Rudiments of Presburger Arithmetic

Stéphane Demri (demri@lsv.fr)

October 9th, 2015

Slides and lecture notes

http://www.lsv.fr/~demri/notes-de-cours.html

https://wikimpri.dptinfo.ens-cachan.fr/doku.
php?id=cours:c-2-9-1

About the lectures 1, 2 & 3

- Theory of well-quasi orderings.
- Presburger counter machines.
- Motivations for a logical formalisms about arithmetical constraints.
- Basis of the theory of well-structured transition systems.
- Covering problem for lossy counter machines is Ackermann-hard.

Plan of the talk

Introduction to Presburger arithmetic.

- Decidability and quantifier elimination.
- Decidability by the automata-based approach.

A Formalism for Arithmetical Constraints

A fundamental decidable theory

- ► First-order theory of ⟨N, +, ≤⟩ introduced by Mojcesz Presburger (1929).
- Handy to express guards and updates in counter machines:

$$x^{++} \approx x' = x + 1$$
$$x_1 + x_2 = x_B \land x_1 < 36$$

Nondeterministic update in a lossy counter machine:

$$x' \le x + 1$$

 Formulae are viewed as symbolic representations for (infinite) sets of tuples of natural numbers.

$$x \leq y$$
 can be interpreted as $\{\langle n, m \rangle \in \mathbb{N}^2 \mid n \leq m\}$

Symbolic representation in counter machines

- Counter machine with two counters and with at least the locations q₀ (initial), q₁ and q₂.
- Suppose φ₁(x, y) interpreted as

$$X_1 = \{ \langle n, m \rangle \in \mathbb{N}^2 \mid \langle q_0, 0, 0 \rangle \xrightarrow{*} \langle q_1, n, m \rangle \}$$

Suppose φ₂(x, y) interpreted as

$$X_2 = \{ \langle n, m \rangle \in \mathbb{N}^2 \mid \langle q_0, 0, 0 \rangle \xrightarrow{*} \langle q_2, n, m \rangle \}$$

- Equivalence between the statements below:
 - Every pair of counter values from a reachable configuration with location q₁ is also a pair of counter values from a reachable configuration with location q₂.
 - $X_1 \subseteq X_2$.
 - $\varphi_1(\mathbf{x}, \mathbf{y}) \Rightarrow \varphi_2(\mathbf{x}, \mathbf{y})$ is always true.

Essential properties for formal verification

- Rich logical language: captures most standard updates and guards in counter machines (and more).
- Decidability of the satisfiability and validity problems.
 Worst-case complexity characterised (below 2ExpSpace).
- Handy language with unrestricted quantifications but those quantifications can be viewed as concise macros.
- Expressive power of the language is known: Presburger sets = semilinear sets.
- Formalism also used to express constraints on graphs, on number of events, etc.

See e.g., [Seidl & Schwentick & Muscholl, chapter 07]

Presburger arithmetic [Presburger, 29]

- "First-order theory of $\langle \mathbb{N}, +, \leq \rangle$ " (no multiplication).
- A property about the structure $\langle \mathbb{N}, +, \leq \rangle$:

$$\forall \ x \ (\exists \ y \ ((2x+8) \leq y)$$

- Atomic formula $((2x + 8) \le y)$.
- ▶ Term (2x + 8).
- Variables x and y.
- Given $VAR = \{x, y, z, ...\}$, the terms are of the form

$$a_1x_1 + \cdots + a_nx_n + k$$

with $a_1, ..., a_n, k \ge 0$.

Valuations

- Valuation $v: VAR \to \mathbb{N}$.
- Extending v to all terms:

•
$$v(k) = k$$
.

• $v(ax) = a \times v(x)$.

•
$$v(t+t') = v(t) + v(t')$$
.

• Satisfaction relation \models

•
$$v \models (2x+8) \le y$$
 with $v(x) = 3$ and $v(y) = 27$.

•
$$v \not\models (2x+8) \le y$$
 with $v(x) = 3$ and $v(y) = 13$.

Formulae (1/2)

• Atomic formula $t \leq t'$.

$$\blacktriangleright \mathfrak{v} \models t \leq t' \stackrel{\text{def}}{\Leftrightarrow} \mathfrak{v}(t) \leq \mathfrak{v}(t').$$

- Formulae are built from Boolean connectives and quantifiers.
- Abbreviations:

$$\begin{array}{rcl} t = t' & \stackrel{\text{def}}{=} & (t \leq t') \land (t' \leq t) \\ t < t' & \stackrel{\text{def}}{=} & t+1 \leq t' \\ t \geq t' & \stackrel{\text{def}}{=} & t' \leq t \\ t > t' & \stackrel{\text{def}}{=} & t'+1 \leq t \end{array}$$

Formulae (2/2)

 $\varphi ::= \top \mid \perp \mid t \leq t' \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \forall x \varphi$ where *t* and *t'* are terms and $x \in VAR$.

Infinite number of multiple of 3:

$$\forall \ x \ (\exists \ y \ (y > x) \land (\exists \ z \ (y = 3z))).$$

• Oddness: $\exists y \ x = 2y + 1$.

