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Plan of the lecture

I Previous lecture:
I The Presburger sets and the semilinear sets coincide.

I Application: Parikh image of regular languages.

I Introduction to reversal-bounded counter machines.

I Runs in normal form.

I Reachability sets are computable Presburger sets.

I Decidable and undecidable extensions.

I Repeated reachability problems.



The previous lecture in 4 slides (1/4)
I A linear set X is defined by a basis b ∈ Nd and by

P = {p1, . . . ,pm} ⊆ Nd :

X = {b +
m∑

i=1

λipi : λ1, . . . , λm ∈ N}

I Semilinear sets are finite unions of linear sets.

I Semilinear sets and Presburger sets coincide.

I {n2 | n ∈ N} and {2n | n ∈ N} are not Presburger sets.

I Simple vector addition systems with states (VASS) have
reachability sets that are not Presburger sets.



The previous lecture in 4 slides (2/4)

I Parikh image of a b a a b is
(

3
2

)
.

I L ⊆ Σ∗ is bounded and regular iff it is a finite union of
languages of the form

u0v∗1 u1 · · · v∗k uk

I The Parikh images of bounded and regular languages are
Presburger sets.

I For every regular language L, there is a bounded and
regular language L′ such that

1. L′ ⊆ L,

2. Π(L′) = Π(L).



The previous lecture in 4 slides (3/4)

q1

q2

q3

x-- x = 0?

x++

x--

〈q1,0〉 〈q1,1〉 〈q1,2〉 〈q1,3〉 〈q1,4〉

〈q2,0〉 〈q2,1〉 〈q2,2〉 〈q2,3〉

〈q3,0〉

I Reversal: Alternation from nonincreasing mode to
nondecreasing mode and vice-versa.

I A run is r -reversal-bounded whenever the number of
reversals of each counter is less or equal to r .



The previous lecture in 4 slides (4/4)

I Notion of extended path for which no reversal occurs and
satisfaction of the guards remains constant.

π0 S1 π1 · · · Sα πα

I Runs in normal form.

I I.e., any finite r -reversal-bounded run can be generated by
a small sequence of small such extended paths.



Guards and intervals
I Transition labelled by 〈g,a〉 with a ∈ Zd and g is a guard:

g ::= > | ⊥ | x ∼ k | g ∧ g | g ∨ g | ¬g

where ∼∈ {≤,≥,=} and k ∈ N.

I Linear ordering on I (for non-empty intervals):

[k1, k1] ≤ [k1+1, k2−1] ≤ [k2, k2] ≤ [k2+1, k3−1] ≤ [k2, k2] ≤ . . .

. . . ≤ [kK , kK ] ≤ [kK + 1,+∞)}

I Interval map im : C → I and symbolic satisfaction relation
im ` g.

I Guarded mode gmd = 〈im,md〉 where im is an interval map
and md ∈ {INC,DEC}d .



Small extended path compatible with gmd

I Extended path P:

π0 S1 π1 · · · Sα πα

I Small extended path:
1. π0 and πα have at most 2× card(Q) transitions,
2. π1, . . . , πα−1 have at most card(Q) transitions,
3. for each q ∈ Q, there is at most one set S containing simple

loops on q.

I For every transition t = q
〈g,a〉−−→ q′:

1. im ` g,
2. for every i ∈ [1,d ],

I md(i) = INC implies a(i) ≥ 0,
I md(i) = DEC implies a(i) ≤ 0.



Normal forms

I r -reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉.

I ρ can be divided as a sequence ρ = ρ1 · ρ2 · · · ρL′ such that
I each ρi respects a small extended path Pi compatible with

some guarded mode gmdi .

I L′ ≤ ((d × r) + 1)× 2Kd .



Reachability Sets are Presburger Sets



I Small extended path P compatible with gmd = 〈im,md〉

π0 {sl11 , . . . , sln1
1 } π1 · · · {sl1α, . . . , slnαα } πα

where q0 is the first control state in π0 and qf is the last
control state in πα (= π′α · t).

I There is ϕ(x, y) of exponential size in |M| such that

JϕK = {〈x0,y〉 : there is a run 〈q0,x0〉
∗−→ 〈qf ,y〉 respecting P}

I ϕ states the following properties:
1. x0 belong to the right intervals induced by im,

2. the counter values for the penultimate configuration 〈q′f ,y′〉
belong to the right intervals induced by im,

3. the values for ȳ are obtained from x̄ by considering the
effects of the paths πi plus a finite amount of times the
effects of each simple loop occurring in P.



Arghhhh !!!!!

