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Plan of the lecture

I Previous lecture :
I Introduction to Presburger arithmetic.

I Decidability and quantifier elimination.

I Automata-based approach.

I Presburger sets are the semilinear sets.

I Application: Parikh image of regular languages.

I Introduction to reversal-bounded counter machines.



The previous lecture in 2 slides (1/2)

I First-order theory FO(N) on 〈N,≤,+〉:

ϕ ::= > | ⊥ | t ≤ t ′ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x ϕ | ∀x ϕ

I Presburger sets

Jϕ(x1, . . . , xn)K def
= {〈v(x1), . . . , v(xn)〉 ∈ Nn : v |= ϕ}

I Quantifier-free fragment

> | ⊥ | t ≤ t ′ | t ≡k t ′ | t = t ′ | t < t ′ | t ≥ t ′ | t > t ′

(plus Boolean connectives)

I The satisfiability problem for the quantifier-free fragment is
NP-complete.



Previous lecture in 2 slides (2/2)

I For every ϕ, there is a quantifier-free formula ϕ′ such that

1. free(ϕ′) ⊆ free(ϕ).

2. ϕ′ is logically equivalent to ϕ.

3. ϕ′ can be effectively built from ϕ.

I Presburger arithmetic is decidable.

I Alternative proof with the automata-based approach:
“Presburger sets as regular languages of finite words”



Semilinear Sets



Formulae with one free variable

ϕ(x)
def
= (x 6= 1 ∧ x 6= 2) ∧ (x = 0 ∨ (x ≥ 3 ∧ ∃ y (x = 3 + 2y)))

Jϕ(x)K = {0} ∪ {3 + 2n : n ≥ 0}
I After the value 3, every two value belongs to Jϕ(x)K.

• ◦ ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • . . .

I This can be generalized.

X ⊆ N is ultimately periodic
def⇔

there exist N ≥ 0 and P ≥ 1 such that for all n ≥ N, we have
n ∈ X iff n + P ∈ X .

prefix︷ ︸︸ ︷
• ◦ ◦ • ◦ • ◦

period of length P︷ ︸︸ ︷
• • ◦ • • • • ◦ • • • • ◦ • • • • ◦ • • . . .



Examples of ultimately periodic sets

I The set of even numbers is ultimately periodic (with N = 0
and P = 2).

I The set of odd numbers is ultimately periodic (with N = 0
and P = 2).

I Jx ≡k k ′K is ultimately periodic (with N = 0 and P = k ).

I Ultimately periodic sets are closed under union,
intersection and complementation.



Proof for complementation

I Suppose X is ultimately periodic and X = Nr X .

I The statements below are equivalent for n ≥ N:
I n ∈ X ,
I n 6∈ X

(by definition of X ),
I n + P 6∈ X

(X is ultimately periodic with parameters N and P),
I n + P ∈ X

(by definition of X ).

I X is ultimately periodic too and the same parameters N
and P can be used.

• ◦ ◦ • ◦ • ◦ • • ◦ • • • • ◦ • • • • ◦ • • • • ◦ • • . . .

◦ • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ . . .



Ultimately periodic sets X are Presburger sets

(
∧

k∈[0,N−1]rX

x 6= k) ∧ [(
∨

k∈[0,N−1]∩X

x = k)∨

((x ≥ N) ∧ (∃ y
∨

k∈[N,N+P−1]∩X

(x = k + Py)))]

It remains to show the converse result.



Semilinear sets of dimension 1
For every formula ϕ(x) with a unique free variable x, JϕK is an
ultimately periodic set.

I Formula ϕ(x) with a unique free variable x.

I ϕ′: equivalent quantifier-free formula.

I ϕ′ is a Boolean combination of atomic formulae of one of
the forms below: >, ⊥, x ≤ k , x ≡k k ′.

I Each atomic formula defines an ultimately periodic set and
ultimately periodic sets are closed under union,
intersection and complementation.

I So Jϕ′K = JϕK is ultimately periodic.



Semilinear sets
I A linear set X is defined by a basis b ∈ Nd and a finite set

of periods P = {p1, . . . ,pm} ⊆ Nd :

X = {b +
m∑

i=1

λipi : λ1, . . . , λm ∈ N}

I A linear set:{(
3
4

)
+ i ×

(
2
5

)
+ j ×

(
4
7

)
: i , j ∈ N

}

I A semilinear set is a finite union of linear sets.

I Each semilinear set can be represented by a finite set of
pairs of the form 〈b,P〉.



Ultimately periodic sets are semilinear sets

I Ultimately periodic set X with parameters N and P.

X = (
⋃

n∈[0,N−1]∩X

{n}) ∪ (
⋃

n∈[N,N+P−1]∩X

{n + λP : λ ∈ N})

I {n} is a linear set with no period.

I {n + λP : λ ∈ N} is a linear set with basis n and unique
period P.



The fundamental characterisation
[Ginsburg & Spanier, PJM 66]

I For every Presburger formula ϕ with d ≥ 1 free variables,
JϕK is a semilinear subset of Nd .

I For every semilinear set X ⊆ Nd , there is ϕ such that
X = JϕK.

I The class of semilinear sets are effectively closed under
union, intersection, complementation and projection.

