MPRI 2-7-1 Fondements des systèmes de preuves

Gilles Dowek

Thursday, November 23rd, 2016

1 hour and a half. All documents can be used.

1

(4 points)

Let P be a proposition symbol (that is, a predicate symbol of arity 0).

- (a) Give a proof of the proposition $P \Rightarrow P$.
- (b) Express this proof as a term of simply typed λ -calculus.
- (c) How many normal closed simply typed terms of type $P \Rightarrow P$ are there? Why?

$\mathbf{2}$

(5 points)

- (a) Give two propositions A and B, such that the sequent $\vdash \forall x \ (A \lor B)$ has a constructive proof.
- (b) Let C and D be two propositions and π be a constructive cut-free proof of the sequent $\vdash \forall x \ (C \lor D)$. Show that this proof ends with two introduction rules.
- (c) Show that if the sequent $\vdash \forall x \ (C \lor D)$ has a constructive proof then so does the sequent $\vdash (\forall x \ C) \lor (\forall x \ D)$.

3

(4 points) Let P and Q be two proposition symbols (that is, predicate symbols of arity 0).

- (a) Give a model where $P \lor Q$ is not valid.
- (b) Give a model where $\neg P \land \neg Q$ is not valid.
- (c) Give a model where neither of these propositions is valid.

4

(6 points)

- (a) Give a term in Gödel system T expressing a function f such that f(0) = 2and f(1) = 0.
- (b) Give a term in Gödel system T expressing a function g such that g(0) = 1, g(1) = 2, and g(2) = 0.
- (c) Give a term in Gödel system T expressing a function h such that h(n) is $n \mod 3$, the remainder of the division of n by 3.

$\mathbf{5}$

(1 points)

(a) Give a term in the Calculus of constructions of type

$$\forall X \ (X \Rightarrow (X \Rightarrow X) \Rightarrow X)$$