∃ z1
1, . . . , z

n1
1 , . . . , z

1
α, . . . , z

nα
α

(z1
1 ≥ 1) ∧ · · · ∧ (zn1

1 ≥ 1) ∧ · · · ∧ (z1
α ≥ 1) ∧ · · · ∧ (znα

α ≥ 1)∧

(ȳ = x̄ + ef(π0) + · · ·+ ef(πα) +
∑
i,j

zj
ief(sl ji ))∧

(
∧

im`xc∼k

xc ∼ k) ∧ (
∧

not im`xc∼k

¬(xc ∼ k))∧

(
∧

j∈[1,d ]

(xj ∈ im(xj ) ∧ (yj ∈ im(xj )))∧

(
∧

im`xc∼k

(xc+ef(π0)(c)+· · ·+ef(πα−1)(c)+ef(π′α)(c)+
∑
i,j

zj
ief(sl ji )(c)) ∼ k)∧

(
∧

not im`xc∼k

¬(xc+ef(π0)(c)+· · ·+ef(πα−1)(c)+ef(π′α)(c)+
∑
i,j

zj
ief(sl ji )(c) ∼ k))

‘zj ∈ [l , l ′]’ stands for l ≤ zj ∧ zj ≤ l ′ and zj ∈ [kK + 1,+∞)
stands for kK + 1 ≤ zj .



One more step

I Sequence of small extended paths P1 · · ·PL′ .

I There is ϕ(x̄, ȳ) such that

JϕK = {〈x,y〉 : there is a run 〈q0,x〉
∗−→ 〈qf ,y〉 respecting P1 · · ·PL′}

I ϕi(x̄, ȳ) for each Pi .

∃ z̄0, . . . , z̄L′ (x̄ = z̄0) ∧ (ȳ = z̄L′)∧

ϕ1(z̄0, z̄1) ∧ ϕ2(z̄1, z̄2) ∧ · · · ϕL′−1( ¯zL′−2, ¯zL′−1) ∧ ϕL′( ¯zL′−1, z̄L′).



I r -reversal-bounded 〈M, 〈q,x〉〉 that is for some r ≥ 0.

I For each q′ ∈ Q, the set

{y ∈ Nd : 〈q,x〉 ∗−→ 〈q′,y〉}

is a computable Presburger set.

I Formula ϕ(ȳ):

∃ x (
∧

i∈[1,d ]

x(i) = xi) ∧
∨

small seq. σ=P1···PL′ ending by q′

ϕσ(x̄, ȳ)

I Assuming thatM is uniformly r -reversal-bounded for some
r ≥ 0. For all q, q′, one can compute ϕ(x̄, ȳ) such that

JϕK = {〈x,y〉 ∈ N2d : 〈q,x〉 ∗−→ 〈q′,y〉}



Time to reap the rewards!
I Reachability problem with bounded number of reversals.

Input: a CMM, r ∈ N, 〈q0,x0〉 and 〈qf ,xf 〉.

Question: Is there a run from 〈q0,x0〉 to 〈qf ,xf 〉 such that
each counter has at most r reversals?

I When 〈M, 〈q0,x0〉〉 is r ′-reversal-bounded for some r ′ ≤ r ,
we get an instance of the reachability problem with initial
configuration 〈q0,x0〉.

I The reachability problem with bounded number of
reversals is decidable.

I Next, a proof that abstracts away from small sequences of
small extended paths (but still these are implicitly used).



Proof (1/3)

I M = 〈Q,T ,C〉, r ∈ N, 〈q0,x0〉 and 〈qf ,xf 〉.

I M′ = 〈Q′,T ′,C〉 with

Q′ = Q × {DEC, INC}d × [0, r ]d

I New control states record the type of phase and the
current number of reversals (with a bound on r ).

I By construction, 〈M′, 〈〈q0, INC,0〉,x0〉〉 is
r -reversal-bounded.



Proof (2/3)
I 〈q,md, ]alt〉 〈g,a〉−−→ 〈q′,md′, ]alt′〉 ∈ T ′ def⇔ q

〈g,a〉−−→ q′ ∈ T and

a md(i) md′(i) ]alt′(i)
a(i) < 0 DEC DEC ]alt(i)
a(i) < 0 INC DEC ]alt(i) + 1 and ]alt(i) < r
a(i) > 0 INC INC ]alt(i)
a(i) > 0 DEC INC ]alt(i) + 1 and ]alt(i) < r
a(i) = 0 DEC DEC ]alt(i)
a(i) = 0 INC INC ]alt(i)

I Equivalence between:
I there is a run ofM from 〈q0,x0〉 to 〈qf ,xf 〉 such that each

counter has at most r reversals,

I 〈〈qf ,md, ]alt〉,xf 〉 is reachable from 〈〈q0, INC,0〉,x0〉 inM′
for some md, ]alt.



Proof (3/3)
I The number of distinct pairs 〈md, ]alt〉 is bounded by

2d × (r + 1)d .

I We have seen that

X〈md,]alt〉 = {x′ ∈ Nd : 〈〈q0, INC,0〉,x0〉
∗−→ 〈〈qf ,md, ]alt〉,x′〉}

is a computable Presburger set.

I x ∈ X〈md,]alt〉 amounts to check the satisfiability status of

(
d∧

i=1

xi = x(i)) ∧ ϕ〈md,]alt〉.