Semantics

 $\blacktriangleright \mathfrak{v} \models \top \stackrel{\text{\tiny def}}{\Leftrightarrow} \mathsf{true}; \mathfrak{v} \models \perp \stackrel{\text{\tiny def}}{\Leftrightarrow} \mathsf{false},$

$$\blacktriangleright \ \mathfrak{v} \models t \leq t' \ \stackrel{\text{\tiny def}}{\Leftrightarrow} \ \mathfrak{v}(t) \leq \mathfrak{v}(t'),$$

$$\blacktriangleright \ \mathfrak{v} \models \neg \varphi \ \stackrel{\text{\tiny def}}{\Leftrightarrow} \ \operatorname{not} \mathfrak{v} \models \varphi,$$

$$\blacktriangleright \ \mathfrak{v} \models \varphi \land \varphi' \ \stackrel{\text{\tiny def}}{\Leftrightarrow} \ \mathfrak{v} \models \varphi \text{ and } \mathfrak{v} \models \varphi',$$

$$\blacktriangleright \ \mathfrak{v}\models\varphi\lor\varphi' \ \stackrel{\mathrm{\tiny def}}{\Leftrightarrow} \ \mathfrak{v}\models\varphi \ \mathrm{or} \ \mathfrak{v}\models\varphi',$$

▶ $v \models \exists x \varphi \Leftrightarrow^{\text{def}}$ there is $n \in \mathbb{N}$ such that $v[x \mapsto n] \models \varphi$ where $v[x \mapsto n]$ is equal to v except that x is mapped to *n*,

▶ $\mathfrak{v} \models \forall \mathbf{x} \varphi \stackrel{\text{\tiny def}}{\Leftrightarrow}$ for every $n \in \mathbb{N}$, we have $\mathfrak{v}[\mathbf{x} \mapsto n] \models \varphi$.

Standard first-order semantics

• $v \models t = t'$ (where 't = t'' is an abbreviation) iff v(t) = v(t').

- ▶ φ and ψ are equivalent in FO(\mathbb{N}) $\stackrel{\text{def}}{\Leftrightarrow}$ for every valuation \mathfrak{v} , we have $\mathfrak{v} \models \varphi$ iff $\mathfrak{v} \models \psi$.
- $\varphi_1 \land \varphi_2$ and $\neg(\neg \varphi_1 \lor \neg \varphi_2)$ are equivalent formulae.
- ► $\exists x \varphi$ and $\neg \forall x \neg \varphi$ are equivalent formulae.
- ► $\forall x \exists y (y < x)$ and $\forall x \exists y (x < y)$ are not equivalent.

Total ordering

• φ_{tot} : $\langle \mathbb{N}, \langle \rangle$ is a linearly ordered set:

$$\varphi_{\mathrm{tot}} \stackrel{\mathsf{def}}{=} \forall \ \mathsf{x} \ \forall \ \mathsf{y} \ ((\mathsf{x} = \mathsf{y}) \lor (\mathsf{x} < \mathsf{y}) \lor (\mathsf{x} > \mathsf{y})).$$

Key argument: for all valuations v,

$$\mathfrak{v} \models (\mathsf{x} = \mathsf{y}) \lor (\mathsf{x} < \mathsf{y}) \lor (\mathsf{x} > \mathsf{y})$$

Standard notations

• $\forall x_1 \cdots \forall x_n \varphi$ is also written

 $\forall \mathbf{x}_1, \ldots, \mathbf{x}_n \varphi$

•
$$\forall x (x \le k) \Rightarrow \varphi$$
 is also written

$$\forall_{\leq k} \mathbf{X} \varphi$$

• $3y \le 7x + 8$ is also written

$$-2x+3y-8 \leq 5x$$

Modulo constraints

▶ $x \equiv_k 0$ is an abbreviation for $\exists y (x = ky)$.

• $t \equiv_k t'$ is an abbreviation for

$$\exists \mathbf{x} (t = k\mathbf{x} + t') \lor (t' = k\mathbf{x} + t)$$

• Example of formula in $FO(\mathbb{N})$ (with various abbreviations):

$$\forall x, y (-2x + 9 \equiv_4 y + 1) \Leftrightarrow (-y \equiv_4 2x - 8)$$

Satisfiability problem

Satisfiability problem

Input: a formula φ Question: is there a valuation v such that $v \models \varphi$?

Satisfiable formula:

$$(\mathtt{x}_1 \geq \mathtt{2}) \land (\mathtt{x}_2 \geq \mathtt{2}\mathtt{x}_1) \land \dots \land (\mathtt{x}_n \geq \mathtt{2}\mathtt{x}_{n-1})$$

(take $\mathfrak{v}(\mathtt{x}_i) = \mathtt{2}^i$)

Validity problem
 Input: a formula φ
 Question: is the case that for every valuation v, we have v ⊨ φ?

Valid formula:

$$(x_1 \geq 2 \land x_2 \geq 2x_1 \land \dots \land x_n \geq 2x_{n-1}) \Rightarrow x_n \geq 2^n$$

Equivalences (1/2)

- φ : formula whose free variables are among x_1, \ldots, x_n .
- The propositions below are equivalent:

(I) φ is valid.

(II) $\forall x_1, \ldots, x_n \varphi$ is valid.

(III) $\forall x_1, \ldots, x_n \varphi$ is satisfiable.

(IV) $\forall x_1, \ldots, x_n \varphi$ is equivalent to \top .

Equivalences (2/2)

- φ : formula whose free variables are among x_1, \ldots, x_n .
- The propositions below are equivalent:

(I) φ is satisfiable.

(II)
$$\exists x_1, \ldots, x_n \varphi$$
 is valid.

- (III) $\exists x_1, \ldots, x_n \varphi$ is satisfiable.
- (IV) $\exists x_1, \ldots, x_n \varphi$ is equivalent to \top .