I For instance, (X1 = Jϕ1K and X2 = Jϕ2K) imply
X1 ∩ X2 = Jϕ1 ∧ ϕ2K

I Presburger formula for{(
3
4

)
+ i ×

(
2
5

)
+ j ×

(
4
7

)
: i , j ∈ N

}
∃ y, y′ (x1 = 3 + 2y + 4y′ ∧ x2 = 4 + 5y + 7y′)



X = {2n : n ∈ N} is not a Presburger set

I Ad absurdum, suppose that X is semilinear.

I Since X is infinite, there are b ≥ 0 and p1, . . . ,pm > 0
(m ≥ 1) such that

Y def
= {b +

m∑
i=1

λipi : λ1, . . . , λm ∈ N} ⊆ X

I There exists 2α ∈ Y such that p1 < 2α.

I By definition of Y , we have 2α + p1 ∈ Y .

I But, 2α < 2α + p1 < 2α+1, contradiction.



X = {n2 : n ∈ N} is not a Presburger set
I Ad absurdum, suppose that X is semilinear.

I Since X is infinite, there are b ≥ 0 and p1, . . . ,pm > 0
(m ≥ 1) such that

Z def
= {b +

m∑
i=1

λipi : λ1, . . . , λm ∈ N} ⊆ X

I Let N ∈ N be such that N2 ∈ Z and (2N + 1) > p1.

I Since Z is a linear set, we also have (N2 + p1) ∈ Z .

I However (N + 1)2 − N2 = (2N + 1) > p1.

I Hence N2 < N2 + p1 < (N + 1)2, contradiction.



A VASS weakly computing multiplication

q1 q2

q0



0
0
−1
0
0
0




0
0
0
0
0
0





0
0
0
−1
1
0





0
0
0
1
−1
1





0
0
0
0
0
0





1
0
1
0
0
0

,



0
1
0
1
0
0





Weak multiplication

{(
a
b
f

)
∈ N3 | ∃

(
c
d
e

)
∈ N3, 〈q0,


0
0
0
0
0
0

〉 ∗−→ 〈q1,


a
b
c
d
e
f

〉
}

=

{(
n
m
p

)
∈ N3 : p ≤ n ×m

}
.



Weak multiplication in a VASS

I Suppose there is ϕ(x1, . . . , x6) such that

Jϕ(x1, . . . , x6)K = {


a
b
c
d
e
f

 | 〈q0,


0
0
0
0
0
0

〉 ∗−→ 〈q1,


a
b
c
d
e
f

〉}

I Formula ψ(x) below verifies Jψ(x)K = {n2 | n ∈ N}

∃ x1, . . . , x5 ϕ(x1, . . . , x5, x) ∧ x1 = x2∧

∀ x′ (x′ > x)⇒ ¬∃ x3, x4, x5 ϕ(x1, . . . , x5, x′)

Contradiction!



Parikh Image of Regular Languages



Parikh image
I Σ = {a1, . . . ,ak} with ordering a1 < · · · < ak .

I Parikh image of u ∈ Σ∗:


n1
n2
...

nk

 ∈ Nk where each nj is the

number of occurrences of aj in u.

I Parikh image of u = a b a a b, written Π(u), is
(

3
2

)
.

I Definition for Parikh image extends to languages.

I The Parikh image of any context-free language is
semilinear. [Parikh, JACM 66]

I Effective computation from pushdown automata.



Bounded languages

I Language L ⊆ Σ∗ bounded def⇔

L ⊆ u∗1 · · · u∗n
for some words u1, . . . ,un in Σ∗.

I L ⊆ Σ∗ is bounded and regular iff it is a finite union of
languages of the form

u0v∗1 u1 · · · v∗k uk

I The Parikh images of bounded and regular languages are
semilinear (i.e. Presburger sets).



Counting letters in bounded and regular languages

I Parikh image of u0v∗1 u1 · · · v∗k uk is equal to

{b + λ1p1 + · · ·λkpk : λ1, . . . , λk ∈ N}

with
I b = Π(u0) + · · ·+ Π(uk ),

I pi = Π(vi ) for every i ∈ [1, k ].

I Finite union of such languages handled by finite unions of
linear sets.

I Then, constructing a Presburger formula for the Parikh
image easily follows.



Underapproximation by bounded languages

I For every regular language L, there is a bounded and
regular language L′ such that

1. L′ ⊆ L,

2. Π(L′) = Π(L).

I The proof consists in constructing L′ effectively.

I A = 〈Σ,Q,Q0, δ,F 〉 such that Lan(A) = L.



Paths, simple loops and extended paths

I Path π: finite sequence of transitions corresponding to a
path in the control graph of A.

I first(π) [resp. last(π)]: first [resp. last] state of a path π.

I lab(π): label of π as a word of Σ∗.

I Simple loop sl : non-empty path that starts and ends by the
same state and this is the only repeated state in it.

I “sl loops on its first state”.

I Number of simple loops ≤ card(δ)card(Q).

I Arbitrary total linear ordering ≺ on simple loops.



q0 q qf
t0: a t3: b

t1: b

t2: c

t4: a

t5: b

I Path π = t0t1t2t1t3.