I It amounts to checking satisfiability of a a disjunctive
formula with at most 2d (r + 1)d disjuncts.



Complexity

I The reachability problem with bounded number of reversals
is NP-complete, assuming that all the natural numbers are
encoded in binary except the number of reversals.

I The problem is NEXPTIME-complete assuming that all the
natural numbers are encoded in binary.

[Gurari & Ibarra, ICALP’81; Howell & Rosier, JCSS 87]

I NEXPTIME-hardness as a consequence of the standard
simulation of Turing machines. [Minsky, 67]



Doubly-exponential number of times loops are visited

I If 〈q0,x0〉
∗−→ 〈qf ,xf 〉 is r -reversal-bounded, then there is an

r -reversal-bounded run between these configurations

1. respecting a small sequence of small extended paths,

2. each simple loop is visited at most a doubly-exponential
number of times in log(r) + |x0|+ |xf |+ |M|.

I We only need to prove the constraints on the number of
times the loops are visited.

I So, there is an r -reversal-bounded run ρ′ that respects a
small sequence of small extended paths P1 · · ·PL′ .



Back to quantifier-free formulae

I Formula ϕ(x̄, ȳ) for that sequence is equivalent to an
existential formula of exponential size in log(r) + |M|.

(
∧

j∈[1,d ]

(xj = x0(j) ∧ yj = xf (j)) ∧ ϕ(x̄, ȳ)

I We get the doubly-exponential bound thanks to:
I ϕ quantifier-free formula with variables x1, . . . , xn is

satisfiable iff there is a valuation

v : {x1, . . . , xn} → [0,2p(|ϕ|)] such that v |= ϕ

p(·) is a polynomial independent of ϕ and x1, . . . , xn.

(see the lecture on Presburger arithmetic on Oct. 9th)



EXPSPACE upper bound

I NEXPTIME⊆ EXPSPACE.

I A small sequence of small extended paths has at most
((d × r) + 1)× 2Kd extended paths.

I Each extended path has at most card(T )card(Q) simple
loops and at most card(Q)(3 + card(Q)) transitions, that
do not occur in simple loops

I A nondeterministic exponential space algorithm can guess
such a run.



Nondeterministic algorithm with bound B

I Algorithm forM = 〈Q,T ,C〉, r ∈ N, 〈q0,x0〉 and 〈qf ,xf 〉.

1. i := 0; xc := x0; qc := q0 (current configuration);

2. While (x′ 6= xf or qc 6= qf ) and i < B do

2.1 Guess a transition 〈q, 〈g, a〉, q′〉 ∈ T ;
(nondeterministic step !)

2.2 If q 6= qc or xc does not satisfy g or xc + a 6∈ Nd then abort;

2.3 i := i + 1; xc := xc + a; qc := q′;

3. If 〈xc ,qc〉 6= 〈qf ,xf 〉 then abort else accept;

+ need to counter the number of reversals per counter.



Why in EXPSPACE?
I A counter with an exponential amount of bits can count

until a doubly-exponential value.

I Only two configurations need to be stored thanks to
nondeterminism.

I Comparing or adding two natural numbers requires
logarithmic space only.

I Taking an exponential amount of loops and
doubly-exponential amount of times, is still of
doubly-exponential magnitude.

I [Savitch, JCSS 70]: a nondeterministic procedure for a given
problem using space f(N) ≥ log(N) can be turned into a
deterministic procedure using f(N)× f(N) space.

I Exponential functions are closed under multiplication.



NEXPTIME upper bound
I InstanceM, r , 〈q0,x0〉 and 〈qf ,xf 〉 of size N.

I r -reversal-bounded run from 〈q0,x0〉 to 〈qf ,xf 〉 with
I a sequence of small extended paths of length at most

((d × r) + 1)× 2Kd

I each extended path has at most card(T )card(Q) simple loops
and at most 1 + card(Q) paths of length at most
3× card(Q),

I Algorithm guesses on-the-fly the small sequence and
computes the effects of taking loops a doubly-exponential
number of times, or of taking non-loop paths.

I All the computations can be performed in exponential time
(but the values involved in the computations can be of
doubly-exponential magnitude).



〈q0,x0〉
π1−→ 〈q1,x1〉

γ2 times sl2−−−−−−→ 〈q2,x2〉
γ3 times sl3−−−−−−→ 〈q3,x3〉 . . .

πα−→ 〈qα,xα〉

I γi ≤ 22p′(N)
.

I Number of paths of length at most 3× card(Q) or the
number of simple loops visited is bounded by:

G = ((d × r) + 1)× 2Kd × (card(T )card(Q) + card(Q) + 1)

I α ≤ G.



