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About the lectures 1,2 & 3

Theory of well-quasi orderings.
Presburger counter machines.

Motivations for a logical formalisms about arithmetical
constraints.

Basis of the theory of well-structured transition systems.

Covering problem for lossy counter machines is
Ackermann-hard.



Plan of the talk

» Introduction to Presburger arithmetic.

» Decidability and quantifier elimination.

» Decidability by the automata-based approach.



|A Formalism for Arithmetical Constraints|
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A fundamental decidable theory

First-order theory of (N, +, <) introduced by Mojcesz
Presburger (1929).

Handy to express guards and updates in counter
machines:
x++ ~ ¥ =x+1

x1+ %0 =xg N x1 <36

Nondeterministic update in a lossy counter machine:
x' < x4+1

Formulae are viewed as symbolic representations for
(infinite) sets of tuples of natural numbers.

x <y can be interpreted as {(n,m) e N2 | n< m}



Symbolic representation in counter machines

» Counter machine with two counters and with at least the
locations qq (initial), g and go.

» Suppose ¢1(x,Y) interpreted as
Xy = {(n,m) € N? | (q0,0,0) = (a1, n,m)}
» Suppose pa(x,y) interpreted as

Xo = {<n7 m> € N2 | <q07070> = <q27 n, m>}

» Equivalence between the statements below:

» Every pair of counter values from a reachable configuration
with location @, is also a pair of counter values from a
reachable configuration with location g,.

» Xi C Xo.

> o1(X,Y) = p2(X,y) is always true.



Essential properties for formal verification

Rich logical language: captures most standard updates
and guards in counter machines (and more).

Decidability of the satisfiability and validity problems.
Worst-case complexity characterised (below 2EXPSPACE).

Handy language with unrestricted quantifications but those
quantifications can be viewed as concise macros.

Expressive power of the language is known:
Presburger sets = semilinear sets.

Formalism also used to express constraints on graphs, on
number of events, etc.
See e.g., [Seidl & Schwentick & Muscholl, chapter 07]
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Presburger arithmetic [presburger, 29]
“First-order theory of (N, +, <)” (no multiplication).

A property about the structure (N, +, <):

Vx(3y((2x+8) <y)

Atomic formula ((2x + 8) <'y).
Term (2x + 8).
Variables x and y.

Given VAR = {x,y, z, ...}, the terms are of the form
aiXy +---+anXn+ Kk

with ay,...,an, k > 0.



Valuations

» Valuation v: VAR — N.

» Extending v to all terms:
» o(k) =K.

» v(ax) = a x v(x).
» o(t+ ) =o(t) +o(t).
» Satisfaction relation =
» v = (2x+ 8) <y with v(x) = 3 and v(y) = 27.

» v}~ (2x+8) <y with v(x) =3 and v(y) = 13.
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Atomic formulat < t.

Formulae (1/2)

vt <t & o(t) <o(t).

Formulae are built from Boolean connectives and

quantifiers.

Abbreviations:

t="
t<t
t>t
t>t

(t<t)A(H <1)
t+1 <t

V<t
r+1<t



Formulae (2/2)

pu= T |L|t<t| ¢ | oAp | oV | X | ¥X¢

where t and t’ are terms and x € VAR.
» Infinite number of multiple of 3:

Vx @y (y>x)A(3z(y=32))).

» Oddness: dy x = 2y + 1.
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Semantics

def
vET & true;o L & false,

; def

vEt<t & o(t) <o(t),

v & noto =,

def

bEeANY S vlEpando ¢,

def

vEPVY &S vEporo iy,

v =3xe & thereis ne N such that o[x — n] = ¢ where
o[Xx — n] is equal to v except that x is mapped to n,

b EVxe & forevery ne N, we have v[x — n] = .



v

v

v

v

v

Standard first-order semantics

v =t =1t (where’t = t” is an abbreviation) iff v(f) = v(t').

¢ and 1 are equivalent in FO(N) & for every valuation v,
we have v = ¢ iff v = 9.

