Exercise 1. Let us consider the CGS \mathcal{M} below with two agents.

Show that $\mathcal{M}, s_2 \models \langle\langle 1 \rangle \rangle (GF\ p \land GF\ q)$ and $\mathcal{M}, s_2 \not\models \langle\langle 2 \rangle \rangle (GF\ p \land GF\ q)$.

Exercise 2. Show that $\langle\langle \emptyset \rangle \rangle G(\psi \Rightarrow (\varphi \land \langle\langle A \rangle \rangle X\psi)) \Rightarrow \langle\langle \emptyset \rangle \rangle G(\psi \Rightarrow \langle\langle A \rangle \rangle G\varphi)$ is valid in ATL.

Exercise 3. Given a finite interpretation I, an individual $a \in \Delta_T$ and an ALC concept C, we have seen that checking whether $a \in C_T$ can be checked in polynomial time. Below, we aim at getting this result by using the decision procedure dedicated to the model-checking problem for ATL (written MC(Atl)), known to be in PTIME too. In this exercise, the role names are among r_1, \ldots, r_α, the concept names are among A_1, \ldots, A_β with fixed $\alpha, \beta \geq 1$. For the sake of simplicity, we exclude \top and \bot and the only concept constructors are restricted to \neg, \sqcap and $\exists r_\alpha$, unless otherwise stated. Similarly for ATL, we restrict ourselves to the propositional variables p_1, \ldots, p_β and q_1, \ldots, q_α.

Given an interpretation $I = (\Delta_T, \Delta)$ with finite domain Δ_T, we associate the finite CGS $\mathcal{M}_I = (\text{Agt}, S, Act, \text{act}, \delta, L)$ as follows:

- $\text{Agt} \overset{\text{def}}{=} \{1\}$, $S \overset{\text{def}}{=} \Delta_T \cup \{(a, b, i) | i \in [1, \alpha], a, b \in \Delta_T, (a, b) \in r_1^I\}$,

- $Act \overset{\text{def}}{=} \{(a, b, i) | i \in [1, \alpha], a, b \in \Delta_T, (a, b) \in r_1^I\} \cup \{\varepsilon\}$.

- For all $s \in S$ such that $s = (a, b, i)$, we have $\text{act}(1, s) \overset{\text{def}}{=} \{\varepsilon\}$.

- For all $s \in S$ such that $s = a \in \Delta_T$, we have $\text{act}(1, s) \overset{\text{def}}{=} \{(a, b, i) | i \in [1, \alpha], a, b \in \Delta_T, \text{ such that } (a, b) \in r_1^I\}$.

- As there is a unique agent, we can assume that δ is defined for a subset of $S \times Act (a, b \in \Delta_T, i \in [1, \alpha])$.

- $\delta(a, (a, b, i)) \overset{\text{def}}{=} (a, b, i); \delta((a, b, i), \varepsilon) \overset{\text{def}}{=} b$,

- for all other pairs in $S \times Act, \delta$ is undefined.

- For all $a \in S, L(a) \overset{\text{def}}{=} \{p_i | i \in [1, \beta], a \in A_1^T\};$ for all $(a, b, i) \in S, L((a, b, i)) \overset{\text{def}}{=} \{q_i\}$.

Here is the graphical representation of an interpretation I (left) and its associated CGS \mathcal{M}_I (right) for $\alpha = 2$ and $\beta = 1$.
1. Assume that the size of \mathcal{I} is defined as $\text{card}(\Delta^\mathcal{I}) \times \beta + \sum_{i=1}^\alpha \text{card}(r_i^\mathcal{I})$ (written $|\mathcal{I}|$) and the size of \mathcal{M}_I is defined as $\text{card}(S) \times \beta + \text{card}(S)^2 \times \text{card}(\text{Act})$ (written $|\mathcal{M}_I|$), show that $|\mathcal{M}_I|$ is polynomial in $|\mathcal{I}|$.

2. Let us define the translation map t from \mathcal{ALC} concepts to \mathcal{ATL} formulae:

- $t(A_i) \equiv p_i$; $t(\neg D) \equiv \neg t(D)$; $t(D_1 \cap D_2) \equiv t(D_1) \land t(D_2)$.
- $t(\exists r_i.D) \equiv \{\{1\}\}X (q_i \land \{\{1\}\}X t(D))$.

Show that for all $a \in \Delta^\mathcal{I}$ and for all \mathcal{ALC} concepts C, we have $a \in C^\mathcal{I}$ (in \mathcal{ALC}) iff $\mathcal{M}_I, a \models t(C)$ (in \mathcal{ATL}).