Algorithm
1. 〈qcur,xcur〉 := 〈q0,x0〉; Guess α ≤ G; β := 1;

2. While β ≤ α do
2.1 Guess either a path π of length at most 3× card(Q) or, a

simple loop sl and a guarded mode gmd = 〈im,md〉 and γ
of double exponential value in N such that sl is compatible
with gmd;

2.2 If a simple loop is guessed in (a), then check that xcur and
xcur + (γ − 1)ef(sl) + sl\last are in the right intervals: for
every i ∈ [1,d ], xcur(i) and

(xcur + (γ − 1)ef(sl) + ef(sl\last))(i)

belong to im(xi ).
2.3 If a path π is guessed in (a), then check that the sequence

of transitions in π can be fired from 〈qcur,xcur〉 and set
〈qcur,xcur〉 := 〈qcur,xcur〉+ ef(π).

2.4 β++;

3. Return (〈qcur,xcur〉 = 〈qf ,xf 〉).

+ need to counter the number of reversals per counter.



NEXPTIME-hardness

I Nondeterministic Turing machine M = 〈Q,q0,Σ, δ,qa〉:
I Q: set of control states.

I q0: initial state; qa: accepting state.

I Σ: tape symbols (including a blank symbol or an end
symbol).

I Transition relation δ : Q × Σ→ P(Q ×
moves︷ ︸︸ ︷

{−1,0,1}×Σ).

I We can assume that the Turing machine starts with an
“empty” tape.



Simulating a Turing machine (ideas only)

I A Turing machine can be simulated by two stacks (the tape
is cut in half).

I E.g., moving the head left or right is equivalent to popping a
bit from one stack and pushing it onto the other

I A stack over a binary alphabet can be simulated by two
counters. One counter contains the binary representation
of the bits on the stack.

I E.g., pushing a one is equivalent to doubling and adding 1,
assuming that in the binary representation the least
significant bit is on the top.

I Each step in the Turing machine is simulated by an
exponential amount of steps in the counter machines.



Two or Three Extensions



Adding equality constraints

I Guards so far:

g ::= > | ⊥ | x ∼ k | g ∧ g | g ∨ g | ¬g

where ∼∈ {≤,≥,=} and k ∈ N.

I Adding equalities x = x′ and inequalities x 6= x′.

I Updates are still equal to a ∈ Zd .



Deterministic Minsky machines

I A counter stores a single natural number.

I A Minsky machine can be viewed as a finite-state machine
with two counters.

I Operations on counters:
I Check whether the counter is zero.

I Increment the counter by one.

I Decrement the counter by one if nonzero.



2-counter Minsky machines

I Set of n instructions.

I The l th instruction has one of the forms below (i ∈ {1,2},
l ′ ∈ {1, . . . ,n}):

l: xi := xi + 1; goto l ′

l: if xi = 0 then goto l ′ else xi := xi − 1; goto l ′′

n: halt

I Configurations are elements of [1,n]× N× N.

I Initial configuration: 〈1,0,0〉.



Computations

I A computation is a sequence of configurations starting
from the initial configuration and such that two successive
configurations respect the instructions.

I The Minsky machine
1: x1 := x1 + 1; goto 2
2: x2 := x2 + 1; goto 1
3: halt

has unique computation

〈1,0,0〉 −→ 〈2,1,0〉 −→ 〈1,1,1〉 −→ 〈2,2,1〉 −→ 〈1,2,2〉 −→ 〈2,3,2〉 . . .



Halting problem

I Halting problem:
input: a 2-counter Minsky machineM;

question: is there a finite computation that ends with
location equal to n?

(n is understood as a special instruction that halts the
machine)

I Theorem: The halting problem is undecidable. [Minsky,67]

I Minsky machines are Turing-complete.



Undecidability

I Minsky machineM with n instructions and 2 counters.

I Each counter x inM is given two counters xinc and xdec .

I Zero-test on x is simulated by the guard xinc = xdec .

I A decrement on x first check that xinc 6= xdec and then
increment xdec .

I M can be simulated by a 0-reversal-bounded counter
machine with four counters.

I M halts iff the set of counter values for reaching the state
n in the 0-reversal-bounded counter machine is not empty.



Safely enriching the set of guards

I Atomic formulae in guards are of the form t ≤ k or t ≥ k
with k ∈ Z and t is of the form

∑
i aixi with the ai ’s in Z.

I T: a finite set of terms including {x1, . . . , xd}.

I A run is r -T-reversal-bounded def⇔ the number of reversals
of each term in T ≤ r times.

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦



Reversal-boundedness leads to semilinearity
I Given a counter machineM, TM

def
= the set of terms t

occurring in t ∼ k with ∼∈ {≤,≥} + counters in
{x1, . . . , xd}.

I 〈M, 〈q0,x0〉〉 is reversal-bounded def⇔ there is r ≥ 0 such
that every run from 〈q0,x0〉 is r -TM-reversal-bounded.

I When T = {x1, . . . , xd}, T-reversal-boundedness is
equivalent to reversal-boundedness from [Ibarra, JACM 78].