I Label lab(π) = abcbb.

I Simple loops sl1 = t1 and sl2 = t2.



Generalising the notion of path

I Encoding families of paths with extended paths.

I Extended path P:

π0 S1 π1 · · · Sα πα

1. the Si ’s are non-empty sets of simple loops,

2. the πi ’s are non-empty paths,

3. if S occurs just before [resp. after] a path π, then all the
simple loops in S loops on the first [resp. last] state of π.



q0 q qf
t0: a t3: b

t1: b

t2: c

t4: a

t5: b

t0 · t1 · {t1, t2} · t3 · {t4, t5} · t4 · t5 · t5



Some more auxiliary notions
I Skeleton of P is the path π0 · · ·πα.

I S = {sl1, . . . , slm} with sl1 ≺ · · · ≺ slm

e(S)
def
= lab(sl1)+ · · · lab(slm)+

(regular expression e(S))

I e(P)
def
= lab(π0) · e(S1) · · · e(Sα) · lab(πα).

I Lan(e): language defined by the regular expression e.
Lan(e) is regular and bounded.

I Lan(P)
def
= Lan(e(P)).

I When the first state occuring in the skeleton of P is in Q0
and the last state is in F , then

Lan(e(P)) ⊆ Lan(A)



Small extended path

I Small extended path:

1. π0 and πα have at most 2× card(Q) transitions,

2. π1, . . . , πα−1 have at most card(Q) transitions,

3. for each q ∈ Q, there is at most one set S containing simple
loops on q.

I Length of the skeleton bounded by card(Q)(3 + card(Q)).

I The set of small extended paths is finite.



Example

q0 q qf
t0: a t3: b

t1: b

t2: c

t4: a

t5: b

I Small extended path P

t0 · t1 · {t1, t2} · t3 · {t4, t5} · t4 · t5 · t5

I Regular expression e(P) (with t1 ≺ t2 and t5 ≺ t4)

a · b · b+ · c+ · b · b+ · a+ · a · b · b



How to proceed from a given run ρ

I Sequence of accepting extended paths P0, P1, . . . , Pβ
such that

I all the Pi ’s are accepting extended paths,

I P0 is equal to ρ viewed as an extended path,

I Pβ is a small and accepting extended path,

I Pi+1 is obtained from Pi by removing a simple loop while
Π(Lan(Pi )) ⊆ Π(Lan(Pi+1)).

I At the end of this process,

Π(lab(ρ)) ∈ Π(Lan(Pβ)) and Π(Lan(Pβ)) ⊆ Π(Lan(A))



From Pi to Pi+1

Pi = π0 S1 π1 · · · Sα πα

(a) α ≤ card(Q),

(b) each path in π1, . . . , πα−1 have length less than card(Q),

(c) each state has at most one Si with simple loops on it.

P0 verifies these conditions.



Three cases (1/2)

I Pi is a small extended path. We are done.

I πα = π · sl · π′ where
1. sl is a simple loop on q,
2. ππ′ 6= ε,
3. Sγ already contains simple loops on q.

Pi+1 is equal to:

π0 · · · Sγ−1 πγ−1 (Sγ ∪ {sl}) · · · πα−1 Sα (ππ′)



Three cases (2/2)

I πα = π · sl · π′ where
1. sl is a simple loop on q,
2. the first one occurring in π · sl ,
3. ππ′ 6= ε,
4. no Sγ already contains simple loops on q.

Pi+1 is equal to: π0 · · · Sα π {sl} π′.

I Three properties easy to prove:

1. Π(Lan(Pi )) ⊆ Π(Lan(Pi+1)).

2. Pi+1 satisfies the three previous conditions.

3. Lan(Pi+1) ⊆ Lan(A).



Example

q0 q qf
t0: a t3: b

t1: b

t2: c

t4: a

t5: b

t0 · (t1)7 · (t2)7(t1)8 · t3 · (t4)7 · (t5)7 · (t4)8

I P22 = t0 · {t1, t2} · t3 · (t4)7 · (t5)7 · (t4)8.

I P38 = t0 · {t1, t2} · t3 · {t4, t5} · (t4)6.

I P38 is a small extended path.



Time to conclude!

I FSA A over a k -size alphabet Σ. One can compute a
formula ϕA(x1, . . . , xk ) in FO(N) such that

Π(Lan(A)) = JϕAK

I Lan(A) includes a bounded and regular language L with
the same Parikh image.

I L can be computed by enumerating the regular
expressions obtained from small and accepting extended
paths and then check inclusion with Lan(A).

I Disjunction made of the formulae obtained for each
bounded and regular language included in Lan(A).



Presburger Counter Machines



Presburger counter machines (PCM)
I Presburger counter machineM = 〈Q,T ,C〉:

I Q is a nonempty finite set of control states.

I C is a finite set of counters {x1, . . . ,xd} for some d ≥ 1.

I T = finite set of transitions of the form t = 〈q, ϕ,q′〉 where
q,q′ ∈ Q and ϕ is a Presburger formula with free variables
x1, . . . , xd , x′1, . . . , x

′
d .

q1

q2

q3

q4

q5

q6

q7

q8 q9q11q10

x1 = 3x3

x2++

x2++ x1 = 0?

x1++ x2 = 0?

x1++ x1-- x2++

x2++ x2-- x1++

∃ z x1 = 2z

x2++

x1--

x1++

x2 = 0? x1++

x1 = 0?

x2++

I Configuration 〈q,x〉 ∈ Q × Nd .