©1 A\ w2 and —(—p1 V —p2) are equivalent formulae.
3 X ¢ and -V X —¢ are equivalent formulae.

Vx3y(y<x)and V¥V x 3y (x <y) are not equivalent.



Total ordering

> oot: (N, <) is a linearly ordered set:

Pt ZYXYY (x=y)V (X <y)V(Xx>Y)).

» Key argument: for all valuations v,

bEX=Y)V(X<Y)V(x>Y)



Standard notations

» VX1 -V Xp ¢ is also written

V X1y Xn @

» Vx (x < k) = ¢ is also written

Vek X

» 3y < 7x + 8 is also written

—2x + 3y — 8 < 5x



Modulo constraints

» x =, 0is an abbreviation for 3y (x = ky).

» t =, t'is an abbreviation for

Ix(t=kx+t)Vv(t=kx+1t)

» Example of formula in FO(N) (with various abbreviations):

VX, y(—2x+9=4y+1)& (-y=42x—8)



Satisfiability problem

» Satisfiability problem
Input: a formula ¢
Question: is there a valuation v such that v = ¢?

» Satisfiable formula:
(X1 >2) A (X2 >2X1) A=+ A (Xp > 2Xp—1)
(take v(x;) = 2/)
» Validity problem

Input: a formula ¢
Question: is the case that for every valuation v, we have

0= p?
» Valid formula:

(X4 >2AX2 >2X1 A= AXp > 2Xp_q) = Xp > 2"



Equivalences (1/2)

» : formula whose free variables are among xy, ..., X.
» The propositions below are equivalent:
() ¢ is valid.
(1) ¥V Xq,...,Xn @ is valid.
() ¥ x4,...,Xn @ is satisfiable.

(IV) ¥V xq,...,Xn @ is equivalentto T.



Equivalences (2/2)

» : formula whose free variables are among xy, ..., X.
» The propositions below are equivalent:
() o is satisfiable.
(1) Ixq,...,%Xn @ is valid.
() 3 x4,...,Xn @ is satisfiable.

(IV) 3x4,...,Xn ¢ is equivalentto T.



Defining sets of tuples

» Formula ¢(X1,...,Xn) with n free variables:

[o(X1, .-, Xn)] = {{0(x1), ..., 0(Xn)) € N": v |= ¢}

» [x1 <x2] = {(n,My eN?:n<n}.
» [x =x+x] ={0}.
» ¢ is satisfiable iff [¢] is non-empty.

» ¢ is valid (with free variables x1, ... ,xp) iff [¢] = N".



Presburger sets

» X C N%is a Presburger set & there is ¢ with free

variables xi, ..., Xq such that [¢] = X.
X{++ Xo++; x1—— Xo++
Q Xq++; xo++ A Xq++; xo++ % Xq++; xo++ q

[[X1 21/\X223/\X1+X226]]

{<n7 m> | <q170’0> i> <q4ana m>}



A rough analysis

X{++ Xot++; X1—— Xo++
Xq++; xot++ A Xq++; xo++ g X1++; xo++
O, & & *

[x1 = x2 = 0] = {{n,m) | (q1,0.0) = (g1.n,m)}
[[X2:1/\X1 Z1H:{<n7m> ‘ <q17070>i><q27n>m>}
[[XZZZ/\X1+X224]]:{<n7m> | <q17070>i><q37n7m>}

[[X‘I > 1/\X2 > 3/\X1+X2 > 6]] = {<n7 m> | <q170a0> i> <Q4,n, m>}



With quantifiers

321,202,253 (X1 =3+ 24 —Zg)/\(X2:3+ZQ+23)

N2+21—22>0

(equivalent to add (x4 > 1))

xX1++ Xot++, Xq1—— Xo++

X1++; xo++ A xX1++; Xo++ A xX1++; Xo++
@ >( g ~( @ (G




Always good to capture the reachability sets

> Suppose [pg] = {X € N": (qo, Xo) = (g, X)} for every
control state/location q.