Defining sets of tuples

Formula $\varphi(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ with *n* free variables:

 $\llbracket \varphi(\mathbf{x}_1, \dots, \mathbf{x}_n) \rrbracket \stackrel{\text{def}}{=} \{ \langle \mathfrak{v}(\mathbf{x}_1), \dots, \mathfrak{v}(\mathbf{x}_n) \rangle \in \mathbb{N}^n : \mathfrak{v} \models \varphi \}$ $\llbracket \mathbf{x}_1 < \mathbf{x}_2 \rrbracket = \{ \langle n, n' \rangle \in \mathbb{N}^2 : n < n' \}.$

•
$$[x = x + x] = \{0\}.$$

- φ is satisfiable iff $\llbracket \varphi \rrbracket$ is non-empty.
- φ is valid (with free variables x_1, \ldots, x_n) iff $\llbracket \varphi \rrbracket = \mathbb{N}^n$.

Presburger sets

X ⊆ N^d is a Presburger set ⇔ there is φ with free variables x₁, ..., x_d such that [[φ]] = X.

$$\llbracket x_1 \ge 1 \land x_2 \ge 3 \land x_1 + x_2 \ge 6 \rrbracket$$

$$=$$

$$\{ \langle n, m \rangle \mid \langle q_1, 0, 0 \rangle \xrightarrow{*} \langle q_4, n, m \rangle \}$$

A rough analysis

 $\llbracket x_1 = x_2 = 0 \rrbracket = \{ \langle n, m \rangle \mid \langle q_1, 0, 0 \rangle \xrightarrow{*} \langle q_1, n, m \rangle \}$

 $[\![\mathbf{x}_2 = \mathbf{1} \land \mathbf{x}_1 \ge \mathbf{1}]\!] = \{ \langle n, m \rangle \ | \ \langle q_1, 0, 0 \rangle \xrightarrow{*} \langle q_2, n, m \rangle \}$

 $[\![\mathbf{x}_2 \geq 2 \land \mathbf{x}_1 + \mathbf{x}_2 \geq 4]\!] = \{ \langle n, m \rangle \ | \ \langle q_1, 0, 0 \rangle \xrightarrow{*} \langle q_3, n, m \rangle \}$

 $[\![x_1 \ge 1 \land x_2 \ge 3 \land x_1 + x_2 \ge 6]\!] = \{ \langle n, m \rangle \ | \ \langle q_1, 0, 0 \rangle \xrightarrow{*} \langle q_4, n, m \rangle \}$

With quantifiers

$$\exists \; z_1, z_2, z_3 \; (x_1 = 3 + z_1 - z_2) \land (x_2 = 3 + z_2 + z_3)$$

 $\wedge 2 + z_1 - z_2 \ge 0$ (equivalent to add $(x_1 \ge 1)$)

Always good to capture the reachability sets

- ► Suppose $\llbracket \varphi_q \rrbracket = \{ \mathbf{x} \in \mathbb{N}^n : \langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q, \mathbf{x} \rangle \}$ for every control state/location *q*.
- $\{\mathbf{x} \in \mathbb{N}^n : \langle q_0, \mathbf{x}_0 \rangle \xrightarrow{*} \langle q, \mathbf{x} \rangle \}$ is infinite iff the formula below is satisfiable:

$$\neg \exists \mathbf{y} \forall \mathbf{x}_1, \dots, \mathbf{x}_n \varphi_q(\mathbf{x}_1, \dots, \mathbf{x}_n) \Rightarrow (\mathbf{x}_1 \leq \mathbf{y} \land \dots \land \mathbf{x}_n \leq \mathbf{y})$$

► $\langle q_0, \mathbf{x_0} \rangle \xrightarrow{*} \langle q, \mathbf{z} \rangle$ iff the formula below is satisfiable:

$$\varphi_q(\mathbf{x}_1,\ldots,\mathbf{x}_n) \wedge \mathbf{x}_1 = \mathbf{z}(1) \wedge \cdots \wedge \mathbf{x}_n = \mathbf{z}(n),$$

Control state *q* can be reached from ⟨*q*₀, **x**₀⟩ iff the Presburger formula *φ_q*(x₁,...,x_n) is satisfiable.

Refinement: new set of atomic formulae

$$\top \mid \perp \mid t \leq t' \mid t \equiv_k t' \mid t = t' \mid t < t' \mid t \geq t' \mid t > t'$$
(PAF)

A formula φ is quantifier-free def φ is a Boolean combination of atomic formulae (i.e. without quantifiers).

$$(\mathsf{x}+\mathsf{y}\equiv_5\mathsf{z})\vee(\mathsf{y}>2\mathsf{3})$$

Linear fragment (LIN) –i.e. = (PAF) \scale modulo constraints

$$\top \mid \perp \mid t \le t' \mid t = t' \mid t < t' \mid t \ge t' \mid t > t'$$
 (LIN)

More fragments

► Difference fragment: φ is in the difference fragment $\stackrel{\text{def}}{\Leftrightarrow} \varphi$ belongs to the linear fragment and the terms are of the form either x + k or k.

in:
$$\neg(x = y + 8) \land y \ge 7$$
.
but: $2x = 6$ and $x + y \ge 3$.

Prenex normal form:

with

$$Q_1 \mathbf{X}_1 \cdots Q_n \mathbf{X}_n \psi$$

with ψ in the linear fragment and $\{Q_1, \ldots, Q_n\} \subseteq \{\exists, \forall\}.$

►
$$\neg(\exists x \ x \ge 3) \lor (\forall y \ y \ge 4)$$
 is equivalent to
 $\forall x \forall y (\neg(x \ge 3) \lor y \ge 4)$

Extended prenex normal form:

$$(\mathcal{Q}_1)_{\leq k_1} X_1 \cdots (\mathcal{Q}_n)_{\leq k_n} X_n \psi$$

n ψ is in (LIN), $\{\mathcal{Q}_1, \dots, \mathcal{Q}_n\} \subseteq \{\exists, \forall\}$ and $k_1, \dots, k_n \in \mathbb{N}$.