3. Using the known results about $\text{MC}(\mathcal{ATL})$, conclude that checking whether $a \in C^\mathcal{I}$ (for \mathcal{ALC}) can be done in PTIME.

1. Assume that the size of \mathcal{I} is defined as $\text{card}(\Delta^\mathcal{I}) \times \beta + \sum_{i=1}^\alpha \text{card}(r_i^\mathcal{I})$ (written $|\mathcal{I}|$) and the size of \mathcal{M}_I is defined as $\text{card}(S) \times \beta + \text{card}(S)^2 \times \text{card}(\text{Act})$ (written $|\mathcal{M}_I|$), show that $|\mathcal{M}_I|$ is polynomial in $|\mathcal{I}|$.

2. Let us define the translation map t from \mathcal{ALC} concepts to \mathcal{ATL} formulae:

- $t(A_i) \equiv p_i$; $t(\neg D) \equiv \neg t(D)$; $t(D_1 \cap D_2) \equiv t(D_1) \land t(D_2)$.
- $t(\exists r_i.D) \equiv \{\{1\}\}X (q_i \land \{\{1\}\}X t(D))$.

Show that for all $a \in \Delta^\mathcal{I}$ and for all \mathcal{ALC} concepts C, we have $a \in C^\mathcal{I}$ (in \mathcal{ALC}) iff $\mathcal{M}_I, a \models t(C)$ (in \mathcal{ATL}).

3. Using the known results about $\text{MC}(\mathcal{ATL})$, conclude that checking whether $a \in C^\mathcal{I}$ (for \mathcal{ALC}) can be done in PTIME.

1. Assume that the size of \mathcal{I} is defined as $\text{card}(\Delta^\mathcal{I}) \times \beta + \sum_{i=1}^\alpha \text{card}(r_i^\mathcal{I})$ (written $|\mathcal{I}|$) and the size of \mathcal{M}_I is defined as $\text{card}(S) \times \beta + \text{card}(S)^2 \times \text{card}(\text{Act})$ (written $|\mathcal{M}_I|$), show that $|\mathcal{M}_I|$ is polynomial in $|\mathcal{I}|$.

2. Let us define the translation map t from \mathcal{ALC} concepts to \mathcal{ATL} formulae:

- $t(A_i) \equiv p_i$; $t(\neg D) \equiv \neg t(D)$; $t(D_1 \cap D_2) \equiv t(D_1) \land t(D_2)$.
- $t(\exists r_i.D) \equiv \{\{1\}\}X (q_i \land \{\{1\}\}X t(D))$.

Show that for all $a \in \Delta^\mathcal{I}$ and for all \mathcal{ALC} concepts C, we have $a \in C^\mathcal{I}$ (in \mathcal{ALC}) iff $\mathcal{M}_I, a \models t(C)$ (in \mathcal{ATL}).

3. Using the known results about $\text{MC}(\mathcal{ATL})$, conclude that checking whether $a \in C^\mathcal{I}$ (for \mathcal{ALC}) can be done in PTIME.

1. Assume that the size of \mathcal{I} is defined as $\text{card}(\Delta^\mathcal{I}) \times \beta + \sum_{i=1}^\alpha \text{card}(r_i^\mathcal{I})$ (written $|\mathcal{I}|$) and the size of \mathcal{M}_I is defined as $\text{card}(S) \times \beta + \text{card}(S)^2 \times \text{card}(\text{Act})$ (written $|\mathcal{M}_I|$), show that $|\mathcal{M}_I|$ is polynomial in $|\mathcal{I}|$.

2. Let us define the translation map t from \mathcal{ALC} concepts to \mathcal{ATL} formulae:

- $t(A_i) \equiv p_i$; $t(\neg D) \equiv \neg t(D)$; $t(D_1 \cap D_2) \equiv t(D_1) \land t(D_2)$.
- $t(\exists r_i.D) \equiv \{\{1\}\}X (q_i \land \{\{1\}\}X t(D))$.

Show that for all $a \in \Delta^\mathcal{I}$ and for all \mathcal{ALC} concepts C, we have $a \in C^\mathcal{I}$ (in \mathcal{ALC}) iff $\mathcal{M}_I, a \models t(C)$ (in \mathcal{ATL}).

3. Using the known results about $\text{MC}(\mathcal{ATL})$, conclude that checking whether $a \in C^\mathcal{I}$ (for \mathcal{ALC}) can be done in PTIME.
