MPRI Foundations of proof systems 2 Gilles Dowek

Exercise 1 The simple types are inductively defined by two rules:

- *i* and *o* are simple types,
- *if* A and B are simple types, then $A \rightarrow B$ is a simple type.

For each simple type, we consider an infinite set of variables of this type and possibly some constants. The Simply typed λ -terms are defined by

- variables and constants of type A are terms of type A,
- if t is a term of type $A \to B$ and u a term of type A, then $(t \ u)$ is a term of type B,
- *if* x *is a variable of type* A *and* t *a term of type* B*, then* $\lambda x : A t$ *is a term of type* $A \rightarrow B$.
- 1. The β -reduction rule is

$$((\lambda x : A t) u) \longrightarrow (u/x)t$$

Define the notion of one-step β -reduction, termination and strong termination of β -reduction.

2. Consider the following strong termination proof.

By induction of the structure of λ -terms

- variables and constants are irreducible, hence they strongly terminate,
- *if* t strongly terminates, then so does $\lambda x t$,
- *if* t and u strongly terminate, then so does (t u).

Why is this proof wrong?

We define, by induction over the type A, a set of terms R_A .

- If $A = \iota$ or A = o, then a term t is an element of R_A if and only if it strongly terminates.
- If $A = B \rightarrow C$, then a term t is an element of R_A if and only if it strongly terminates and whenever it reduces to a term of the form $\lambda x : B u$, then for every term v in R_B , (v/x)u is an element of R_C .
- *3. Prove that if* x *is a variable or a constant, then* $x \in R_A$ *for all* A*.*
- 4. Prove that if t is an element of R_A and t reduces to t', then t' is an element of R_A .

5. Let t be a term of the form $(u_1 \ u_2)$ such that all the one-step reducts of t are in R_A . We want to prove that t is in R_A .

Prove that t strongly terminates.

Prove that if $A = \iota$ or A = o, then t is in R_A .

Prove that if $A = B \rightarrow C$, then t is in R_A .

6. Let t_1 be a term in $R_{A \to B}$ and t_2 a term in R_A . We want to prove that $(t_1 t_2)$ is in R_B .

Prove that the term t_1 *and* t_2 *strongly terminates.*

Let n_1 be the maximum length of a reduction sequence issued from the term t_1 and n_2 be the maximum length of a reduction sequence issued from t_2 .

Prove by induction on $n_1 + n_2$ *that* $(t_1 t_2)$ *is in the set* R_B .

- 7. Let t be a term of type A and σ be a substitution mapping each variable of type B to an element of R_B . Prove that σt is in R_A .
- 8. Let t be a term of type A. Prove that t strongly terminates.

Exercise 2 Consider the model of Simple type theory defined as follows $\mathcal{M}_{\iota} = \{7\}$, $\mathcal{M}_{o} = \{0, 1\}$, $\mathcal{M}_{A \to B} = \mathcal{M}_{A} \to \mathcal{M}_{B}$, that is the set of all functions from A to B.

- $\hat{\varepsilon}$ is the identity function,
- $\hat{\alpha}_{A,B}$ is the function mapping f and a to f(a),
- $\hat{K}_{A,B}$ is the function mapping a and b to a,
- $\hat{S}_{A,B,C}$ is the function mapping f, g and a to f a (g a),
- $\hat{\top} = \tilde{\top} = 1$,
- $\hat{\perp} = \tilde{\perp} = 0$,
- $\hat{\dot{\wedge}} = \tilde{\wedge}$,
- $\hat{\dot{\vee}} = \tilde{\vee}$.
- $\hat{\Rightarrow} = \tilde{\Rightarrow},$
- $\dot{\forall}_A$ is the function mapping f to the minimum of f(a) for a in \mathcal{M}_A ,
- \exists_A is the function mapping f to the maximum of f(a) for a in \mathcal{M}_A .
- 1. Prove that \mathcal{M} is a model of Simple type theory.

2. Equality is defined by the rule

$$x = y \longrightarrow \dot{\forall} c \ ((c \ x) \Rightarrow (c \ y))$$

prove that $[\![\varepsilon(t=u)]\!]_{\rho} = 1$ if and only if $[\![t]\!]_{\rho} = [\![u]\!]_{\rho}$. Let E be the extensionality axiom

$$\forall f: (\iota \to \iota) \forall g: (\iota \to \iota) ((\forall x: \iota \ (fx) = (gx)) \Rightarrow f = g)$$

Prove that E is valid in this model Prove that $\neg E$ is not provable in Simple type theory.

3. Build a model of Simple type theory where *E* is not valid. Prove that *E* is not provable in Simple type theory.