The difficulty of the satisfiability problem

- Obviously the domain of the quantified variables is infinite.
- ► Assume that terms in quantifier-free formulae can be written as $(\sum_i a_i x_i) + k$ where the a_i 's and k belong to \mathbb{N} and the natural numbers are encoded in binary.

 $\mathfrak{v}: {x_1, \ldots, x_n} \rightarrow [0, 2^{p(|\varphi|)}]$ such that $\mathfrak{v} \models \varphi$

 $p(\cdot)$ is a polynomial independent of φ and x_1, \ldots, x_n .

- The theorem exists in many variants: it is possible to refine this bound by taking into account in a more precise way,
 - the number of variables,
 - the maximal size of a constant occurring in φ or,
 - the number of connective occurrences with the a conjunctive polarity.

NP-completeness

- The satisfiability problem for the quantifier-free fragment is NP-complete.
- NP-hardness (straightforward):
 - φ with propositional variables p_1, \ldots, p_n .
 - φ' obtained from φ by replacing p_i by $x_i^{\text{new}} = y_i^{\text{new}}$.
 - φ is satisfiable iff φ' is satisfiable.

NP upper bound

Guess

$$\langle \alpha_1, \ldots, \alpha_n \rangle \in [0, 2^{p(|\varphi|)}]^n$$

- Check that $v \models \varphi$ where $v(x_i) = \alpha_i$ for every $i \in [1, n]$.
- Can be done in polynomial time in the size of the formula:
 - 1. $\langle \alpha_1, \ldots, \alpha_n \rangle$ is of polynomial size in $|\varphi|$.
 - 2. Computing v(t) for any term t in φ can be done in polynomial time in $|\varphi|$.
 - Determining the truth value of any atomic formula under
 υ
 can be done in polynomial time in |φ|.
 - Replacing all the atomic formulae from φ by either ⊤ or ⊥ and then simplifying leads to ⊤ or ⊥ and can be done in polynomial time.

Decidability and quantifier elimination

- Theorem: The satisfiability problem for Presburger arithmetic is decidable. [Presburger, 29]
- Every Presburger formula is effectively equivalent to a Presburger formula without first-order quantification.

[Presburger, 29]

(periodicity atomic formulae are needed here)

 Satisfiability problem for quantifier-free formulae is NP-complete. [Papadimitriou, JACM 81]

See also [Borosh & Treybig, AMS 76]

- About other first-order theories
 - Skolem arithmetic $\langle \mathbb{N}, 0, 1, \times \rangle$ is decidable.
 - $\langle \mathbb{Z}, \leq, + \rangle$ is decidable.
 - $\langle \mathbb{N}, \leq, \times, + \rangle$ is undecidable.

A few words about the computational complexity

- Satisfiability problem is between 2EXPTIME and 2EXPSPACE.
- > 2EXPSPACE is included in 3EXPTIME. [Oppen, JCSS 78]
- More precisely: completeness for the class of alternating Turing machines working in double exponential time with at most a linear amount of alternations. [Berman, TCS 80]
- Satisfiability checking for φ: eliminate quantifiers in ∃ x₁,..., x_d φ and verify it leads to ⊤.

A small model property

$$\blacktriangleright \varphi = \mathcal{Q}_1 \mathsf{x}_1 \cdots \mathcal{Q}_s \mathsf{x}_s \psi(\mathsf{x}_1, \ldots, \mathsf{x}_s)$$

- in prenex normal form,
- of length n and,
- with *m* quantifier alternations.

•
$$w = 2^{C \times n^{[(s+3)^{m+2}]}}$$
 for some constant C.

• φ is satisfiable iff

$$(\mathcal{Q}_1)_{\leq w} \mathsf{x}_1 \cdots (\mathcal{Q}_s)_{\leq w} \mathsf{x}_s \psi(\mathsf{x}_1, \dots, \mathsf{x}_s)$$

is satisfiable.

Decision procedure by trying all the possible values for the variables until w but care is needed because of the quantifier alternations.

$FO(\mathbb{Z})$

- FO(ℤ): variant of FO(ℕ) in which variables are interpreted in ℤ.
- FO(\mathbb{Z}) and FO(\mathbb{N}) have the same of formulae.
- The formula $\forall x \exists y y < x$
 - ▶ is valid in FO(Z)
 - but not in $FO(\mathbb{N})$.
- The satisfiability problem for $FO(\mathbb{Z})$ is decidable.
- ► Proof idea: encode the negative integers *n* by -2*n* + 1 and the positive integers *m* by 2*m*.

Quantifier Elimination

QE: good or bad?

- Quantification elimination means that quantifications are dummy logical operators for FO(N)?
- For instance, disjunction operator ∨ can be eliminated in propositional calculus with ¬ and ∧ only.
- But NP-completeness of the quantifier-free fragment whereas 2ExPTIME-hardness of the full logic.
- Analogy: linear-time temporal logic LTL and first-order logic on ω-words have the same expressiveness but not the same conciseness and computational complexity.

