
Proofs in theories



Why do proofs matter to computer scientists?

Church’s theorem: undecidability of provability (1936)

Proofs and algorithms are two completely different things

Method to judge a proposition true: build a proof
Algorithms can only be used for very specific decidable problems

But...



1. Computers are truth judgment machines

The 100th decimal of π is a 9



2. Proof-checking and proof-search algorithms

Provability undecidable
But correctness of proof decidable: proof-checking algorithms
and provability semi-decidable: proof-search semi-algorithms



3. Proofs of algorithms and programs

Critical systems: transportation, energy, medicine...
A way to avoid bugs

Prove your programs correct

Programs: do, do, do... what for?



4. Constructivity and Brouwer-Heyting-Kolmogorov
interpretation

Constructive proofs are algorithms

The language of (constructive) proofs is a programming language
where all programs terminate



5. Theories

Proofs are not purely logical objects

Theories: arithmetic, set theory, type theory, etc.

Theories: sets of axioms, some theories algorithms



This course: proofs in theories

2 + 2 = 4⇒ 2 + 2 = 4

n + 1 = p + 1⇒ n = p

Proof theory: proofs in pure logic
Then proofs in some specific theories (Arithmetic, Simple type
theory...)

Here: an arbitrary theory as long as we can



This course: proof-reduction and models

Two notions of truth: proofs, models
But (more and more) convergence

Key results in proof-theory: termination of proof-reduction
Proving termination of proof-reduction ' building a model



Structure of this course
(11 courses + 4 exercises sessions + 1 master class)

1, 2, 3: basic notions (proof, theory, many-valued model...)

4, 5, 6: examples of theories

7, 8: proof reduction

9, 10, 11: unified formalisms (λΠ-calculus, λΠ-calculus modulo
theory, Martin-Löf type theory, the Calculus of Constructions)



Along the way: Proof-checking systems

Simple type theory: HOL, HOL-light, Isabelle/HOL, PVS

λΠ-calculus: Twelf

λΠ-calculus modulo theory: Dedukti

Martin-Löf’s type theory: Agda

The Calculus of constructions: Coq, Lean



What you are supposed to know

The notion of inductive definition

The notions of free and bound variable, alphabetic equivalence,
and substitution

The syntax of (many-sorted) predicate logic

The natural deduction

The untyped and simply typed lambda-calculi

The expression of computable functions in arithmetic, in the
language of rewrite rules and in the lambda-calculus



The Natural Deduction



I. The Natural Deduction Rules



The set of provable proposition

An inductive definition
A⇒ B A

B

P ⇒ Q ⇒ R

P

Q



But not so comfortable

To prove A⇒ B, assume A and prove B

Do not deduce propositions but pairs formed with hypotheses and
a conclusion, sequents, Γ ` A

Γ ` A⇒ B Γ ` A
Γ ` B

Γ,A ` B
Γ ` A⇒ B

Γ,A ` A



An exercise

Prove P ` Q ⇒ P



Γ ` A Γ ` B ∧-intro
Γ ` A ∧ B

Γ ` A ∧ B
∧-elim

Γ ` A

Γ ` A ∧ B
∧-elim

Γ ` B



The classification of the rules

These three rules mention only the connective ∧
Most rules mention only one connective: the rules of ∧, the rules
of ∨, etc.
Either in the conclusion or in the premises

Γ ` A Γ ` B ∧-intro
Γ ` A ∧ B

Γ ` A ∧ B
∧-elim

Γ ` A

introduction / elimination



Γ ` A ∨-intro
Γ ` A ∨ B

Γ ` B ∨-intro
Γ ` A ∨ B

Γ ` A ∨ B Γ,A ` C Γ,B ` C
∨-elim

Γ ` C



Γ,A ` B ⇒-intro
Γ ` A⇒ B

Γ ` A⇒ B Γ ` A
⇒-elim

Γ ` B



Γ ` A ∀-intro if x 6∈ FV (Γ)
Γ ` ∀x A

Γ ` ∀x A
∀-elim

Γ ` (t/x)A



Γ ` (t/x)A
∃-intro

Γ ` ∃x A

Γ ` ∃x A Γ,A ` B ∃-elim if x 6∈ FV (Γ,B)
Γ ` B



>-intro
Γ ` >

Γ ` ⊥
⊥-elim

Γ ` A



axiom if A ∈ Γ
Γ ` A

excluded-middle
Γ ` A ∨ ¬A



¬, ⇔

No rules for ¬ and ⇔

¬A abbreviation for A⇒ ⊥
A⇔ B abbreviation for (A⇒ B) ∧ (B ⇒ A)



Proofs

A sequent Γ ` A is provable iff it has a derivation (proof)

A tree where nodes are labelled with sequents

Root labelled by Γ ` A

If node labelled by ∆ ` B and children labelled by Σ1 ` C1, ...,
Σn ` Cn then a Natural deduction rule deduces ∆ ` B from
Σ1 ` C1, . . . ,Σn ` Cn



Proof of a proposition, proof in an axiomatic theory

A proposition A is provable (without any axioms), if ` A is

Axiomatic theory T : set of closed propositions (axioms)
A provable in T if finite subset Γ of T , Γ ` A provable



II. Constructive proofs



0

1

3

4

5

2

0 ∈ P and 2 6∈ P
Does there exists n such that n ∈ P and n + 1 6∈ P?