Transition system T(M)
I Transition system T(M) = 〈Q × Nd ,−→〉:

〈q,x〉 −→ 〈q′,x′〉 def⇔ there is t = 〈q, ϕ,q′〉 s.t. v[x← x, x′ ← x′] |= ϕ

q1

q2

q3

x-- x = 0?

x++

x--

〈q1,0〉 〈q1,1〉 〈q1,2〉 〈q1,3〉 〈q1,4〉

〈q2,0〉 〈q2,1〉 〈q2,2〉 〈q2,3〉

〈q3,0〉

I
∗−→: reflexive and transitive closure of −→.



Decision problems
I Reachability problem:

Input: PCMM, 〈q0,x0〉 and 〈qf ,xf 〉.
Question: 〈q0,x0〉

∗−→ 〈qf ,xf 〉?

I Control state reachability problem:
Input: PCMM, 〈q0,x0〉 and qf .

Question: ∃xf 〈q0,x0〉
∗−→ 〈qf ,xf 〉?

I Control state repeated reachability problem:
Input: PCMM, 〈q0,x0〉 and qf .

Question: is there an infinite run starting from 〈q0,x0〉
such that the control state qf is repeated
infinitely often?

I Boundedness problem:
Input: PCMM and 〈q0,x0〉.

Question: is the set of configurations reachable from
〈q0,x0〉 finite?



What is Reversal-Boundedness?



Reversal-bounded counter machines

I Reversal: Alternation from a nonincreasing mode to a
nondecreasing mode and vice-versa.

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

I Sequence with 3 reversals:

001122333444433322233344445555554

I A run is r -reversal-bounded whenever the number of
reversals of each counter is less or equal to r .



q1

q2

q3

q4

q5

q6

q7

q8 q9q11q10

x1++

x2++

x2++ x1 = 0?

x1++ x2 = 0?

x1++ x1-- x2++

x2++ x2-- x1++

x1++

x2++

x1--

x1++

x2 = 0? x1++

x1 = 0?

x2++

ϕ = (x1 ≥ 2∧x2 ≥ 1∧(x2+1 ≥ x1)∨(x2 ≥ 2∧x1 ≥ 1∧x1+1 ≥ x2)

JϕK = {y ∈ N2 : 〈q1,0〉
∗−→ 〈q9,y〉}



Presburger-definable reachability sets
I Let 〈M, 〈q0,x0〉〉 be r -reversal-bounded for some r ≥ 0.

For each control state q, the set

R = {y ∈ Nd : ∃ run 〈q0,x0〉
∗−→ 〈q,y〉}

is effectively semilinear [Ibarra, JACM 78].

I One can compute effectively a Presburger formula ϕ such
that JϕK = R.

I The reachability problem with bounded number of
reversals:

Input: PCMM, 〈q,x〉, 〈q′,x′〉 and r ≥ 0.
Question: Is there a run 〈q,x〉 ∗−→ 〈q′,x′〉 s.t. each

counter performs during the run a number of
reversals bounded by r?

I The problem is decidable for a large class of counter
machines.



Features of the proof

I Reachability relation of simple loops can be expressed in
Presburger arithmetic.

I Runs can be normalized so that:
I each simple loop is visited at most a doubly-exponential

number of times,

I the different simple loops are visited in a structured way.



Current class of counter machinesM = 〈Q,T ,C〉
I Q is a finite set of control states and C = {x1, . . . ,xd}.

I T is a finite set of transitions.

I Each transition is labelled by 〈g,a〉 where a ∈ Zd (update)
and g is a guard following

g ::= > | ⊥ | x ∼ k | g ∧ g | g ∨ g | ¬g

where x ∈ C, ∼∈ {≤,≥,=} and k ∈ N.

I Update functions are those for VASS.

I Guards are more general than those for Minsky machines.

I Minsky machines and VASS belong to this class.



Mode vectors
– counter values for reversals –

I From a run
ρ = 〈q0,x0〉

t1−→ 〈q1,x1〉, . . .
we define mode vectors md0,md1, . . . such that each
mdi ∈ {INC,DEC}d .

I By convention, md0 is the unique vector in {INC}d .

I For all j ≥ 0 and for all i ∈ [1,d ], we have

1. mdj+1(i) def
= mdj (i) when xj (i) = xj+1(i).

2. mdj+1(i) def
= INC when xj+1(i)− xj (i) > 0.

3. mdj+1(i) def
= DEC when xj+1(i)− xj (i) < 0.

I Number of reversals:

Revi
def
= {j ∈ [0, |ρ| − 1] : mdj(i) 6= mdj+1(i)}



Reversal-boundedness formally

I Run ρ is r -reversal-bounded with respect to i def⇔
card(Revi) ≤ r .

I Run ρ is r -reversal-bounded def⇔ for every i ∈ [1,d ], we
have card(Revi) ≤ r .