Simple quantifier eliminations

$$\begin{array}{ll} \exists x \ (x \geq 3) & \text{is e} \\ \exists z \ (x < z \wedge z < y) & \text{is e} \\ \exists z \ (x < z \wedge z < y) & \text{is e} \\ \exists z \ (x < z \lor z < y) & \text{is e} \\ \exists z \ (x \leq z \Rightarrow y \leq z) & \text{is e} \\ \exists z \ x = 2z & \text{is e} \end{array}$$

 $\begin{array}{ll} \text{is equivalent to} & \top \\ \text{is equivalent to} & x+2 \leq y \\ \text{is equivalent to} & \top \\ \text{is equivalent to} & y \leq x \\ \text{is equivalent to} & x \equiv_2 0 \end{array}$

What about

$$\exists \; z \; (\neg(x \leq 2z-1)) \land (\exists \; z' \; (z=z') \land (0 \leq 2z'-x)) \; \; ?$$

Why periodicity constraints are needed?

- t ≡₂ 0 is simple enough but hides an existential quantification.
- Is there a quantifier-free formula equivalent to ∃ z x = 2z in the linear fragment?
- AT(x): set of atomic formulae of the form

Т

$$a\mathbf{x} + b \leq a'\mathbf{x} + b'$$

where $a, a', b, b' \in \mathbb{N}$.

► Every ax + b ≤ a'x + b' is equivalent to a formula having one of the forms below:

$$\perp$$
 x \leq k x \geq k

where $k \in \mathbb{N}$.

• $3x + 5 \le x + 8$ is logically equivalent to $x \le 1$.

Intervals

- Formula ψ = Boolean combination of formulae among ⊤, ⊥ or x ≤ k.
- [[ψ]] is a finite union of intervals U_i I_i such that each I_i is of the form either [k₁, k₂] or [k₁, +∞[with k₁, k₂ ∈ N.
- [∃ z x = 2z]] is obviously not equal to a finite union of intervals of the form ∪_i I_i.
- → ∃ z x = 2z is not equivalent to a formula in the linear fragment.

Main theorem (QE)

For every formula $\varphi,$ there exists a quantifier-free formula φ' such that

- 1. *free*(φ') \subseteq *free*(φ).
- 2. φ' is logically equivalent to φ .
- 3. φ' can be effectively built from φ .

- Property (QE^{*}): restriction of (QE) with φ = ∃ x ψ and ψ is a Boolean combination of formulae of the form either t ≤ t' or t ≡_k t'.
- ► It is sufficient to show (QE*) to get (QE).

How to use (QE*) to eliminate quantifiers

 $\varphi = \exists \mathsf{x} (\psi_0(\mathsf{x}) \land (\exists \mathsf{y} (\psi_1(\mathsf{x},\mathsf{y}) \land \exists \mathsf{z} \psi_2(\mathsf{x},\mathsf{y},\mathsf{z},\mathsf{z}'))))$

(the ψ_i 's are quantifier-free formulae)

If ∃ z ψ₂(x, y, z, z') is equivalent to the QF formula ψ'₂(x, y, z'), then φ is equivalent to ∃ x (ψ₀(x) ∧ (∃ y (ψ₁(x, y) ∧ ψ'₂(x, y, z'))))

 If ∃ y (ψ₁(x, y) ∧ ψ'₂(x, y, z') is equivalent to the QF formula ψ'₁(x, z'), then φ is equivalent to

 $\exists \mathsf{x} (\psi_0(\mathsf{x}) \land \psi_1'(\mathsf{x},\mathsf{z}'))$

If ∃ x (ψ₀(x) ∧ ψ'₁(x,z')) is equivalent to the QF formula ψ'₀(z'), then φ is equivalent to ψ'₀(z').

Quantifier elimination for φ

- 1. Replace every $\forall \mathbf{x} \ \psi$ by $\neg \exists \mathbf{x} \neg \psi$, leading to φ' .
- 2. If φ' is quantifier-free, we are done. Otherwise go to 3.
- Pick an innermost subformula ∃ x χ with QF χ and substitute it by an equivalent QF formula thanks to (QE*).
- 4. Update φ' to be this new formula.
- 5. The number of quantifiers in φ' has decreased by one.
- 6. If φ' is quantifier-free, we are done. Otherwise, go to 3.

A simple principle

- ► $\exists x \varphi$ with φ a Boolean combination of formulae of the form $k \leq x$ with $k \in \{k_0, \ldots, k_\beta\}$ and $k_0 = 0$.
- Successive constants

$$k_0$$
 k_1 k_2 k_β

- $n \sim n' \stackrel{\text{def}}{\Leftrightarrow}$ for all $i \in [0, \beta]$, we have $k_i \leq n$ iff $k_i \leq n'$.
- Equivalence classes with its canonical elements:

$$\begin{matrix} k_0 & & k_1 & & k_2 & & k_\beta \\ \circ \bullet \cdots \bullet & \circ \bullet \cdots \bullet & \circ \bullet \cdots & \circ \bullet \bullet \bullet \bullet \bullet \cdots \end{matrix}$$

► $\exists \mathbf{x} \varphi$ is equivalent to $\bigvee_i \varphi(\mathbf{x} \leftarrow k_i)$,

Quantifier elimination with the fragment (†)

• Extended term $(\sum_i a_i x_i) + k$ with a_i 's and k belong to \mathbb{Z} .

• $\varphi = \exists x \chi$ with χ a QF formula respecting

 $\chi ::= \top \mid \perp \mid t \leq \mathbf{x} \mid t \leq t' \mid \neg \chi \mid \chi \land \chi$ (†)

where t, t' are extended terms without x.

- Variable x has been isolated on one side of the inequalities.
- No atomic formula of the form t ≥ x since that is equivalent to ¬(t + 1 ≤ x).
- For instance $y \leq 2x$ or $x \equiv_2 0$ do not belong to (†).

