| = x,$$

►
$$|(t \ u)| = (|t| \ |u|),$$

$$|(\lambda x : A t)| = \lambda x : |A| |t|.$$

 $\lambda\Pi$ -calculus already contains a notion of function that may be reused instead of redefining one for Simple type theory β -reduction of Simple type theory: β -reduction of $\lambda\Pi$ -calculus But keep ε , \Rightarrow and $\dot{\forall}_A$ and

$$\varepsilon(\Rightarrow x \ y) \longrightarrow \varepsilon(x) \to \varepsilon(y)$$
$$\varepsilon(\dot{\forall}_A \ x) \longrightarrow \Pi y : |A| \ \varepsilon(x \ y)$$

Still an infinite number of symbols: can be avoided Expression of proofs of HOL in Dedukti

Termination

$$\blacktriangleright \mathcal{M}_{\lambda x: \mathcal{A} t} = \mathcal{M}_t$$

$$\blacktriangleright \mathcal{M}_{(t \ u)} = \mathcal{M}_t$$

- M_{Πx:A B} is the set of functions f from M_A to M_B, except if M_B = {e}, in which case M_{Πx:A B} = {e}, or if M_A = {e} in which case M_{Πx:A B} = M_B
- $[Type]_{\phi}$ is the set of strongly terminating terms
- $[[Kind]]_{\phi}$ is the set of strongly terminating terms
- ▶ [[o]]_φ is the set of strongly terminating terms
- $\llbracket \iota \rrbracket_{\phi}$ is the set of strongly terminating terms

$$\blacktriangleright \ \llbracket x \rrbracket_{\phi} = \phi(x)$$

[[λx : C t]]_φ is the function of domain M_C mapping a in M_C to [[t]]_{φ,x=a}, except if [[t]]_{φ,x=a} = e for all a, in which case [[λx : C t]]_φ = e, or if M_C = {e}, in which case [[λx : C t]]_φ = [[t]]_{φ,x=e}

- $[[(t \ u)]]_{\phi} = [[t]]_{\phi}([[u]]_{\phi}), \text{ except if } [[t]]_{\phi} = e, \text{ in which case} \\ [[(t \ u)]]_{\phi} = e, \text{ or if } [[u]]_{\phi} = e, \text{ in which case } [[(t \ u)]]_{\phi} = [[t]]_{\phi},$
- $\llbracket \Pi x : C D \rrbracket_{\phi}$ is the candidate $\Pi(\llbracket C \rrbracket_{\phi}, \{\llbracket D \rrbracket_{\phi,x=c} \mid c \in \mathcal{M}_C\})$
- $\llbracket \varepsilon \rrbracket_{\phi}$ is the identity on C

$\blacktriangleright \ [\![\dot{\Rightarrow}]\!]_{\phi} = \tilde{\Rightarrow}$

• $\llbracket \dot{\forall}_A \rrbracket_{\phi}$ is the function mapping the function f from $\mathcal{M}_{|A|}$ to \mathcal{C} to the candidate $\Pi(\llbracket |A| \rrbracket_{\phi}, \{f(a) \mid a \in \mathcal{M}_{|A|}\})$

Next time

Inductive types