I 〈M, 〈q,x〉〉 is r -reversal-bounded def⇔ every run from 〈q,x〉
is r -reversal-bounded.

I 〈M, 〈q,x〉〉 is reversal-bounded def⇔ there is some r ≥ 0
such that every run from 〈q,x〉 is r -reversal-bounded.



Semantical restriction

I M is uniformly reversal-bounded def⇔ there is r ≥ 0 such
that for every initial configuration, the initialized counter
machine is r -reversal-bounded.

I In the sequel, reversal-bounded counter machines come
with a maximal number of reversals r ≥ 0.

I Reversal-boundedness is essentially a semantical
restriction on the runs.

I Reversal-boundedness detection problem on VASS is
EXPSPACE-complete (the bound r can be computed).

I Reversal-boundedness detection problem on Minsky
machines is undecidable.



Structure of the forthcoming proof

I Design a notion of extended path for which no reversal
occurs and satisfaction of the guards remains constant.

I Any finite r -reversal-bounded run can be generated by a
small sequence of such small extended paths.

I Reachability relation generated by any extended path is
definable in Presburger arithmetic.



Intervals

I M = 〈Q,T ,C〉 with negation-free guards.

I AG: set of atomic guards of the form x ∼ k occurring inM.

I K = {0 = k1 < k2 < · · · < kK} and K = card(K).

I I: set of non-empty intervals

{[k1, k1], [k1 + 1, k2 − 1], [k2, k2], [k2 + 1, k3 − 1], [k3, k3], . . . ,

[kK , kK ], [kK + 1,+∞)}r {∅}

I At most 2K intervals and at least K + 1 intervals.



Counter values symbolically
I Linear ordering on I (for non-empty intervals):

[k1, k1] ≤ [k1+1, k2−1] ≤ [k2, k2] ≤ [k2+1, k3−1] ≤ [k2, k2] ≤ . . .

. . . ≤ [kK , kK ] ≤ [kK + 1,+∞)}

I Interval map im : C → I.

I Distinct values from the same interval satisfy the same
guards.

I Symbolic satisfaction relation im ` g:
I im ` g1 ∨ g2

def⇔ im ` g1 or im ` g2.
I im ` g1 ∧ g2

def⇔ im ` g1 and im ` g2.
I im ` x = k def⇔ im(x) = [k , k ].
I im ` x ≥ k def⇔ im(x) ⊆ [k ,+∞).
I im ` x ≤ k def⇔ im(x) ⊆ [0, k ].



Completeness

I Interval maps and guards are built over the same set of
constants.

I im ` g can be checked in polynomial time in the sum of the
respective sizes of im and g.

I im ` g iff for all f : C → N and for all x ∈ C, we have
f(x) ∈ im(x) implies f |= g (in Presburger arithmetic).



Guarded modes

I Guarded mode gmd is a pair 〈im,md〉 where
I im is an interval map,

I md ∈ {INC,DEC}d .

I t = q
〈g,a〉−−→ q′ is compatible with gmd

def⇔
1. im ` g,

2. for every i ∈ [1,d ],
I md(i) = INC implies a(i) ≥ 0,

I md(i) = DEC implies a(i) ≤ 0.



“Bis repetita placent”

I Path π is a sequence of transitions

q1
〈g1,a1〉−−−→ q′1, . . . ,qn

〈gn,an〉−−−→ q′n

so that for every i ∈ [1,n], we have q′i = qi+1.

I The effect of π is the update ef(π)
def
=
∑

j aj ∈ Zd .

I Simple loop sl is a non-empty path that starts and ends by
the same state and that’s the only repeated state.

I Number of simple loops is ≤ card(T )card(Q).

I Arbitrary total linear ordering ≺ on simple loops.



Extended path (bis)

I Extended path P:

π0 S1 π1 · · · Sα πα

1. the Si ’s are non-empty sets of simple loops,

2. the πi ’s are non-empty paths,

3. if S occurs just before [resp. after] a path π, then all the
simple loops in S loops on the first [resp. last] state of π.



Some more auxiliary notions
I A sequence of transitions is compatible with the guarded

mode gmd
def⇔ all its transitions are compatible with gmd.

I Skeleton of P is the path π0 · · ·πα.

I S = {sl1, . . . , slm} with sl1 ≺ · · · ≺ slm

e(S)
def
= (sl1)+ · · · (slm)+

(the underlying alphabet is T )

I e(P)
def
= π0 · e(S1) · · · e(Sα) · πα.

I Lan(P)
def
= Lan(e(P)).

I Run ρ = 〈q0,x0〉
t1−→ · · · t`−→ 〈q`,x`〉 respects P def⇔

π = t1 · · · t` ∈ Lan(P).



Global phases
(Intervals may change)

I Global phase: finite sequence of transitions such that each
transition in it is compatible with some guarded mode
〈im,md〉, for some mode md ∈ {INC,DEC}d .

I A run respecting a global phase has no reversal for all the
counters (i.e. constant vector mode).

I r -reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉.
I ρ can be divided as a sequence of subruns ρ = ρ1 · ρ2 · · · ρL.

I Each ρi respects a global phase.

I L ≤ (d × r) + 1.



Local phases

I Local phase: finite sequence of transitions such that each
transition in it is compatible with some guarded mode
〈im,md〉.

