Fondements pour la vérification des systèmes temps-réel et concurrents

Lecture 3
Alternation and LTL extensions

Stéphane Demri

October 8th, 2007
Summary from previous lecture

\[\mathcal{B}_\phi = (\Sigma, S, S_0, \rho, F_1, \ldots, F_k) \]

- \(S \) is the set of maximally consistent sets wrt \(\phi \),

- \(\Sigma = \mathcal{P}(\text{PROP}) \),

- \(S_0 = \{ X \in S : \phi \in X \} \),

- \(Y \in \rho(X, a) \) iff
 - \(X \cap \text{PROP} = a \),
 - for \(X\psi \in \text{cl}(\phi) \), \(X\psi \in X \) iff \(\psi \in Y \),

- If \(\psi_1 \cup \psi_1', \ldots, \psi_k \cup \psi_k' \) occurs in \(\phi \), then
 \[F_i \overset{\text{def}}{=} \{ X \in S : \text{either } \psi_i \cup \psi_i' \notin X \text{ or } \psi_i' \in X \} \]

- If \(U \) does not occur in \(\phi \), then \(k = 1 \) and \(F_1 = S \).
Simple complexity properties

- $L(\mathcal{B}_\phi) = \text{Models}(\phi)$.

- Checking whether $\mathcal{X} \subseteq \text{cl}(\phi)$ belongs to S [resp. S_0, F_1, \ldots, F_k] can be done in polynomial-time in $|\phi|$.

- Checking whether $\mathcal{Y} \in \rho(\mathcal{X}, a)$ can be done in polynomial-time in $|\phi|$.

- $|S|$ is in $2^\mathcal{O}(|\phi|)$.

- Elements in S can be encoded in polynomial-space in $|\phi|$.
NPSPACE algorithm

1. Guess \(s_0 \in S_0, s_1 \in F_1, \ldots, s_k \in F_k; \)

2. \(i := 0; s := s_0 \) (current state);

3. While \(s \neq s_1 \) and \(i < |S| \) do

 3.1 Guess \(s' \) such that \(s \xrightarrow{a} s' \) for some \(a \in \Sigma; \)

 3.2 \(i := i + 1; s := s'. \)

4. If \(s \neq s_1 \), then abort otherwise

 4.1 \(i := 0; j := 2; \)

 4.2 While \(i := 0 \) or \((j \neq 1 \text{ and } i < |S| \times k)\) do

 4.2.1 Guess \(s' \) such that \(s \xrightarrow{a} s' \) for some \(a \in \Sigma; \)

 4.2.2 \(i := i + 1; s := s'. \)

 4.2.3 If \(s' \in F_j \) then nondeterministically choose either

 \(j := (j \mod k) + 1 \) or skip;

 4.3 If \(s = s_1 \), then accept, otherwise abort.
Complexity

- \mathcal{B}_ϕ is in exponential size in $|\phi|$.

- Testing on-the-fly the nonemptiness of \mathcal{B}_ϕ can be done in NPSpace.

- By Savitch’s theorem: $\text{NPSpace} = \text{PSpace}$.

- Satisfiability for LTL is in PSpace.
What about model-checking?

- Let $\mathcal{M} = (W, R, L)$ be a finite and total Kripke structure and $s_0 \in W$.

- $L(\mathcal{A}_\mathcal{M}, s_0) = \text{Paths}(\mathcal{M}, s_0)$:

 $$\mathcal{A}_\mathcal{M}, s_0 = (\mathcal{P}(\text{PROP}), W, \{s_0\}, \rho, W)$$

 where $\rho(s, a) \overset{\text{def}}{=} \{s' : (s, s') \in R, \ a = L(s)\}$ for all $s \in W$ and $a \subseteq \text{PROP}$.

- $\mathcal{M}, s_0 \models \exists \phi$ iff $L(\mathcal{A}_\mathcal{M}, s_0) \cap L(\mathcal{B}_\phi) \neq \emptyset$.

- LTL model-checking is in PSPACE.

Stéphane Demri Fondements pour la vérification des systèmes temps-réel et co
Exercise (bis)

- Adapt the automata-based approach to deal with X^{-1}:
 \[\sigma, i \models X^{-1}\phi \iff i > 0 \text{ and } \sigma, i - 1 \models \phi. \]

- Adapt the automata-based approach to deal with S:
 \[\sigma, i \models \phi S\psi \iff \text{there is } j \leq i \text{ such that } \sigma, j \models \psi \text{ and for } j < k \leq i, \text{ we have } \sigma, k \models \phi. \]

- Characterize the complexity of model-checking and satisfiability problems for $\text{LTL}(U, X, X^{-1}, S)$.
LTL and alternating Büchi automata
Positive Boolean formulae

Given a finite set \mathcal{X}, $\mathcal{B}^+(\mathcal{X})$ denotes the set of positive Boolean formulae built over $\mathcal{X} \cup \{\bot, \top\}$.