About valuations

 \blacktriangleright Any valuation $\mathfrak{v}:VAR \to \mathbb{N},$ can be generalized to extended terms such that

$$\mathfrak{v}((\sum_i a_i \mathsf{x}_i) + k) \stackrel{\text{\tiny def}}{=} (\sum_i a_i \ \mathfrak{v}(\mathsf{x}_i)) + k)$$

- Extended terms are interpreted in Z.
- ► T: set of terms t occurring in some atomic formula t ≤ x, and (possibly) augmented with 0.
- So *T* is non-empty and contains at most $|\chi|$ elements.
- Given $v : VAR \rightarrow \mathbb{N}$, there is a term $t_{left} \in T$ such that
 - 1. $v(t_{left}) \leq v(x)$ and,
 - 2. there is no $t \in T$ such that $v(t_{\text{left}}) < v(t) \le v(x)$.
- t_{left} the closest left term (depending on v).

A key observation

- For any n ∈ [v(t_{left}), v(x)], v and v[x → n] verify exactly the same atomic formulae from χ.
 - ► Interpretation of the terms *t* remains unchanged. (so truth of *t* ≤ *t*′ is unchanged).
 - Truth of $t \leq x$ is unchanged too.
- So, $v \models \chi$ iff $v[x \mapsto n] \models \chi$.
- For the satisfaction of φ, we can assume that x is equal to some term t with t ∈ T.

Quantifier elimination

•
$$\varphi = \exists \mathbf{x} \ \chi$$
 is replaced by

$$\bigvee_{t\in T} \chi(\mathsf{x}\leftarrow t)$$

- The disjunction can be computed in polynomial time in $|\varphi|$.
- Existential quantification is replaced by a generalized disjunction, which is conceptually sound.

$$\begin{array}{lll} \mathfrak{v} \models \bigvee_{t \in \mathcal{T}} \chi(\mathsf{x} \leftarrow t) & \rightarrow & \mathfrak{v} \models \chi(\mathsf{x} \leftarrow t) \text{ for some } t \in \mathcal{T} \\ & \rightarrow & \mathfrak{v}[\mathsf{x} \mapsto \mathfrak{v}(t)] \models \chi(\mathsf{x}) \\ & \rightarrow & \mathfrak{v} \models \exists \mathsf{x} \chi(\mathsf{x}) \end{array}$$

The other direction

$$\rightarrow \qquad \mathfrak{v} \models \chi(\mathsf{x} \leftarrow t_{\text{left}})$$

$$\rightarrow \qquad \mathfrak{v} \models \bigvee_{t \in T} \chi(\mathsf{x} \leftarrow t)$$

QE for $\exists z (x < z \land z < y)$

$$(\overbrace{x+1 \leq x+1}^{\top} \land \neg (y \leq x+1)) \lor (x+1 \leq y \land \neg (y \leq y)) \lor (\underbrace{x+1 \leq 0}_{\perp} \land \neg (y \leq 0))$$

Quantifier elimination with the fragment (††)

•
$$\varphi = \exists x \chi$$
 with χ a QF formula respecting

 $\chi ::= \top \mid \perp \mid t \le a \mathbf{x} \mid t \le t' \mid \neg \chi \mid \chi \land \chi \quad (\dagger \dagger)$

where *t*, *t'* are extended terms without x and $a \ge 1$.

l: the least common multiple (lcm) of all the coefficients occurring in front of x.

•
$$\chi'$$
: replace in χ every $t \leq ax$ by $t \times \frac{\ell}{a} \leq \ell x$.

•
$$\chi''$$
: replace in χ' every ℓx by x.

•
$$\varphi$$
 and $\exists x (x \equiv_{\ell} 0) \land \chi''$ are equivalent.

Quantifier elimination with the fragment (†††)

• $\varphi = \exists x \chi$ with χ a QF formula respecting

 $\chi ::= \top \mid \perp \mid t \equiv_k t' \mid \mathsf{x} \equiv_k t \mid t \leq \mathsf{x} \mid t \leq t' \mid \neg \chi \mid \chi \land \chi \text{ (†††)}$

where *t*, *t'* are extended terms without x, and $k \ge 1$.

QF formulae in (†††) are almost of the general form except that modulo constraints or inequalities may involve the terms *ax* with *a* > 1.

Preliminary simplifications (again)

l: lcm of all the coefficients occurring in front of x.

• $ax \equiv_k t$ is replaced by $\ell x \equiv_{(k \times \frac{\ell}{a})} \frac{\ell}{a} t$.

•
$$t \leq x$$
 is replaced by $t \times \frac{\ell}{a} \leq \ell x$.

- ► Then we proceed as for (††) by introducing the conjunct $x \equiv_{\ell} 0$.
- ▶ Value ℓ' : Icm of all k_1, \ldots, k_β such that $x \equiv_{k_i} t$ occurs in χ .

A key observation (bis)

- For any n ∈ {m ∈ [v(t_{left}), v(x)] : m ≡_{ℓ'} v(x)}, v and v[x → n] verify exactly the same atomic formulae from χ.
 - Interpretation of the terms *t* remains unchanged.
 (so truth of *t* ≤ *t*′ or *t* ≡_k *t*′ is unchanged).
 - Truth of $t \leq x$ is unchanged too (as for (†)).
 - ► Truth of $x \equiv_{k_i} t$ is unchanged. Consequence of the *Chinese Remainder Theorem*: $n \equiv_{\ell'} n'$ iff $(n \equiv_{k_1} n' \text{ and } \cdots \text{ and } n \equiv_{k_{\beta}} n')$

So, $v \models \chi$ iff $v[x \mapsto n] \models \chi$.

For the satisfaction of φ, we can assume that x is equal to some term t with t + j such that t ∈ T and j ∈ [0, ℓ' − 1].