I Given a counter machineM, r ≥ 0 and q,q′ ∈ Q, one can
effectively compute a Presburger formula ϕq,q′(x, y) such
that for all v, propositions below are equivalent:

I v |= ϕq,q′(x, y),
I there is an r -TM-reversal-bounded run from
〈q, 〈v(x1), . . . , v(xd )〉〉 to 〈q′, 〈v(y1), . . . , v(yd )〉〉.

[Ibarra, JACM 78; Demri & Bersani, FROCOS’11]



Weak reversal-boundedness

I Reversals are recorded only above a bound B:

◦

B

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

I Effective semilinearity of the reachability sets.
[Finkel & Sangnier, MFCS’08]



Formal definition
I Counter machineM = 〈Q,T ,C〉 and bound B ∈ N.

I From ρ = 〈q0,x0〉
t1−→ 〈q1,x1〉, . . ., we defined a sequence of

mode vectors md0,md1, . . . with each mdi ∈ {INC,DEC}d .

I Set of positions RevB
i :

{j ∈ [0, |ρ| − 1] : mdj(i) 6= mdj+1(i), {xj(i),xj+1(i)} 6⊆ [0,B]}

I 〈M, 〈q,x〉〉 is r -reversal-B-bounded def⇔ for every finite run
ρ starting at 〈q,x〉, card(RevB

i ) ≤ r for every i ∈ [1,d ].

I 〈M, 〈q,x〉〉 is weakly reversal-bounded def⇔ there are
r ,B ≥ 0 such that 〈M, 〈q,x〉〉 is r -reversal-B-bounded.

I r -reversal-boundedness = r -reversal-0-boundedness.



Reachability sets are Presburger sets too!

I r -reversal-B-bounded counter machine 〈M, 〈q,x〉〉.

I For each q′ ∈ Q,

{y ∈ Nd : 〈q,x〉 ∗−→ 〈q′,y〉}

is a computable Presburger set.

I This extends the results for r -reversal-boundedness.

I . . . but the proof uses simply those results.



Proof (1/10)

I M = 〈Q,T ,C〉 and r ,B ≥ 0.

I W.l.o.g.,
I B ≥ k for any atomic guard x ∼ k ,

I B ≥ | a(i) | for any update a.

I r -reversal-B-boundedness→ r -reversal-B′-boundedness
(when B′ ≥ B)

I Counter machineM′ = 〈Q′,T ′,C〉 with Q′ = Q × [0,B]d .

I InM′, we encode in the control states the fact that a
counter value is below B.



The general principle (2/10)

I 〈q,v,x〉 forM′ with v(i) = α < B, we require x(i) = 0.

I The intended counter value for xi fromM is precisely α.

I Updating the counters below B does not create any
reversal (the counter values remains equal to zero).

I 〈q,v,x〉 with v(i) = B, x(i) can take any value.

I The intended counter value for xi fromM is precisely
B + x(i).

I Let us implement that principle for transitions in T .



The map f between configurations (3/10)

f : (Q × Nd )→ ((Q × [0,B]d )× Nd )

f(〈q,x〉) def
= 〈〈q′,v〉,x′〉 with

1. q = q′,

2. for every i ∈ [1,d ],

I if x(i) < B then v(i) def
= x(i) and x′(i) def

= 0,
I otherwise x′(i) def

= x(i)−B and v(i) def
= B.

(so x′ + v = x)

I With B = 3, f(〈q,7〉) = 〈q,3,4〉 and f(〈q,2〉) = 〈q,2,0〉.

I f−1(〈〈q′,v〉,x′〉) defined if (x′(i) > 0 implies v(i) = B).



Working on the guards (4/10)

I Guard g inM and v ∈ [0,B]d .

I [g]v inM′ is defined as:
I [xi ∼ k ]v

def
= v(i) ∼ k ,

I [·]v is homomorphic for Boolean connectives.

I [g]v is equivalent either to > or to ⊥.

I It is easy to determine whether [g]v is equivalent to >.



The property on guards (5/10)

I f(〈q,x〉) = 〈〈q′,v〉,x′〉.

I For all guards g inM,
we have x |= g iff [g]v is equivalent to >.

(v is the truncation of x w.r.t. B)

I We use that B ≥ k for any atomic guard x ∼ k .



Transitions (6/10)
I For each q

〈g,a〉−−→ q′ in T , we consider all

〈q,v〉 〈g
′,a′〉−−−→ 〈q′,v′〉

with g′ def
= [g]v ∧ . . . and for all i ∈ [1,d ]:

I v(i) < B and v(i) + a(i) < B:

v′(i) def
= v(i) + a(i) and a′(i) def

= 0

I v(i) < B and v(i) + a(i) ≥ B:

v′(i) def
= B and a′(i) def

= v(i) + a(i)−B



Transitions (7/10)

I v(i) = B and a(i) ≥ 0:

v′(i) def
= B and a′(i) def

= a(i)

I v(i) = B and a(i) < 0:
(the value for xi is ≥ −a(i))

v′(i) def
= B and a′(i) def

= a(i)

I These two cases can be merged !!