Example: $(s \lor s') \land s'' \in \mathcal{B}^+(\{s, s', s''\})$.

Each subset $\mathcal{Y} \subseteq \mathcal{X}$ can be viewed as a propositional valuation: $s \in \mathcal{Y}$ iff s is interpreted as true.

$\mathcal{Y} \models \phi \in \mathcal{B}^+(\mathcal{X}) \iff \phi$ holds true in the interpretation \mathcal{Y}.

Example: $\{s, s''\} \models (s \lor s') \land s''$.
Alternating Büchi automata

- $A = (\Sigma, S, s_0, \rho, F)$ with
 - Σ: finite alphabet,
 - S: finite set of states,
 - $s_0 \in S$: initial state,
 - $\rho: S \times \Sigma \rightarrow B^+(S)$: transition relation,
 - $F \subseteq S$: set of accepting states.

Encoding nondeterministic BA in alternating BA:

$$\rho(s, a) \mapsto \bigvee_{s' \in \rho(s, a)} s'$$
Accepting runs

- A run r on the ω-sequence $a_0 a_1 a_2 \ldots \in \Sigma^\omega$ is a (possibly infinite) tree whose nodes are labelled by states in S and s.t.
 - $r = (T, \mathcal{T})$ where T is a tree and $\mathcal{T} : T \rightarrow S$,
 - Root of T is labelled by s_0 (i.e. $\mathcal{T}(\epsilon) = s_0$),
 - For $x \in T$, if $|x| = i$ (depth in T) and $\mathcal{T}(x) = s$ then
 \begin{align*}
 \{\mathcal{T}(x_1), \ldots, \mathcal{T}(x_k)\} \models \rho(s, a_i) \text{ where } x_1, \ldots, x_k \text{ are the children of } x.
 \end{align*}

- A run is accepting $\overset{\text{def}}{\iff}$ for every infinite branch of T, an accepting state is repeated infinitely often.

- $L(\mathcal{A})$: set of ω-sequences in Σ^ω for which there is an accepting run.
Properties

- ABA are closed under intersection, union and complementation (with quadratic blow-up).

- Nonemptiness problem for ABA is PSPACE-complete [Chandra & Kozen & Stockmeyer, JACM 81].
From ABA to NBA

Given an ABA $\mathcal{A} = (\Sigma, S, s_0, \rho, F)$, there is a NBA $\mathcal{A}_n = (\Sigma, S', s'_0, \rho', F')$ s.t. $L(\mathcal{A}) = L(\mathcal{A}_n)$.

Idea of the proof: \mathcal{A}_n guesses the set of states at each level of an accepting run of \mathcal{A}.

A state of \mathcal{A}_n is a set of states from \mathcal{A}.

One needs to encode which states are visited infinitely often on each branch of the accepting run of \mathcal{A}.

A state of \mathcal{A} is divided in two subsets in order to distinguish branches that visit recently an accepting state.
\(S' \overset{\text{def}}{=} \mathcal{P}(S) \times \mathcal{P}(S) \)

if \((X, \mathcal{Y}) \in S\) then \(\mathcal{Y}\) is the set of states on branches that visit recently an accepting state,

\(S'_0 \overset{\text{def}}{=} \{ (\{s_0\}, \emptyset) \} \);

\(F' \overset{\text{def}}{=} \emptyset \times \mathcal{P}(S) \);

Transition relation \(\rho' \) (2 subcases):

\[\begin{align*}
\rho'((\emptyset, X'), a) & \overset{\text{def}}{=} \{ (\mathcal{Y}, \mathcal{Y}') : \exists Z \models \bigwedge_{s \in X'} \rho(s, a), \mathcal{Y} = Z \setminus F, \mathcal{Y}' = Z \cap F \} \\
\rho'((X, X'), a) & \overset{\text{def}}{=} \{ (\mathcal{Y}, \mathcal{Y}') : \exists Z, Z' \text{ such that} \} \\
& \quad Z \models \bigwedge_{s \in X} \rho(s, a), Z' \models \bigwedge_{s \in X'} \rho(s, a), \mathcal{Y} = Z \setminus F, \mathcal{Y}' = Z' \cup (Z \cap F) \}.
\end{align*}\]
Negative normal form

- \(\phi R \psi \overset{\text{def}}{=} \neg (\neg \phi U \neg \psi) \).