» {x € N": (qo,Xo) — (g, X)} is infinite iff the formula below
is satisfiable:

_‘Elyvxhu-,xn@q(xh---axn):>(X1 Sy/\/\XnSY)

> (Qo,Xo) — (g, 2) iff the formula below is satisfiable:

©q(X1,. . Xn) AXg =2Z(1) A--- A Xy =2Z(n),

» Control state q can be reached from (qo, Xo) iff the
Presburger formula ¢q4(X1, . .., Xs) is satisfiable.



Refinement: new set of atomic formulae

T|L|t<t |t=t |t=t|t<t |t>t|t>t (PAF)

» Aformula ¢ is quantifier-free £ ¢ is a Boolean
combination of atomic formulae (i.e. without quantifiers).

(X+y=s52)V(y>23)

» Linear fragment (LIN) —i.e. = (PAF) ~. modulo constraints

T|Llt<t |t=t|t<t |t>t | t>t (LIN)



More fragments

Difference fragment: ¢ is in the difference fragment & ®
belongs to the linear fragment and the terms are of the
form either x + k or k.

in: =(x=y+8)Ay>7.
out: 2x=6andx+vy > 3.
Prenex normal form:
Qi1 X1 - QnXnt
with ¢ in the linear fragment and {Q1, ..., Qn} C {3,V}.
—(Ixx>3)V(Vyy > 4)isequivalent to
VXVy(=(x>3)Vvy>4)

Extended prenex normal form:

(Q1)<ky X1 -+ (2n)<k, Xn ¥
with ¢ isin (LIN), {Q1,...,Qn} € {3,V} and kq, ..., k, € N.



The difficulty of the satisfiability problem

Obviously the domain of the quantified variables is infinite.

Assume that terms in quantifier-free formulae can be
written as (3 _; a;jx;) + k where the a;’s and k belong to N
and the natural numbers are encoded in binary.

o quantifier-free formula with variables x4, ..., X, is
satisfiable iff there is a valuation

o {X1,...,xp} = [0,2P0¢D] such that v = ¢
p(+) is a polynomial independent of ¢ and X, ..., Xp.

The theorem exists in many variants: it is possible to refine
this bound by taking into account in a more precise way,
» the number of variables,
» the maximal size of a constant occurring in ¢ or,
» the number of connective occurrences with the a
conjunctive polarity.



NP-completeness

» The satisfiability problem for the quantifier-free fragment is
NP-complete.

» NP-hardness (straightforward):
» o with propositional variables py, ..., pp.
» ' obtained from ¢ by replacing p; by X% = yrev,

» o is satisfiable iff ¢ is satisfiable.



NP upper bound
» Guess
<C¥1 PR 706n> S [07 2p(|<p|)]f7
» Check that v = ¢ where v(x;) = «; for every i € [1,n].

» Can be done in polynomial time in the size of the formula:

1. {(@1,...,ap) is of polynomial size in |¢|.

2. Computing v(f) for any term t in ¢ can be done in
polynomial time in |¢|.

3. Determining the truth value of any atomic formula under v
can be done in polynomial time in |¢|.

4. Replacing all the atomic formulae from ¢ by either T or L
and then simplifying leads to T or L and can be done in
polynomial time.



Decidability and quantifier elimination

» Theorem: The satisfiability problem for Presburger
arithmetic is decidable. [Presburger, 29]

» Every Presburger formula is effectively equivalent to a
Presburger formula without first-order quantification.
[Presburger, 29]
(periodicity atomic formulae are needed here)

» Satisfiability problem for quantifier-free formulae is
NP-complete. [Papadimitriou, JACM 81]
See also [Borosh & Treybig, AMS 76]

» About other first-order theories
» Skolem arithmetic (N, 0,1, x) is decidable.
» (Z,<,+) is decidable.
» (N, <, x,+) is undecidable.



A few words about the computational complexity

» Satisfiability problem is between 2EXPTIME and
2EXPSPACE.