Transitions (8/10)

I Remaining case: a counter is decremented inM from a
value above the bound B to a value below the bound B.

I v(i) = B and a(i) < 0:
(the value for xi equal to α in [0,−a(i)− 1])

v′(i) def
= B +

<0︷ ︸︸ ︷
α + a(i)︸ ︷︷ ︸
∈[0,B]

and a′(i) def
= −α

I We add the conjunct xi = α to the guard [g]v (or to its
extensions).

I We use the assumption that −a(i) ≤ B.



Time to wrap-up (9/10)
I 〈M, 〈q,x〉〉 is weakly reversal-bounded with respect to r

and B iff 〈M′, f(〈q,x〉)〉 is r -reversal-bounded.

I For every run inM′

〈〈q0,v0〉,y0〉 −→ · · · −→ 〈〈qn,vn〉,yn〉

with f(〈q,x〉) = 〈〈q0,v0〉,y0〉,

f−1(〈〈q0,v0〉,y0〉) −→ · · · −→ f−1(〈〈qn,vn〉,yn〉)

is a run inM.

I For every q′ ∈ Q, {y ∈ Nd : 〈q,x〉 ∗−→ 〈q′,y〉} is equal to⋃
v∈[0,B]d

{π2(f−1(〈〈q′,v〉,x′〉)) : f(〈q,x〉) ∗−→ 〈〈q′,v〉,x′〉}



Presburger set {y ∈ Nd : 〈q,x〉 ∗−→ 〈q′,y〉} (10/10)

I 〈M′, f(〈q,x〉)〉 is r -reversal-bounded.

I For every v, there is ϕv(y1, . . . , yd ) such that

JϕvK = {y ∈ Nd : f(〈q,x〉) ∗−→ 〈〈q′,v〉,y〉}

I {y ∈ Nd : 〈q,x〉 ∗−→ 〈q′,y〉} characterised by ϕ(z1, . . . , zd )∨
v

∃ y1, . . . , yd (ϕv(y1, . . . , yd ) ∧

∧
i∈[1,d ]

((v(i) = B⇒ zi = yi + B) ∧ (v(i) < B⇒ zi = v(i))))



The Reversal-Boundedness Detection Problem



The reversal-boundedness detection problem

I The reversal-boundedness detection problem:

Input: Counter machineM of dimension d ,
configuration 〈M, 〈q0,x0〉〉 and i ∈ [1,d ].

Question: Is 〈M, 〈q0,x0〉〉 reversal-bounded with respect
to the counter xi?

I Undecidability due to [Ibarra, JACM 78].

I Restriction to VASS is decidable [Finkel & Sangnier, MFCS’08].



Undecidability proof

I Minsky machineM with halting state qH (2 counters).

I EitherM has a unique infinite run (and never visits qH ) or
M has a finite run (and halts at qH ).

I Counter machineM′: replace t = qi
ϕ−→ qj by

qi
++x1−−→ qnew

1,t
--x1−−→ qnew

2,t
ϕ−→ qj

I We have the following equivalences:
I M halts.
I ForM′, qH is reached from 〈q0,0〉.
I Unique run ofM′ starting by 〈q0,0〉 is finite.
I M′ is reversal-bounded from 〈q0,0〉.



EXPSPACE-hardness of VASS decision problems

I Covering and boundedness problems are
EXPSPACE-complete [Lipton, TR 76; Rackoff, TCS 78].

I Control state reachability is EXPSPACE-complete too.

I Reachability problem for VAS is decidable
[Mayr, STOC 81; Kosaraju, STOC 82; Reutenauer, 89]

See also [Leroux, LICS 09]
I No primitive recursive algorithm is known.
I EXPSPACE-hardness [Lipton, TR 76].

I Checking whether two VASS produce the same set of
configurations is undecidable [Hack, TCS 76].



EXPSPACE-hardness

I Reduction from the control state reachability problem for
VASS.

I Instance: M = 〈Q,T ,C〉, 〈q0,x0〉 and qf .

I We build the VASSM′ = 〈Q′,T ′,C ∪ {xd+1}〉 and 〈q′0,x′0〉
such that

〈q0,x0〉
∗−→ 〈qf ,xf 〉 for some xf ∈ Nd

iff
〈M′, 〈q′0,x′0〉〉 is not reversal-bounded with respect to xd+1.

I EXPSPACE-hardness and coEXPSPACE= EXPSPACE imply
that the reversal-boundedness detection problem restricted
to VASS is EXPSPACE-hard too.



Definition ofM′ = 〈Q′,T ′,C ∪ {xd+1}〉
I T ′ contains all the transitions of T , but with no update on
xd+1.

I Two new transitions:

qf
xd+1++−−−→ qf and qf

xd+1--−−−→ qf

I q′0
def
= q0.

I x′0 equal to x0 on the d first counters and x′0(d + 1)
def
= 0.