- A formula built over \(\lor, \land, X, U, R, \neg \) and PROP in which negation occurs only in front of propositional variables is said to be in negative normal form.

- Every formula in LTL is equivalent to a formula in negative normal form (reduction in polynomial-time).

- Some essential properties:
 - \(\neg X \phi \) is equivalent to \(X \neg \phi \),
 - \(\neg (\phi U \psi) \) is equivalent to \((\neg \phi R \neg \psi) \),
 - \(\neg (\phi \land \psi) \) is equivalent to \((\neg \phi \lor \neg \psi) \).
From LTL formulae to ABA

\[A = (\Sigma, S, s_0, \rho, F) \]

- \(S \) is the set of subformulae of \(\phi \),

- \(s_0 \overset{\text{def}}{=} \phi \),

- \(\Sigma \overset{\text{def}}{=} \mathcal{P}(\text{PROP}) \),

- \(F \) is equal to \(S \) restricted to formulae whose outermost connective is not \(\text{U} \).

- Transition relation:
 - \(\rho(p, a) \overset{\text{def}}{=} \top \) if \(p \in a \); \(\rho(\neg p, a) \overset{\text{def}}{=} \top \) if \(p \not\in a \),
 - \(\rho(p, a) \overset{\text{def}}{=} \bot \) if \(p \not\in a \); \(\rho(\neg p, a) \overset{\text{def}}{=} \bot \) if \(p \in a \),
 - \(\rho(\psi \land \psi', a) \overset{\text{def}}{=} \rho(\psi, a) \land \rho(\psi', a) \),
 - \(\rho(X\psi, a) \overset{\text{def}}{=} \psi \),
 - \(\rho(\psi \text{U} \varphi, a) \overset{\text{def}}{=} \rho(\varphi, a) \lor (\rho(\psi, a) \land (\psi \text{U} \varphi)) \),
 - \(\rho(\psi \text{R} \varphi, a) \overset{\text{def}}{=} \rho(\varphi, a) \land (\rho(\psi, a) \lor (\psi \text{R} \varphi)) \).
Example

- Extensions:
 - $\rho(\top, a) \overset{\text{def}}{=} \top$; $\rho(\bot, a) \overset{\text{def}}{=} \bot$;
 - $\rho(F\psi, a) \overset{\text{def}}{=} \rho(\psi, a) \lor F\psi$;
 - $\rho(G\psi, a) \overset{\text{def}}{=} \rho(\psi, a) \land G\psi$.

- Transition relation for FGp:

<table>
<thead>
<tr>
<th>s</th>
<th>$\rho(s, \emptyset)$</th>
<th>$\rho(s, {p})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGp</td>
<td>FGp</td>
<td>$Gp \lor FGp$</td>
</tr>
<tr>
<td>Gp</td>
<td>\bot</td>
<td>Gp</td>
</tr>
<tr>
<td>p</td>
<td>\bot</td>
<td>\top</td>
</tr>
</tbody>
</table>
Summary

- \(L(\mathcal{A}_\phi) \) is the set of models for \(\phi \).

- The number of states of \(\mathcal{A}_\phi \) is polynomial in \(|\phi| \).

- The difficulty is in the nonemptiness test for ABA.

- Corollary: When PROP is finite and fixed, satisfiability for LTL is in \(\text{PSPACE} \).

- NB: LTL satisfiability/model-checking can be reduced in logspace to LTL satisfiability/model-checking with at most 2 propositional variables.
Exercise

- Construct the ABA for $FGp \land FGq$ with the previous systematic construction and compare it with a direct construction.

- Represent an accepting run for $\{p\}{q}\{q\}{p}\{p, q\}^\omega$.
Wolper’s automata-based operators
From BA to LTL formulae?

- $\phi \mapsto A\phi$ [Büchi, 62; Wolper & Vardi, IC 94].

- BA A over $P(\text{PROP}) \mapsto$ LTL formula ϕ_A?

- ω-sequences accepted by the BA below are exactly the sequences with $\{p\}$ on even positions:

![Diagram](attachment:image.png)

- What about

 1. $G(p \Leftrightarrow XXp) \land p \land X\neg p$,
 2. $p \land G(p \Rightarrow XXp)$,
 3. $q \land X\neg q \land G(q \Leftrightarrow XXq) \land G(q \Rightarrow p)$

 ?
Expressive power

- By Kamp’s theorem, LTL\((U^s, S^s)\) is as expressive as first-order theory on \((\mathbb{N}, <)\).