» 2EXPSPACE is included in 3BEXPTIME. [Oppen, JCSS 78]
» More precisely: completeness for the class of alternating
Turing machines working in double exponential time with at

most a linear amount of alternations. [Berman, TCS 80]

» Satisfiability checking for (: eliminate quantifiers in
3 X4,...,Xq @ and verify it leads to T.
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A small model property
©=Q1 X1 -+ Qs Xs ¥(X1,...,Xs)

» in prenex normal form,
» of length n and,
» with m quantifier alternations.

)m

3 +2
w = 26xnC 7 (50 some constant C.

v is satisfiable iff

(Q1)<w X1 -+ (Qs)<w Xs Y(X1,...,Xs)

is satisfiable.

Decision procedure by trying all the possible values for the
variables until w but care is needed because of the
quantifier alternations.



FO(Z)

FO(Z): variant of FO(N) in which variables are interpreted
inZ.

FO(Z) and FO(N) have the same of formulae.

The formulaVx 3y y < x
» is valid in FO(Z)

» but not in FO(N).
The satisfiability problem for FO(Z) is decidable.

Proof idea: encode the negative integers nby —2n+ 1 and
the positive integers m by 2m.



Quantifier Elimination




QE: good or bad?

Quantification elimination means that quantifications are
dummy logical operators for FO(N)?

For instance, disjunction operator v can be eliminated in
propositional calculus with — and A only.

But NP-completeness of the quantifier-free fragment
whereas 2EXPTIME-hardness of the full logic.

Analogy: linear-time temporal logic LTL and first-order logic
on w-words have the same expressiveness but not the
same conciseness and computational complexity.



Simple quantifier eliminations

Ix (x> 3) is equivalentto T

Jdz(x<zAz<y) is equivalentto x+2<y

dz(x<zvz<y) is equivalentto T

Vz(x<z=y<z) isequivalentto y<x

dzx=2z is equivalentto x=,0
What about

Jz(-(x<2z-1)A(3BZ (z=Z)A(0<2Z —Xx)) ?



Why periodicity constraints are needed?

t =5 0 is simple enough but hides an existential
quantification.

Is there a quantifier-free formula equivalentto 3z x =2z in
the linear fragment?

AT(x): set of atomic formulae of the form
ax+b< dx+b
where a,a,b, b’ € N.

Every ax + b < &x + b’ is equivalent to a formula having
one of the forms below:

T 1L x<k x>k

where k € N.

3x + 5 < x + 8 is logically equivalent to x < 1.
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Intervals

Formula ¢ = Boolean combination of formulae among T, L
or x < K.

[+] is a finite union of intervals | J; /; such that each /; is of
the form either [ky, ko] or [k, +oo[ with kq, ko € N.

[3 z x = 2z] is obviously not equal to a finite union of
intervals of the form J; /;.

Jz x = 2z is not equivalent to a formula in the linear
fragment.



Main theorem (QE)

For every formula ¢, there exists a quantifier-free formula ¢’
such that

1. free(y¢’) C free(y).

2. ¢ is logically equivalent to .

3. ¢’ can be effectively built from .

» Property (QE*): restriction of (QE) with ¢ = 3 x ¢ and ¢ is
a Boolean combination of formulae of the form either t < t/
ort = t.

» It is sufficient to show (QE*) to get (QE).



How to use (QE*) to eliminate quantifiers

¥ = dx (T/JO(X) A (El y (¢1 (X,Y) Nz 1/}2()(7Y7Za Z/))))
(the v;’'s are quantifier-free formulae)

» If 3z o(x,y,z,2Z') is equivalent to the QF formula
P5(X,y,2), then ¢ is equivalent to

Ix (o) A Ty (¥1(x,¥) A a(x,y,Z))))

» If 3y (P1(x,y) As(x,y,2') is equivalent to the QF formula
Pi(x,2), then ¢ is equivalent to

3 X (Yo(x) Ai(x,2'))

» If 3x (¢Po(x) A )(x,2")) is equivalent to the QF formula
14(Z'), then ¢ is equivalent to ¥;(z’).