I A run respecting a local phase has no reversals and the
counter values satisfy the same atomic guards.

I r -reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉.
I ρ can be divided as a sequence ρ = ρ1 · ρ2 · · · ρL′ .

I Each ρi respects a local phase.

I L′ ≤ ((d × r) + 1)× 2Kd .



Sequences of extended paths

I P1 · · ·PL′ such that
I each Pi is an extended path compatible with some guarded

mode,

I P1 · · ·PL′ is compatible with the control graph ofM.

I Any r -reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉
respects a sequence of extended paths P1 · · ·PL′ with

L′ ≤ ((d × r) + 1)× 2Kd



Small extended path (bis)

I Small extended path:

1. π0 and πα have at most 2× card(Q) transitions,

2. π1, . . . , πα−1 have at most card(Q) transitions,

3. for each q ∈ Q, there is at most one set S containing simple
loops on q.

I Length of the skeleton bounded by card(Q)(3 + card(Q)).

I The set of small extended paths is finite.



Runs in normal form

I Run ρ = 〈q0,x0〉 · · · 〈q`,x`〉 respecting P compatible with
some guarded mode gmd.

I Then, there is small P′ still compatible with gmd and a run

ρ′ = 〈q0,x0〉 · · · 〈q`,x`〉

such that ρ′ respects P′.

I Generalization of the case for finite-state automata but with
constraints on initial and final counter values.

I Convexity of the guards is used.



Small extended path compatible with gmd

I Extended path P:

π0 S1 π1 · · · Sα πα

I Small extended path:
1. π0 and πα have at most 2× card(Q) transitions,
2. π1, . . . , πα−1 have at most card(Q) transitions,
3. for each q ∈ Q, there is at most one set S containing simple

loops on q.

I For every transition t = q
〈g,a〉−−→ q′:

1. im ` g,
2. for every i ∈ [1,d ],

I md(i) = INC implies a(i) ≥ 0,
I md(i) = DEC implies a(i) ≤ 0.



Normal forms

I r -reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉.

I ρ can be divided as a sequence ρ = ρ1 · ρ2 · · · ρL′ such that
I each ρi respects a small extended path Pi compatible with

some guarded mode gmdi .

I L′ ≤ ((d × r) + 1)× 2Kd .



Reachability Sets are Presburger Sets



I Small extended path P compatible with gmd = 〈im,md〉

π0 {sl11 , . . . , sln1
1 } π1 · · · {sl1α, . . . , slnαα } πα

where q0 is the first control state in π0 and qf is the last
control state in πα (= π′α · t).

I There is ϕ(x, y) of exponential size in |M| such that

JϕK = {〈x0,y〉 : there is a run 〈q0,x0〉
∗−→ 〈qf ,y〉 respecting P}

I ϕ states the following properties:
1. the values in x0 belong to the right intervals induced by im,

2. the counter values for the penultimate configuration 〈q′f ,y′〉
belong to the right intervals induced by im,

3. the values for ȳ are obtained from x̄ by considering the
effects of the paths πi plus a finite amount of times the
effects of each simple loop occurring in P.



Arghhhh !!!!!

∃ z1
1, . . . , z

n1
1 , . . . , z

1
α, . . . , z

nα
α

(z1
1 ≥ 1) ∧ · · · ∧ (zn1

1 ≥ 1) ∧ · · · ∧ (z1
α ≥ 1) ∧ · · · ∧ (znα

α ≥ 1)∧

(ȳ = x̄ + ef(π0) + · · ·+ ef(πα) +
∑
i,j

zj
ief(sl ji ))∧

(
∧

im`xc∼k

xc ∼ k) ∧ (
∧

not im`xc∼k

¬(xc ∼ k))∧

(
∧

im`xc∼k

(xc+ef(π0)(c)+· · ·+ef(πα−1)(c)+ef(π′α)(c)+
∑
i,j

zj
ief(sl ji )(c)) ∼ k)∧

(
∧

not im`xc∼k

¬(xc+ef(π0)(c)+· · ·+ef(πα−1)(c)+ef(π′α)(c)+
∑
i,j

zj
ief(sl ji )(c) ∼ k))



One more step

I Sequence of small extended paths P1 · · ·PL′ .

I There is ϕ(x̄, ȳ) such that

JϕK = {〈x,y〉 : there is a run 〈q0,x〉
∗−→ 〈qf ,y〉 respecting P1 · · ·PL′}

I ϕi(x̄, ȳ) for each Pi .

∃ z̄0, . . . , z̄L′ (x̄ = z̄0) ∧ (ȳ = z̄L′)∧

ϕ1(z̄0, z̄1) ∧ ϕ2(z̄1, z̄2) ∧ · · · ϕL′−1( ¯zL′−2, ¯zL′−1) ∧ ϕL′( ¯zL′−1, z̄L′).



I r -reversal-bounded 〈M, 〈q,x〉〉 that is for some r ≥ 0.

I For each q′ ∈ Q, the set

{y ∈ Nd : 〈q,x〉 ∗−→ 〈q′,y〉}

is a computable Presburger set.