• φ is equivalent to

$$\bigvee_{t\in\mathcal{T},j\in[0,\ell'-1]}\chi(\mathsf{x}\leftarrow t+j)$$

Example

► $\exists z x = 2z$.

►
$$\exists z (x \le 2z) \land (\neg(x + 1 \le 2z)).$$

 $\blacktriangleright \exists z (z \equiv_2 0) \land (x \leq z) \land (\neg (x + 1 \leq z)).$

►
$$T = \{0, x, x + 1\}.$$

$$\bigvee_{t \in T, j \in [0, \ell'-1]} \chi (\mathbf{x} \leftarrow t + j)$$

$$[(\stackrel{\top}{0 \equiv_2 0}) \land (\mathbf{x} \le 0) \land (\stackrel{\top}{\neg (\mathbf{x} + 1 \le 0)})] \lor$$

$$[(\stackrel{\top}{1 \equiv_2 0}) \land (\mathbf{x} \le 1) \land (\neg \mathbf{x} + 1 \le 1)] \lor$$

$$[(\mathbf{x} \equiv_2 0) \land (\stackrel{\top}{\mathbf{x} \le \mathbf{x}}) \land (\stackrel{\top}{\neg (\mathbf{x} + 1 \le \mathbf{x})})] \lor$$

$$[(\mathbf{x} + 1 \equiv_2 0) \land (\mathbf{x} \le \mathbf{x} + 1) \land (\stackrel{\neg}{\neg (\mathbf{x} + 1 \le \mathbf{x} + 1)})] \lor$$

$$[(\mathbf{x} + 1 \equiv_2 0) \land (\mathbf{x} \le \mathbf{x} + 1) \land (\stackrel{\neg}{\neg (\mathbf{x} + 1 \le \mathbf{x} + 1)})] \lor$$

$$[(\mathbf{x} + 2 \equiv_2 0) \land (\mathbf{x} \le \mathbf{x} + 2) \land (\stackrel{\neg}{\neg (\mathbf{x} + 1 \le \mathbf{x} + 2)})]$$

Equivalent to $(x\leq 0)\vee(x\equiv_2 0)$ and therefore to $x\equiv_2 0.$

Corollaries

- ► $\exists \bar{\mathbf{x}} \varphi(\bar{\mathbf{x}})$ is equivalent to either \top or \bot .
- Decidability is a consequence of quantifier elimination.
- Exponential blow-up while quantifiers are eliminated.

Decision procedures and tools

Quantifier elimination and refinements

[Cooper, ML 72; Reddy & Loveland, STOC'78]

- Tools dealing with quantifier-free PA, full PA or quantifier elimination: Z3, CVC4, Alt-Ergo, Yices2, Omega test.
- Automata-based approach.

[Büchi, ZML 60; Boudet & Comon, CAAP'96]

Automata-based tools for Presburger arithmetic: LIRA, suite of libraries TAPAS, MONA, and LASH.

Automata-Based Approach

From logic to automata

- Automata-based approach consists in reducing logical problems into automata-based decision problems.
- Examples of target problems:
 - $L(\mathcal{A}) = \emptyset$?
 - $L(\mathcal{A}) \subseteq L(\mathcal{B})$?
 - Is L(A) the universal language ?
- Pioneering work by Büchi [Büchi, 62].
 - MSO over $\langle \mathbb{N}, < \rangle$.
 - Models of a formula over P₁,..., P_N are ω-sequences over the alphabet P({P₁,..., P_N}).
 - Büchi automata are equivalent to MSO formulae.

Desirable properties

Reduction is simple.

ex: LTL formula \mapsto alternating automaton

 Complexity of the automata-based target problem is well-characterised.
 ex: PDL formula → nondeterministic Büchi tree automaton.

 Reduction allows to obtain the optimal complexity of the source logical problem.

ex: CTL model-checking is in PTIME by reduction into hesitant alternating automata (HAA).

A few words about regular model-checking

- To represent sets of configurations by regular sets of finite words (or infinite words, trees, etc.)
- Transducers encode the transition relations of the systems.

Regularity is typically captured by finite-state automata.

Tuples of natural numbers as finite words

- To represent [[φ]] ⊆ Nⁿ by a (regular) set of finite words over the alphabet {0, 1}ⁿ.
- Encoding map $f : \mathbb{N} \to \mathcal{P}(\{0, 1\}^*)$.
- Extension to f: Nⁿ → P(({0,1}ⁿ)*) so that for all i ∈ [1, n], x ∈ Nⁿ and y ∈ f(x), the projection of y on the *i*th row belongs to f(x(i)).
- ▶ $\begin{pmatrix} 5\\8 \end{pmatrix}$ represented by $\begin{pmatrix} 1\\0 \end{pmatrix}\begin{pmatrix} 0\\0 \end{pmatrix}\begin{pmatrix} 1\\0 \end{pmatrix}\begin{pmatrix} 0\\1 \end{pmatrix}\begin{pmatrix} 0\\1 \end{pmatrix}\begin{pmatrix} 0\\0 \end{pmatrix}$.
- ► $\mathfrak{f}(0) \stackrel{\text{def}}{=} 0^*$.
- ► $f(k) \stackrel{\text{def}}{=} u_k \cdot 0^*$ where u_k is the shortest binary representation of *k* (least significant bit first).