Quantifier elimination for ¢

. Replace every V x 1) by — 3 x —), leading to ’.
. If ¢ is quantifier-free, we are done. Otherwise go to 3.

. Pick an innermost subformula 3 x x with QF x and
substitute it by an equivalent QF formula thanks to (QE?*).

. Update ¢’ to be this new formula.
. The number of quantifiers in ¢’ has decreased by one.

. If ¢ is quantifier-free, we are done. Otherwise, go to 3.
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A simple principle
3 x ¢ with ¢ a Boolean combination of formulae of the form
k < xwith k € {ko,...,kg} and ko = 0.

Successive constants

Ko ki ko ks
00 ---000---000---00000 -

n~n & forallic0,5], we have k; < niff k; < n'.
Equivalence classes with its canonical elements:

ko kq ko ks
cCe:---@ Ce:---0 C@®:-- Ceeeoeoo ;-

3 x ¢ is equivalent to \/; p(x < k;),



Quantifier elimination with the fragment (1)

Extended term (3, a;x;) + k with a;’s and k belong to Z.

¢ = 3 x x with x a QF formula respecting
xu=T [ Ll t<x [ t<t | -x [ xAx ()

where t, ' are extended terms without x.

Variable x has been isolated on one side of the
inequalities.

No atomic formula of the form t > x since that is equivalent
to -~(t+1 <x).

For instance y < 2x or x =, 0 do not belong to (7).



About valuations

Any valuation v : VAR — N, can be generalized to
extended terms such that

Za, )+ k) Z( Za, (%))
Extended terms are interpreted in Z.

T: set of terms t occurring in some atomic formula t < x,
and (possibly) augmented with 0.

So T is non-empty and contains at most || elements.

Given v : VAR — N, there is a term fi. € T such that
1. v(tierr) < 0(x) and,

2. thereis no t € T such that v(fier) < v(t) < v(X).

liefr the closest left term (depending on v).



A key observation

» Forany n € [v(teq), v(x)], v and v[x — n| verify exactly the
same atomic formulae from .

» Interpretation of the terms t remains unchanged.
(so truth of t < t' is unchanged).

» Truth of t < x is unchanged too.
» So, v = xiff o]x — n] = x.

» For the satisfaction of ¢, we can assume that x is equal to
some term t with t € T.



Quantifier elimination

» o =3 X x is replaced by

\/X(x<— f)

teT

» The disjunction can be computed in polynomial time in |¢|.

» Existential quantification is replaced by a generalized
disjunction, which is conceptually sound.

o= Vierx(X < t) — b= x(Xx<«t)forsomete T
= ox= ()] = x(x)
— v =3 X x(X)



The other direction

vEIX) there is n € N such that v[x — n] = x

o[X = o(tiert)] = X

Ll

- v ): X(X «— tleft)

= 0 EVeerx(x«1)



QEfordz(x<zAz<y)

» 3z (x+1<zA-(y <2z)).

» T={x+1,y,0}.

-
—_——
(X+1<x+1A(y<x+1))Vv
(X+1<yA=(y<y)v
1
1<0A+(y <0
(x+1< (y<0))
1

» Equivalentto -(y <x+1)orx+2<y.
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Quantifier elimination with the fragment (17)

» = 3 x x with x a QF formula respecting
xi=T | L] t<ax | t<t | =x | xAx

where t, t' are extended terms without x and a > 1.

¢: the least common multiple (Icm) of all the coefficients
occurring in front of x.

X't replace in y every t < ax by t x £ < x.
X" replace in x’ every ¢x by x.

¢ and 3 x (x =, 0) A x” are equivalent.

(1)



Quantifier elimination with the fragment (77)

» » = 3 x x with x a QF formula respecting
xu=T [ Ll t=t [ x=ct [ t<x | t<t | =x | xAx (i11)

where t, ' are extended terms without x, and k > 1.

