Exercise 1 The simple types are inductively defined by two rules:

- \(\iota \) and \(o \) are simple types,
- if \(A \) and \(B \) are simple types, then \(A \to B \) is a simple type.

For each simple type, we consider an infinite set of variables of this type and possibly some constants. The Simply typed \(\lambda \)-terms are defined by

- variables and constants of type \(A \) are terms of type \(A \),
- if \(t \) is a term of type \(A \to B \) and \(u \) a term of type \(A \), then \((tu) \) is a term of type \(B \),
- if \(x \) is a variable of type \(A \) and \(t \) a term of type \(B \), then \(\lambda x : A \; t \) is a term of type \(A \to B \).

1. The \(\beta \)-reduction rule is

\[
((\lambda x : A \; t) \; u) \longrightarrow (u/x)t
\]

Define the notion of one-step \(\beta \)-reduction, termination and strong termination of \(\beta \)-reduction.

2. Consider the following strong termination proof.

By induction of the structure of \(\lambda \)-terms

- variables and constants are irreducible, hence they strongly terminate,
- if \(t \) strongly terminates, then so does \(\lambda x \; t \),
- if \(t \) and \(u \) strongly terminate, then so does \((tu) \).

Why is this proof wrong?

We define, by induction over the type \(A \), a set of terms \(R_A \).

- If \(A = \iota \) or \(A = o \), then a term \(t \) is an element of \(R_A \) if and only if it strongly terminates.
- If \(A = B \to C \), then a term \(t \) is an element of \(R_A \) if and only if it strongly terminates and whenever it reduces to a term of the form \(\lambda x : B \; u \), then for every term \(v \) in \(R_B \), \((v/x)u \) is an element of \(R_C \).

3. Prove that if \(x \) is a variable or a constant, then \(x \in R_A \) for all \(A \).

4. Prove that if \(t \) is an element of \(R_A \) and \(t \) reduces to \(t' \), then \(t' \) is an element of \(R_A \).
5. Let \(t \) be a term of the form \((u_1 u_2)\) such that all the one-step reducts of \(t \) are in \(R_A \). We want to prove that \(t \) is in \(R_A \).

Prove that \(t \) strongly terminates.

Prove that if \(A = \iota \) or \(A = \circ \), then \(t \) is in \(R_A \).

Prove that if \(A = B \to C \), then \(t \) is in \(R_A \).

6. Let \(t_1 \) be a term in \(R_{A \to B} \) and \(t_2 \) a term in \(R_A \). We want to prove that \((t_1 t_2)\) is in \(R_B \).

Prove that the term \(t_1 \) and \(t_2 \) strongly terminates.

Let \(n_1 \) be the maximum length of a reduction sequence issued from the term \(t_1 \) and \(n_2 \) be the maximum length of a reduction sequence issued from \(t_2 \).

Prove by induction on \(n_1 + n_2 \) that \((t_1 t_2)\) is in the set \(R_B \).

7. Let \(t \) be a term of type \(A \) and \(\sigma \) be a substitution mapping each variable of type \(B \) to an element of \(R_B \). Prove that \(\sigma t \) is in \(R_A \).

8. Let \(t \) be a term of type \(A \). Prove that \(t \) strongly terminates.

Exercise 2 Consider the model of Simple type theory defined as follows \(\mathcal{M}_\iota = \{7\} \), \(\mathcal{M}_\circ = \{0, 1\} \), \(\mathcal{M}_{A \to B} = \mathcal{M}_A \to \mathcal{M}_B \), that is the set of all functions from \(A \) to \(B \).

- \(\hat{\varepsilon} \) is the identity function,
- \(\hat{\alpha}_{A,B} \) is the function mapping \(f \) and \(a \) to \(f(a) \),
- \(\hat{\kappa}_{A,B} \) is the function mapping \(a \) and \(b \) to \(a \),
- \(\hat{S}_{A,B,C} \) is the function mapping \(f, g \) and \(a \) to \(f \ a \ (g \ a) \),
- \(\hat{\top} = \top = 1 \),
- \(\hat{\bot} = \bot = 0 \),
- \(\hat{\lambda} = \lambda \),
- \(\hat{\forall} = \forall \),
- \(\hat{\exists} = \exists \),
- \(\hat{\forall}_A \) is the function mapping \(f \) to the minimum of \(f(a) \) for \(a \) in \(\mathcal{M}_A \),
- \(\hat{\exists}_A \) is the function mapping \(f \) to the maximum of \(f(a) \) for \(a \) in \(\mathcal{M}_A \).

1. Prove that \(\mathcal{M} \) is a model of Simple type theory.
2. Equality is defined by the rule

\[x = y \rightarrow \forall c \, ((c \, x) \Rightarrow (c \, y)) \]

prove that \(\|\varepsilon(t = u)\|_\rho = 1 \) if and only if \(\|t\|_\rho = \|u\|_\rho \).

Let \(E \) be the extensionality axiom

\[\forall f : (\iota \rightarrow \iota) \forall g : (\iota \rightarrow \iota)(\forall x : \iota \, (f \, x) = (g \, x) \Rightarrow f = g) \]

Prove that \(E \) is valid in this model

Prove that \(\neg E \) is not provable in Simple type theory.

3. Build a model of Simple type theory where \(E \) is not valid.

Prove that \(E \) is not provable in Simple type theory.