Presburger sets are regular

• We aim at $L(\mathcal{A}) = f(\llbracket \varphi \rrbracket)$.

$$\blacktriangleright \varphi \approx \mathcal{A} \stackrel{\text{def}}{\Leftrightarrow} L(\mathcal{A}) = \mathfrak{f}(\llbracket \varphi \rrbracket).$$

- ► Given φ , we can build a FSA A_{φ} such that $\varphi \approx A_{\varphi}$. [Boudet & Comon, CAAP'96]
- A_φ is built recursively on the structure of φ.
 (non-elementary upper bound)

Recursive construction of FSAs

Conjunction If $\varphi \approx A$ and $\psi \approx B$, then $\varphi \wedge \psi \approx A \cap B$ where \cap is the product construction computing intersection.

Negation If $\varphi \approx A$, then $\neg \varphi \approx \overline{A}$ where $\overline{\cdot}$ performs complementation, which may cause an exponential blow-up.

Quantification If $\varphi \approx A$, then $\exists x_n \varphi \approx A'$ where A' is built over the alphabet $\{0, 1\}^{n-1}$ by forgetting the *n*th component.

 $q \xrightarrow{\mathbf{b}} q'$ in \mathcal{A}' whenever there is a transition $q \xrightarrow{\mathbf{b}'} q'$ in \mathcal{A} such that \mathbf{b} and \mathbf{b}' agree on the n-1 first bit values.

What about the atomic formulae?

- Atomic formulae of the form $t_1 = t_2 + t_3$ where each t_i is either a variable or a constant.
- $3x \le 2y$ is equivalent to

$$\begin{split} \exists \; z_{2x}, z_{2y}, z_{3x} \; (z_{2x} = x + x \wedge z_{2y} = y + y) \wedge z_{3x} = z_{2x} + x \wedge \\ \exists \; z \; (z_{2y} = z_{3x} + z) \end{split}$$

(renaming technique)

Encoding $x_1 = x_2 + x_2$

By projection, encoding for $\exists x_2 (x_1 = x_2 + x_2)$

Final remarks

- When φ ≈ A, ψ ≈ B, and the two formulae have distinct free variables, we add dummy bits in the automata before performing the operations on automata.
- The automata-based approach can be extended to $\langle \mathbb{R}, \mathbb{N}, + \rangle \leq$ (with Büchi automata).

[Boigelot & Wolper, ICLP'02]

The above construction also verifies:

 $\llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket \quad \text{iff} \quad L(\mathcal{A}_{\varphi}) \subseteq L(\mathcal{A}_{\psi})$

Content of the next lecture on october 16th

- Presburger sets are the semilinear sets.
- Parikh images about regular languages.
- Introduction to reversal-bounded counter machines.
- Reachability relations are Presburger sets.

Exercise

 $\varphi ::= \top \mid \perp \mid \mathbf{x} \equiv_k \mathbf{y} \mid \mathbf{x} \equiv_k \mathbf{c} \mid \mathbf{x} \leq \mathbf{c} \mid \mathbf{x} = \mathbf{y} \mid \neg \varphi \mid \varphi \land \varphi \mid \exists \mathbf{x} \varphi$

x, y are variables, $k \ge 2$ and $c \ge 0$.

1. Show that every formula is equivalent to a Boolean combination of atomic formulae of one of the forms below:

►
$$X \equiv_k C$$
,

•
$$x \leq c$$
,

- 2. Show that the satisfiability problem is PSPACE-hard.
- 3. What about PSPACE-easiness?

Exercise about $FO(\mathbb{Z})$ (1/2)

- Show in FO(ℤ) that every formulae t ≤ t' has an equivalent formula that uses only atomic formulae of the form either (1) x ≥ 0 or (2) t = t'.
- Let g be the map restricted to atomic formulae of the form (1) or (2) that is homomorphic for Boolean connectives and quantifiers such that x ≥ 0 is translated into x ≡₂ 0. An atomic formula of the form

$$\sum_{i\in[1,n]} a_j x_j = b$$

with $a_i \in \mathbb{Z}$ and $b \in \mathbb{Z}$ is encoded by

$$\bigvee_{\mathbf{p}\in\{0,1\}^n} \exists y_1,\ldots,y_n (\bigwedge_i \psi(i,\mathbf{p}(i))) \wedge \sum_{j\in[1,n]} \varepsilon(\mathbf{p}(j),a_j)y_j = b$$

where

- $\varepsilon(1, a)$ is equal to a and $\varepsilon(0, a)$ is equal to -a.
- $\psi(j, 0) = \mathbf{x}_j = 2\mathbf{y}_j + 1$ and $\psi(j, 1) = \mathbf{x}_j = 2\mathbf{y}_j$.

Evaluate the size of $\mathfrak{g}(\varphi)$ with respect to the size of φ .

Exercise about $FO(\mathbb{Z})$ (2/2)

Given a formula φ(x₁,...,x_n) and its translation ψ(x₁,...,x_n), show that

$$\llbracket \varphi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket = \{ \mathfrak{f}(\mathbf{x}) \in \mathbb{Z}^n : \mathbf{x} \in \llbracket \psi(\mathsf{x}_1,\ldots,\mathsf{x}_n) \rrbracket \}$$

where
$$f(\mathbf{x})(i) = \frac{\mathbf{x}(i)}{2}$$
 if $\mathbf{x}(i)$ is even, otherwise $f(\mathbf{x})(i) = -\frac{\mathbf{x}(i)-1}{2}$.

► Conclude that the satisfiability problem for FO(Z) is decidable.

Exercise about quantifier elimination

Following the procedure to eliminate quantifiers, compute a quantifier-free formula equivalent to the formula below:

$$\exists \, z_1, z_2, z_3 \, (x_1 = 3 + z_1 - z_2) \wedge (x_2 = 3 + z_2 + z_3) \wedge \, (2 + z_1 - z_2 \geq 0).$$