» QF formulae in (f11) are almost of the general form except
that modulo constraints or inequalities may involve the
terms ax with a > 1.
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Preliminary simplifications (again)

¢: lcm of all the coefficients occurring in front of x.

ax = tis replaced by x = ¢ Lt.

£
X a

t < xis replaced by t x £ < ¢x.

Then we proceed as for (t1) by introducing the conjunct
x =¢ 0.

Value ¢': lcm of all kq, ..., kg such that x =, t occurs in x.



A key observation (bis)

» Forany ne {m € [o(fen), 0(X)] : m=p v(X)}, v and
v[x — n| verify exactly the same atomic formulae from y.

» Interpretation of the terms ¢ remains unchanged.
(sotruth of t < t' or t =, t' is unchanged).

» Truth of t < x is unchanged too (as for (7)).
» Truth of x =, t is unchanged.

Consequence of the Chinese Remainder Theorem:
n=p n'iff (= n"and--- and n=¢, ')

» So,v = xiff o[x — n] = x.



» For the satisfaction of ¢, we can assume that x is equal to
some term t with t + j such that t € T and j € [0, ¢ — 1].

» is equivalent to

\/ X(X < t+))
teT je[0,¢/—1]
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Example

Jzx=2z
3z (X < 2Z) A (=(x+1 < 22)).
32(2=20)A(x<2Z)A(~(x+1<2)).
T={0,xx+1}

=2



Vierjepr—1 X(X < t+))

T T
[(0=0)A(X<O0)A(~(x+1<0))]V
[(1=0)AX<T)A(x+1<1)]V

1

T T
[(x =2 O)/\(@)/\(ﬂ(x+1 < x))]Vv
(X+1=0)AX<X+T)A(x+1<x+1)]V
~—_—

1

[(x+1=20) A (X <X+ 1) A(=(x+1 <x+ 1)V
L

[(X+2=0)AX<x+2)A(-(x+1<x+2))]
L

Equivalent to (x < 0) v (x =2 0) and therefore to x =5 0.



Corollaries

» 3X ¢(X) is equivalent to either T or L.
» Decidability is a consequence of quantifier elimination.

» Exponential blow-up while quantifiers are eliminated.
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Decision procedures and tools

Quantifier elimination and refinements
[Cooper, ML 72; Reddy & Loveland, STOC'78]

Tools dealing with quantifier-free PA, full PA or quantifier
elimination: Z3, CVC4, Alt-Ergo, Yices2, Omega test.

Automata-based approach.
[Biichi, ZML 60; Boudet & Comon, CAAP’96]

Automata-based tools for Presburger arithmetic: LIRA,
suite of libraries TAPAS, MONA, and LASH.



Automata-Based Approach




From logic to automata

» Automata-based approach consists in reducing logical
problems into automata-based decision problems.

» Examples of target problems:
» L(A)=07?
» L(A) CL(B)?
» Is L(.A) the universal language ?

» Pioneering work by Blchi [Biichi, 62].

» MSO over (N, <).

» Models of a formula over Py, ..., Py are w-sequences over
the alphabet P({ P4, ..., Pn}).

» Bichi automata are equivalent to MSO formulae.



Desirable properties

» Reduction is simple.
ex: LTL formula — alternating automaton

» Complexity of the automata-based target problem is
well-characterised.
ex: PDL formula — nondeterministic Blichi tree automaton.

» Reduction allows to obtain the optimal complexity of the
source logical problem.
ex: CTL model-checking is in PTIME by reduction into
hesitant alternating automata (HAA).



A few words about regular model-checking

» To represent sets of configurations by regular sets of finite
words (or infinite words, trees, etc.)

» Transducers encode the transition relations of the systems.

» Regularity is typically captured by finite-state automata.



Tuples of natural numbers as finite words

v

To represent [¢] € N by a (regular) set of finite words
over the alphabet {0, 1}".

v

Encoding map f: N — P({0, 1}*).

v

Extension to f : N” — P(({0,1}")*) so that for all / € [1, n],
x € N"and y € f(x), the projection of y on the ith row
belongs to f(x(/)).

