Exercises related to the previous session

Exercise 1. Let $T^* = \{ A_1 \equiv C_1, \ldots, A_m \equiv C_m \}$ be an \mathcal{ALC} TBox satisfying the following properties.

- Every A_i is a concept name, and $A_i \equiv C_i$ is an abbreviation for $A_i \sqsubseteq C_i$ and $C_i \sqsubseteq A_i$.
- For all $i, j \in [1, m]$, if A_j occurs in C_i, then $j > i$.
- If $i \neq j \in [1, m]$, then A_i and A_j are syntactically distinct.

Such a TBox T^* is called acyclic.

1. Briefly define an acyclic graph from T^*, which would justify the terminology “T^* is acyclic”.

2. Given an interpretation \mathcal{I}, show that there exists an interpretation \mathcal{J} such that $\mathcal{J} \models T^*$, the interpretations of the role names and concept names different from $\{A_1, \ldots, A_m\}$ are identical in \mathcal{I} and \mathcal{J}.

3. Design an algorithm that takes as input a knowledge base $\mathcal{K} = (T, A)$ with acyclic T and returns an ABox A' such that \mathcal{K} is consistent iff (\emptyset, A') is consistent. The proof for the soundness of the algorithm is not required.

4. Explain why your algorithm terminates and analyse its computational complexity.

Exercise 2. (Exponential-size interpretations) Define a family of concepts $(C_n)_{n \geq 1}$ such that each C_n is of polynomial size in n (for a fixed polynomial), C_n is satisfiable, and the interpretations satisfying C_n have at least 2^n individuals in its domains.
Exercises related to today session

Exercise 3. Let us consider the translation map t into first-order logic. Let $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ be an interpretation.

1. Let C be a complex concept in \mathcal{ALC}. Show that for all $a \in \Delta^\mathcal{I}$, we have $a \in C^\mathcal{I}$ iff $\mathcal{I}, \rho[x \leftarrow a] \models t(C, x)$ where ρ is a first-order assignment.

2. Show that $\mathcal{I} \models K$ iff $\mathcal{I} \models t(K)$.

Exercise 4. (Model-checking in PTIME) Let \mathcal{I} be an interpretation with finite domain and C be an \mathcal{ALC} concept. Show that the algorithm seen in the lecture to compute $C^\mathcal{I}$ indeed runs in polynomial time.

Exercise 5. Let us consider an alternative notion of size for a concept, say $dsize(C) \overset{\text{def}}{=} \text{card}(\text{sub}(C))$ (“DAG size”).

1. Design a family of concepts $(C_n)_{n \geq 1}$ such that $dsize(C_n)$ is in $O(n)$ and $\text{size}(C_n)$ is in $O(2^n)$.

2. Show that the satisfiability problem for \mathcal{ALC} concepts when the size of C is measured with $dsize(C)$ can be solved in polynomial space too.