〈q0,x0〉
∗−→ 〈qf ,xf 〉 for some xf ∈ Nd

iff
〈M′, 〈q′0,x′0〉〉 is not reversal-bounded with respect to xd+1.



EXPSPACE upper bound

I EXPSPACE upper bound by reduction into the
place-boundedness problem for VASS. [Demri, JCSS 13]

I Place boundedness problem for VASS:

Input: A VASSM = 〈Q,T ,C〉, 〈q0,x0〉 and xj ∈ C.

Question: Is there a bound B ∈ N such that
〈q0,x0〉

∗−→ 〈q′,x′〉 implies x′(j) ≤ B?

I Proof idea: add a new counter that counts the number of
reversals for the distinguished counter xj .



EXPSPACE upper bound

I Instance: M = 〈Q,T ,C〉, 〈q0,x0〉 and xj ∈ C.

I M′ = 〈Q′,T ′,C ∪ {xd+1}〉 with Q′ = Q × {DEC, INC}.

I InM′, the number of reversals for xj is recorded in xd+1.

I 〈M, 〈q0,x0〉〉 is reversal-bounded with respect to xj iff
〈M′, 〈q′0,x′0〉〉 is bounded with respect to xd+1.

I q′0
def
= 〈q0, INC〉.

I x′0 restricted to the d first counters is x0 and x′0(d + 1)
def
= 0.



Decidable Repeated Reachability Problems



The problems
I Control state repeated reachability problem with bounded

number of reversals:
Input: CMM, 〈q0,x0〉, r ≥ 0, state qf .

Question: is there an infinite r -reversal-bounded run
starting from 〈q0,x0〉 such that qf is repeated
infinitely often?

I Control state reachability reachability problem with
bounded number of reversals:

Input: CMM, 〈q0,x0〉, r ≥ 0, state qf .
Question: is there a finite r -reversal-bounded run

starting from 〈q0,x0〉 such that qf is reached?

I Control state reachability reachability problem with
bounded number of reversals is decidable.

I Control state repeated reachability problem with bounded
number of reversals is decidable. (proof follows).

[Dang & Ibarra & San Pietro, FSTTCS’01]



A variant

I ∃-Presburger infinitely often problem:
Input: Initialized CM 〈M, 〈q,x〉〉 that is

r -reversal-bounded and ψ = GFϕ(x1, . . . , xd )
where ϕ is a Presburger formula on counters.

Question: Is there an infinite run from 〈q,x〉 satisfying ψ?

I ∃-Presburger infinitely often problem is decidable.
[Dang & San Pietro & Kemmerer, TCS 03]



Idea of the proof
(for control state repeated reachability problem)

I Initialized CM 〈M, 〈q0,x0〉〉, qf ∈ Q and r ≥ 0.

I Reduction to an instance of the control state reachability
problem with a bounded number of reversals (decidable).

I kmax ∈ N: maximal constant k occurring in an atomic guard
of the form x ∼ k .

I Property (?): there is an r -reversal-bounded infinite run
from 〈q0,x0〉 such that qf is repeated infinitely often.

I We reduce (?) to a reachability question for a new
reversal-bounded counter machineM′.



Property (??)
There exist an r -reversal-bounded run

ρ = 〈q0,x0〉
t1−→ 〈q1,x1〉 · · ·

t`−→ 〈q`,x`〉

`′ ∈ [0, `− 1] and C= ⊆ C such that

(a) q` = q`′ = qf ,

(b) for all xi ∈ C= and j ∈ [`′ + 1, `], xj−1(i) = xj(i),

(c) for all xi ∈ (C r C=) and j ∈ [`′ + 1, `], xj−1(i) ≤ xj(i),

(d) for all xi ∈ (C r C=), we have kmax < xl ′(i),

(e) for all xi ∈ C=, have x`′(i) ≤ kmax .



Equivalence

I By showing (?) and (??) are equivalent, we can then
reduce control state repeated reachability to control state
reachability.

I Checking (??) amounts to introduce 2d copies ofM, one
for each subset of C.

I Proof in two steps:

1. Equivalence between (?) and (??).

2. (??) reduces to an instance of control state reachability with
a bounded number of reversals.



(?) implies (??)

I Infinite r -reversal-bounded run

ρ = 〈q0,x0〉
t1−→ 〈q1,x1〉

t2−→ 〈q2,x2〉 · · ·

such that qf is repeated infinitely often.

I Cρ
= ⊆ C: counters whose values are less or equal to kmax ,

apart from a finite prefix.

I Since ρ is r -reversal-bounded, there exists I ≥ 0 such that
for some n ≥ I, no counters in C r Cρ

= is decremented and
their values are strictly greater than kmax .

I Since qf is repeated infinitely often, there are I ≤ `′ < `
such that q` = q`′ = qf and (b)-(e) hold.



(??) implies (?)
I r -reversal-bounded run

ρ = 〈q0,x0〉
t1−→ 〈q1,x1〉 · · ·

t`−→ 〈q`,x`〉,

`′ ∈ [0, `− 1] and C= ⊆ C witnessing the satisfaction of
(??).

