** Exercises related to previous sessions **

Exercise 1. Let $K = (T, A)$ be a knowledge base for ALC with role axioms, with $T = T_{GCI} \cup (T_{RA} \cup \{r \circ s \equiv s \circ r\})$. T_{GCI} is made of GCIs and T_{RA} is made of role axioms (whose except format is unspecified). Show that K is consistent iff $(T_{GCI} \cup (T_{RA} \cup T'_{RA}), A)$ is consistent with T'_{RA} equal to $\{r \circ s \sqsubseteq t, t \sqsubseteq r \circ s, s \circ r \sqsubseteq t, t \sqsubseteq s \circ r\}$ for some new role name t. To do so, use minimal assumptions about role axioms in T_{RA}.

Exercise 2. EL is a fragment of ALC in which the EL concept are defined from $C ::= \top | A | C \sqcap D | \exists r.C$. EL knowledge bases are defined as for ALC except that only EL concepts are allowed. Show that every EL knowledge base is consistent.

Exercise 3. (© Franz Baader 2017) Let $K = (T, A)$ be a knowledge base for ALC with concept names in NNF. A precompletion of K is defined as a clash-free $ABox A'$ obtained from A by applying all possible tableaux rules except the \exists-rule.

1. Prove that (T, A) is consistent iff there is a precompletion A' such that (T, A') is consistent.

2. Let X be an index set and $(I_i)_{i \in X}$ be a family of interpretations $I_i = (\Delta_{I_i}, \cdot_{I_i})$. The disjoint union $J = (\Delta^J, \cdot^J)$ is defined as follows.

 - $\Delta^J \overset{\text{def}}{=} \bigcup_{i \in X} \{i\} \times \Delta_{I_i}$.
 - $A^J \overset{\text{def}}{=} \bigcup_{i \in X} \{i\} \times A_{I_i}$.
 - $r^J \overset{\text{def}}{=} \bigcup_{i \in X} \{(i, a), (i, b)\} \mid (a, b) \in r_{I_i}$.
 - The interpretation of the individual names is arbitrary.

 (2.1) Show that for all $i \in X$, $a \in \Delta_{I_i}$ and ALC concepts C, we have $a \in C_{I_i}$ iff $(i, a) \in C^J$.
2.2 Given an \mathcal{ALC} TBox \mathcal{T}, assume that for all $i \in X$, we have $\mathcal{I}_i \models \mathcal{T}$. Conclude that $\mathcal{J} \models \mathcal{T}$.

3. Show that \mathcal{K} is consistent iff there is a precompletion $\mathcal{A'}$ such that for all individual names a occurring in \mathcal{A}, the concept $\bigcap_{a : C \in \mathcal{A}'}$ is satisfiable with respect to \mathcal{T}.

** Exercises related to today session**

Exercise 4. The set of formulae for QBF (“Quantified Boolean Formula”) is defined as follows

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists p \, \varphi \mid \forall p \, \varphi$$

Formulae are interpreted on valuations $v : \text{PROP} \to \{T, \bot\}$ with the following clauses

- $v \models \exists p \, \varphi \iff v[p \leftarrow \bot] \models \varphi \lor v[p \leftarrow T] \models \varphi$.
- $v \models \forall p \, \varphi \iff v[p \leftarrow \bot] \models \varphi \land v[p \leftarrow T] \models \varphi$.

A QBF formula φ is satisfiable \iff there is a valuation v such that $v \models \varphi$. For instance, $\forall p \, \forall q \, p \iff q$ is not QBF satisfiable whereas $\exists p \, \exists q \, p \iff q$ is QBF satisfiable. The satisfiability problem for QBF is known to be PSPACE-complete even for the restriction to the QBF formulae below

$$\forall p_{2n} \exists p_{2n-1} \cdots \exists p_2 \exists p_1 \varphi,$$

where φ is a (quantifier-free) propositional formula built over the propositional variables p_1, \ldots, p_{2n}.

Define a reduction from QBF satisfiability (for the restricted form) to \mathcal{ALC} concept satisfiability, possibly using (sub)concepts enforcing an exponential number of individuals in the interpretations (as seen previously). It is not requested to show the correctness of the reduction.

Exercise 5. In the correctness proof for the reduction from the $(\infty \times \infty)$-tiling problem to concept satisfiability of \mathcal{ALC} with local role value maps, show that for every $C \subseteq D \in \mathcal{T}$, we have $\mathcal{J} \models C \subseteq D$.
Exercise 6. Let T be an \mathcal{EL} TBox, C, D be \mathcal{EL} concepts and A, B be new concept names not occurring in T, C, D. Show the equivalence between the statements below:

1. $T \models C \subseteq D$,

2. $T \cup \{A \subseteq C, D \subseteq B\} \models A \subseteq B$.

Does the equivalence hold if we replace \mathcal{EL} by the more expressive description logic \mathcal{ALC}?