P(0),¬P(S(S(0))) ` ∃x (P(x) ∧ ¬P(S(x)))

π1

Γ,P(S(0)) ` P(S(0)) Γ,P(S(0)) ` ¬P(S(S(0)))
Γ,P(S(0)) ` P(S(0)) ∧ ¬P(S(S(0)))
Γ,P(S(0)) ` ∃x (P(x) ∧ ¬P(S(x)))

where Γ = {P(0),¬P(S(S(0)))}



π2

Γ,¬P(S(0)) ` P(0) Γ,¬P(S(0)) ` ¬P(S(0))
Γ,¬P(S(0)) ` P(0) ∧ ¬P(S(0))

Γ,¬P(S(0)) ` ∃x (P(x) ∧ ¬P(S(x)))

Finally

Γ ` P(S(0)) ∨ ¬P(S(0))
π1

Γ,P(S(0)) ` A
π2

Γ,¬P(S(0)) ` A
Γ ` A

where A = ∃x (P(x) ∧ ¬P(S(x)))



We can prove
∃x (P(x) ∧ ¬P(S(x)))

Can we prove
P(n) ∧ ¬P(S(n))

for some natural number n?

No: easy to prove that for each number n

P(0),¬P(S(S(0))) ` P(n) ∧ ¬P(S(n))

not provable



Without any axioms

We can prove

∃x (P(0)⇒ ¬P(S(S(0)))⇒ (P(x) ∧ ¬P(S(x))))

We can prove

P(0)⇒ ¬P(S(S(0)))⇒ (P(n) ∧ ¬P(S(n)))

for no natural number n



The notion of witness

E has the witness property if
when ∃x A is in E , there exists t such that (t/x)A is in E

The set of provable propositions: no witness property



How is this possible?

Only one possibility to prove ∃x A: prove (t/x)A and then use the
∃-intro rule
Example π1 and π2
Then a proof by case

...
π1

Γ,P(S(0)) ` A
π2

Γ,¬P(S(0)) ` A
Γ ` A

0 or S(0)?



But still needs to prove P(S(0)) ∨ ¬P(S(0))

The excluded-middle rule
(A ∨ ¬A) without knowing which of A or ¬A holds



The notion of constructive proof

A proof that does not use the excluded-middle rule

As we shall see: if a proposition ∃x A has a constructive proof,
without any axioms, then there exists a term t such that (t/x)A
has a proof

Algorithm to extract witness from proof: proof reduction

Extends to many theories



Programming with proofs

A constructive proof π of

∀x∃y (x = 2× y ∨ x = 2× y + 1)

A proof of the proposition

∃y (25 = 2× y ∨ 25 = 2× y + 1)

Extract a witness from this proof
By construction, correct with respect to specification

x = 2× y ∨ x = 2× y + 1



III. Cuts and proof reduction



Cuts

A proof ending with an elimination rule whose main premise is
proved by an introduction rule on the same symbol
For instance

π
Γ ` A

π′

Γ ` B ∧-intro
Γ ` A ∧ B

∧-elim
Γ ` A



Seven cases

π
Γ,A ` B ⇒-intro

Γ ` A⇒ B
π′

Γ ` A
⇒-elim

Γ ` B



Proof reduction

Contains a cut: a sub-tree of the proof is a cut
Proof reduction: replace this sub-tree with another

π
Γ ` A

π′

Γ ` B ∧-intro
Γ ` A ∧ B

∧-elim
Γ ` A



π
Γ,A ` B ⇒-intro

Γ ` A⇒ B
π′

Γ ` A
⇒-elim

Γ ` B

Eliminating a cut is easy
Eliminating a cut may create others: termination?

Technically: a major topic of this course



Why do we care?

Cut-free: contains no cut

A proof π that is (1.) constructive, (2.) cut-free, and (3.) without
any axioms ends with an introduction rule.

A proof π of ∃x A that is (1.) constructive, (2.) cut-free, and (3.)
without any axioms ends with a ∃-intro rule: witness property



After the break

The notion of theory