I ω-sequence of transitions

t1 · · · t`′(t`′+1 · · · t`)ω

allows us to define an infinite r -reversal-bounded run ρ′

that extends ρ.

I qf is repeated infinitely often.

I Guards on transitions are satisfied by the counter values.

I Indeed, the conditions (c),(d) and (e) and the values for
counters in (C r C=) are non-negative thanks to (c) and
(d).



Reduction to a reachability question

I Reversal-boundedM′ = 〈Q′,T ′,C〉 such that (??) iff there
is a r -reversal-bounded run from 〈q0,x0〉 that reaches
qnew .

I M′ =M] 2d “copies” ofM.
(one copy per subset of {x1, . . . ,xd}.)

I C=-copy ofM:
I no transition in the C=-copy modifies x in C=,

I no transition in the C=-copy decrements x in (C r C=).

I Control states are pairs in Q × {C=}.



Principles for constructingM′

I To simulate 〈q`′ ,x`′〉 · · · 〈q`,x`〉 for the satisfaction of (??) in
M, we nondeterministically move from the original copy to
some C=-copy inM′.

I For every C=, we consider inM′ a transition from qf to
〈qf ,C=〉 that checks:

1. all counters in C= have values ≤ kmax ,
2. all counters in (C r C=) have values > kmax .

(
∧

x∈(CrC=)

x ≥ (kmax + 1)) ∧ (
∧
x∈C=

x ≤ kmax )

(and the transition has no effect)

I As soon as in the C=-copy, we reach again a control state
whose first component is qf , we may jump to the final
control state qnew .

I InM′, it is sufficient to look for a r -reversal-bounded run.
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Exercise (1/5)

I Goal: Show decidability of the problem:

Input: 〈M, 〈q,x〉〉 and semilinear set X ⊆ Nd defined
by 〈b1,P1〉, . . . , 〈bα,Pα〉.

Question: Is there an infinite r -reversal-bounded run
from 〈q,x〉 such that infinitely often the
counter values are in X?

A) Show that we can restrict ourselves to α = 1 and infinitely
often the counter values belong to the linear set 〈b1,P1〉
and simulaneously the location is some fixed q′.



Exercise (2/5)

B) Linear set X characterised by b and p1, . . . , pN .
Let x1,x2, . . . be an infinite sequence of elements in X .
Show that there are `′ < ` and a,c ∈ NN such that

(I) x`′ � x`,

(II) x`′ = b +
∑

k∈[1,N]

a(k)pk ,

(III) x` = b +
∑

k∈[1,N]

c(k)pk ,

(IV) a � c.

C) Design a 0-reversal-bounded counter machine with d
counters such that for some state q0,qf ∈ Q, for all x ∈ Nd ,
x ∈ X iff there is a run from 〈q0,x〉 to 〈qf ,0〉.



Exercise (3/5)

D) Design a 1-reversal-bounded CM with 2d counters such
that for some state q0,qf ∈ Q, for all x ∈ N2d such that the
restriction to x to the d last counters equal to 0,

the restriction of x to the d first counters belongs to X
iff

there is a run from 〈q0,x〉 to 〈qf ,x〉.

E) Design a 1-reversal-bounded CM with 4d counters such
that for some state q0,qf ∈ Q, for all x ∈ N4d such that the
restriction to x to the 2d last counters equal to 0,

there are λ1, . . . , λN ∈ N such that for all i ∈ [1,d ],
x(d + i)− x(i) = λ1p1(i) + · · ·λNpN(i)

iff
there is a run from 〈q0,x〉 to 〈qf ,x〉.



Exercise (4/5)
Show that the conditions below are equivalent:

(?) There is an infinite r -reversal-bounded run from 〈q0,x0〉
such that counter values belong to X and the state is q′

infinitely often.

(??) There exist a finite r -reversal-bounded run
ρ = 〈q0,x0〉

t1−→ 〈q1,x1〉 · · ·
tl−→ 〈q`,x`〉, `′ ∈ [0, `− 1] and

C= ⊆ C such that

(a) q` = q`′ = q′,
(b) x`′ ,x` ∈ X ,
(c) (I)–(IV) above,
(d) for xi ∈ C= and j ∈ [`′ + 1, `], xj (i)− xj−1(i) = 0,
(e) for xi ∈ (C r C=) and j ∈ [`′ + 1, `], xj−1(i) ≤ xj (i),
(f) for xi ∈ (C r C=), we have kmax < x`′(i).

(g) for all xi ∈ C=, have x`′(i) ≤ kmax .

kmax : maximal constant k occurring in guards



Exercise (5/5)

I Design a reduction from (??) to an instance of the
reachability problem with bounded number of reversals.

I Conclude that checking whether an initialized counter
machine has an infinite r -reversal-bounded run visiting
infinitely often a semilinear set can be decided in
NEXPTIME.