> (3 ) representedby (§)(5)(s)(9)(5).

- 7(0) £ 0.

> (k) o uk - 0* where uy is the shortest binary

representation of k (least significant bit first).



Presburger sets are regular

» We aim at L(A) = f([¢]).
» o~ A E LA = §([e])

» Given ¢, we can build a FSA A, such that ¢ =~ A,.
[Boudet & Comon, CAAP’96]

» A, is built recursively on the structure of ¢.
(non-elementary upper bound)



Recursive construction of FSAs

Conjunction If o &~ Aand ¢ ~ B, then p Ay = ANB where Nis
the product construction computing intersection.

Negation If ¢ ~ A, then - ~ A where -~ performs
complementation, which may cause an
exponential blow-up.

Quantification If ¢ ~ A, then 3 x, ¢ ~ A’ where A’ is built over
the alphabet {0,1}"~" by forgetting the nth
component.

q LA g in A’ whenever there is a transition g b, q
in A such that b and b’ agree on the n — 1 first bit
values.



What about the atomic formulae?

» Atomic formulae of the form t; = &, + {3 where each {; is
either a variable or a constant.

» 3x < 2y is equivalent to
3 2oy, Zoy, Z3x (Zox = X+ XA Zoy =Y +Y) A Zax = Zoy + XA

3z (zoy = z3x + 2)

(renaming technique)

> X4 = Xo + X3!

BOE



Encoding X1 = X2 + X2

(o)

By projection, encoding for 3 x2 (X1 = X2 + X2)



Final remarks

» When ¢ = A, ¢ ~ B, and the two formulae have distinct
free variables, we add dummy bits in the automata before
performing the operations on automata.

» The automata-based approach can be extended to
(R, N, +)< (with Bichi automata).
[Boigelot & Wolper, ICLP’02]

» The above construction also verifies:

[Pl € [¥] iff L(Ag) € L(Ay)
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Content of the next lecture on october 16th

Presburger sets are the semilinear sets.
Parikh images about regular languages.
Introduction to reversal-bounded counter machines.

Reachability relations are Presburger sets.



Exercise

pu=T | L] x=y|[x=c|xZc|x=y]| o | pAp | Iy

X,y are variables, k > 2 and ¢ > 0.

1. Show that every formula is equivalent to a Boolean
combination of atomic formulae of one of the forms below:

» X = C,
» x<c,
> X =Y.

2. Show that the satisfiability problem is PSPACE-hard.

3. What about PSPACE-easiness?



Exercise about FO(Z) (1/2)

Show in FO(Z) that every formulae t < t' has an equivalent
formula that uses only atomic formulae of the form either
(1)x>0o0r (2 t=t.

Let g be the map restricted to atomic formulae of the form
(1) or (2) that is homomorphic for Boolean connectives and
quantifiers such that x > 0 is translated into x =, 0.

An atomic formula of the form

Z ajXj = b
jeltin]
with a; € Z and b € Z is encoded by
Vo 3y yn (Avl @) A 3 =(RG). 8)y; = b
pe{0,1}n i Jelt,n]

where

» ¢(1,a) is equal to aand ¢(0, a) is equal to —a.

> (j,0) ="x =2y, + 1 and ¥(j, 1) ="%; = 2y;".
Evaluate the size of g(¢) with respect to the size of .



Exercise about FO(Z) (2/2)

» Given a formula ¢(x4, ...,Xs) and its translation
¥(X1,...,Xn), show that

[o(Xq, ..., xn)] = {§(X) € Z" : x € [Y(X1,...,%n)]}

where f(x )(
o) (/) =

= X() if X(/) is even, otherwise
)_

» Conclude that the satisfiability problem for FO(Z) is
decidable.



Exercise about quantifier elimination

Following the procedure to eliminate quantifiers, compute a
quantifier-free formula equivalent to the formula below:

321,250,253 (X1 =3+2z4 —Zg)/\(Xg = 3+22+23)/\ (2+Z1 —2Zo > O)