I Formula ϕ(ȳ):

∃ x (
∧

i∈[1,d ]

x(i) = xi) ∧
∨

small seq. σ=P1···PL′ ending by q′

ϕσ(x̄, ȳ)

I Assuming thatM is uniformly r -reversal-bounded for some
r ≥ 0. For all q, q′, one can compute ϕ(x̄, ȳ) such that

JϕK = {〈x,y〉 ∈ N2d : 〈q,x〉 ∗−→ 〈q′,y〉}



Time to reap the rewards!

I Reachability problem with bounded number of reversals.

Input: a CMM, r ∈ N, 〈q0,x0〉 and 〈qf ,xf 〉.

Question: Is there a run from 〈q0,x0〉 to 〈qf ,xf 〉 such that
each counter has at most r reversals?

I When 〈M, 〈q0,x0〉〉 is r ′-reversal-bounded for some r ′ ≤ r ,
we get an instance of the reachability problem with initial
configuration 〈q0,x0〉.

I The reachability problem with bounded number of
reversals is decidable.



Complexity

I The reachability problem with bounded number of reversals
is NP-complete, assuming that all the natural numbers are
encoded in binary except the number of reversals.

I The problem is NEXPTIME-complete assuming that all the
natural numbers are encoded in binary.

[Gurari & Ibarra, ICALP’81; Howell & Rosier, JCSS 87]

I NEXPTIME-hardness as a consequence of the standard
simulation of Turing machines. [Minsky, 67]



Two or Three Extensions



Adding equality constraints

I Guards so far:

g ::= > | ⊥ | x ∼ k | g ∧ g | g ∨ g | ¬g

where ∼∈ {≤,≥,=} and k ∈ N.

I Adding equalities x = x′ and inequalities x 6= x′.

I Updates are still equal to a ∈ Zd .



Deterministic Minsky machines

I A counter stores a single natural number.

I A Minsky machine can be viewed as a finite-state machine
with two counters.

I Operations on counters:
I Check whether the counter is zero.

I Increment the counter by one.

I Decrement the counter by one if nonzero.



2-counter Minsky machines

I Set of n instructions.

I The l th instruction has one of the forms below (i ∈ {1,2},
l ′ ∈ {1, . . . ,n}):

l: xi := xi + 1; goto l ′

l: if xi = 0 then goto l ′ else xi := xi − 1; goto l ′′

n: halt

I Configurations are elements of [1,n]× N× N.

I Initial configuration: 〈1,0,0〉.



Computations

I A computation is a sequence of configurations starting
from the initial configuration and such that two successive
configurations respect the instructions.

I The Minsky machine
1: x1 := x1 + 1; goto 2
2: x2 := x2 + 1; goto 1
3: halt

has unique computation

〈1,0,0〉 −→ 〈2,1,0〉 −→ 〈1,1,1〉 −→ 〈2,2,1〉 −→ 〈1,2,2〉 −→ 〈2,3,2〉 . . .



Halting problem

I Halting problem:
input: a 2-counter Minsky machineM;

question: is there a finite computation that ends with
location equal to n?

(n is understood as a special instruction that halts the
machine)

I Theorem: The halting problem is undecidable. [Minsky,67]

I Minsky machines are Turing-complete.



Undecidability

I Minsky machineM with n instructions and 2 counters.

I Each counter x inM is given two counters xinc and xdec .

I Zero-test on x is simulated by the guard xinc = xdec .

I A decrement on x first check that xinc 6= xdec and then
increment xdec .

I M can be simulated by a 0-reversal-bounded counter
machine with four counters.

I M halts iff the set of counter values for reaching the state
n in the 0-reversal-bounded counter machine is not empty.



Weak reversal-boundedness

I Reversals are recorded only above a bound B:

◦

B

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

I Effective semilinearity of the reachability sets.
[Finkel & Sangnier, MFCS’08]



Formal definition
I Counter machineM = 〈Q,T ,C〉 and bound B ∈ N.

I From ρ = 〈q0,x0〉
t1−→ 〈q1,x1〉, . . ., we defined a sequence of

mode vectors md0,md1, . . . with each mdi ∈ {INC,DEC}d .

I Set of positions RevB
i :

{j ∈ [0, |ρ| − 1] : mdj(i) 6= mdj+1(i), {xj(i),xj+1(i)} 6⊆ [0,B]}

I 〈M, 〈q,x〉〉 is r -reversal-B-bounded def⇔ for every finite run
ρ starting at 〈q,x〉, card(RevB

i ) ≤ r for every i ∈ [1,d ].

I 〈M, 〈q,x〉〉 is weakly reversal-bounded def⇔ there are
r ,B ≥ 0 such that 〈M, 〈q,x〉〉 is r -reversal-B-bounded.

I r -reversal-boundedness = r -reversal-0-boundedness.



Reachability sets are Presburger sets too!

I r -reversal-B-bounded counter machine 〈M, 〈q,x〉〉.

I For each q′ ∈ Q,

{y ∈ Nd : 〈q,x〉 ∗−→ 〈q′,y〉}

is a computable Presburger set.

I This extends the results for r -reversal-boundedness.

I . . . but the proof uses simply those results.



The Reversal-Boundedness Detection Problem



The reversal-boundedness detection problem

I The reversal-boundedness detection problem:

Input: Counter machineM of dimension d ,
configuration 〈M, 〈q0,x0〉〉 and i ∈ [1,d ].

Question: Is 〈M, 〈q0,x0〉〉 reversal-bounded with respect
to the counter xi?

I Undecidability due to [Ibarra, JACM 78].

I Restriction to VASS is decidable [Finkel & Sangnier, MFCS’08].



Undecidability proof

I Minsky machineM with halting state qH (2 counters).

I EitherM has a unique infinite run (and never visits qH ) or
M has a finite run (and halts at qH ).

I Counter machineM′: replace t = qi
ϕ−→ qj by

qi
++x1−−→ qnew

1,t
--x1−−→ qnew

2,t
ϕ−→ qj

I We have the following equivalences:
I M halts.
I ForM′, qH is reached from 〈q0,0〉.
I Unique run ofM′ starting by 〈q0,0〉 is finite.
I M′ is reversal-bounded from 〈q0,0〉.



Decidable Repeated Reachability Problems



The problems
I Control state repeated reachability problem with bounded

number of reversals:
Input: CMM, 〈q0,x0〉, r ≥ 0, state qf .

Question: is there an infinite r -reversal-bounded run
starting from 〈q0,x0〉 such that qf is repeated
infinitely often?

I Control state reachability problem with bounded number of
reversals:

Input: CMM, 〈q0,x0〉, r ≥ 0, state qf .
Question: is there a finite r -reversal-bounded run

starting from 〈q0,x0〉 such that qf is reached?

I Control state reachability problem with bounded number of
reversals is decidable.

I Control state repeated reachability problem with bounded
number of reversals is decidable.

[Dang & Ibarra & San Pietro, FSTTCS’01]



Next lecture on October 14th

I Lecturer: Alain Finkel (finkel@lsv.fr).



Exercises

I Show that the class of ultimately periodic sets is closed
under union and intersection.

I Show that for every linear set there is an initialized
0-reversal-bounded counter machine whose reachability
set is equal to it.



Exercise (1/5)

I Goal: Show decidability of the problem:

Input: 〈M, 〈q,x〉〉 and semilinear set X ⊆ Nd defined
by 〈b1,P1〉, . . . , 〈bα,Pα〉.

Question: Is there an infinite r -reversal-bounded run
from 〈q,x〉 such that infinitely often the
counter values are in X?

A) Show that we can restrict ourselves to α = 1 and infinitely
often the counter values belong to the linear set 〈b1,P1〉
and simulaneously the location is some fixed q′.



Exercise (2/5)

B) Linear set X characterised by b and p1, . . . , pN .
Let x1,x2, . . . be an infinite sequence of elements in X .
Show that there are `′ < ` and a,c ∈ NN such that

(I) x`′ � x`,

(II) x`′ = b +
∑

k∈[1,N]

a(k)pk ,

(III) x` = b +
∑

k∈[1,N]

c(k)pk ,

(IV) a � c.

C) Design a 0-reversal-bounded counter machine with d
counters such that for some state q0,qf ∈ Q, for all x ∈ Nd ,
x ∈ X iff there is a run from 〈q0,x〉 to 〈qf ,0〉.



Exercise (3/5)

D) Design a 1-reversal-bounded CM with 2d counters such
that for some state q0,qf ∈ Q, for all x ∈ N2d such that the
restriction to x to the d last counters equal to 0,

the restriction of x to the d first counters belongs to X
iff

there is a run from 〈q0,x〉 to 〈qf ,x〉.

E) Design a 1-reversal-bounded CM with 4d counters such
that for some state q0,qf ∈ Q, for all x ∈ N4d such that the
restriction to x to the 2d last counters equal to 0,

there are λ1, . . . , λN ∈ N such that for all i ∈ [1,d ],
x(d + i)− x(i) = λ1p1(i) + · · ·λNpN(i)

iff
there is a run from 〈q0,x〉 to 〈qf ,x〉.



Exercise (4/5)
Show that the conditions below are equivalent:

(?) There is an infinite r -reversal-bounded run from 〈q0,x0〉
such that counter values belong to X and the state is q′

infinitely often.

(??) There exist a finite r -reversal-bounded run
ρ = 〈q0,x0〉

t1−→ 〈q1,x1〉 · · ·
tl−→ 〈q`,x`〉, `′ ∈ [0, `− 1] and

C= ⊆ C such that

(a) q` = q`′ = q′,
(b) x`′ ,x` ∈ X ,
(c) (I)–(IV) above,
(d) for xi ∈ C= and j ∈ [`′ + 1, `], xj (i)− xj−1(i) = 0,
(e) for xi ∈ (C r C=) and j ∈ [`′ + 1, `], xj−1(i) ≤ xj (i),
(f) for xi ∈ (C r C=), we have kmax < x`′(i).

(g) for all xi ∈ C=, have x`′(i) ≤ kmax .

kmax : maximal constant k occurring in guards



Exercise (5/5)

I Design a reduction from (??) to an instance of the
reachability problem with bounded number of reversals.

I Conclude that checking whether an initialized counter
machine has an infinite r -reversal-bounded run visiting
infinitely often a semilinear set can be decided in
NEXPTIME.