- LTL is as expressive as first-order theory on \((\mathbb{N}, <)\) with respect to initial equivalence.

- Büchi automata are as expressive as monadic second-order theory on \((\mathbb{N}, <)\).

- **Proposition** [Wolper, IC 83]
 There is no LTL formula \(\phi\) built over the unique propositional variable \(p\) such that \(\text{Models}(\phi)\) is exactly the set of LTL models such that \(p\) holds true on every even position (on odd positions, \(p\) may hold true or not).
Proof of proposition

- Suppose that there is a formula ϕ built over p and $|\phi|_X$ be the number of X occurrences in ϕ.

- $\mathbb{N}(\phi) \overset{\text{def}}{=} \{ i \in \mathbb{N} : \{p\}^i \cdot \emptyset \cdot \{p\}^\omega \models \phi \}$

- We shall show that for $n \geq |\phi|_X + 1$, $n \in \mathbb{N}(\phi)$ iff $n + 1 \in \mathbb{N}(\phi)$.

- Consequently, $|\phi|_X + 1 \in \mathbb{N}(\phi)$ iff $|\phi|_X + 2 \in \mathbb{N}(\phi)$.

- However, exactly one structure among $\{p\}^{|\phi|_X+1} \cdot \emptyset \cdot \{p\}^\omega$ and $\{p\}^{|\phi|_X+2} \cdot \emptyset \cdot \{p\}^\omega$ is a model for ϕ, a contradiction.
Induction

- Base case: $\phi = p$
 - $\mathbb{N}(\phi) = \mathbb{N} \setminus \{0\}$ and $|\phi|_X = 0$.
 - For $n \geq 1$, $n \in \mathbb{N}(\phi)$ iff $n + 1 \in \mathbb{N}(\phi)$.

- Induction hypothesis: for ϕ s.t. $|\phi| \leq N$, for $n \geq |\phi|_X + 1$, $n \in \mathbb{N}(\phi)$ iff $n + 1 \in \mathbb{N}(\phi)$.
Case $\phi = \phi_1 \land \phi_2$

- Cases for \neg and \lor are analogous.

- $|\phi|_X = |\phi_1|_X + |\phi_2|_X$.

- Equivalence between the propositions below ($n \geq |\phi|_X + 1$):
 - $n \in \mathbb{N}(\phi)$,
 - $n \in \mathbb{N}(\phi_1)$ and $n \in \mathbb{N}(\phi_2)$ (\land semantics);
 - $n + 1 \in \mathbb{N}(\phi_1)$ and $n + 1 \in \mathbb{N}(\phi_2)$
 (by (IH) since $|\phi_1|, |\phi_2| \leq N$ and $n \geq |\phi_1|_X + 1, |\phi_2|_X + 1$),
 - $n + 1 \in \mathbb{N}(\phi)$ (\land semantics).
\[\phi = X\psi \]

\[|\phi|_X = 1 + |\psi|_X. \]

- Equivalence between the propositions below \((n \geq |\phi|_X + 1 \geq 2)\):
 - \(n \in \mathbb{N}(\phi)\),
 - \(n - 1 \in \mathbb{N}(\psi)\) (X semantics),
 - \(n \in \mathbb{N}(\psi)\) (by (IH) since \(|\psi| \leq N\) and \(n - 1 \geq |\psi|_X + 1\)),
 - \(n + 1 \in \mathbb{N}(\phi)\) (X semantics).
\[\phi = \phi_1 \cup \phi_2 \]

\[|\phi|_X = |\phi_1|_X + |\phi_2|_X. \]

Let \(n \geq |\phi|_X + 1 \) and suppose \(\sigma^n = \{p\}^n \emptyset \{p\}^\omega \models \phi. \)

There exists \(j \geq 0 \) such that \(\sigma^n, j \models \phi_2 \) and for \(0 \leq k < j \), we have \(\sigma^n, k \models \phi_1. \)

We shall show that \(\sigma^{n+1} = \{p\}^{n+1} \emptyset \{p\}^\omega \models \phi \), i.e. \(n + 1 \in \mathbb{N}(\phi). \).
First part of the until case

- Subcase $j = 0$
 - $|\phi_2| \leq N$ and $n \geq |\phi_2|X + 1$.
 - By (IH), $n + 1 \in \mathbb{N}(\phi_2)$, whence $n + 1 \in \mathbb{N}(\phi)$.

- Subcase $j \geq 1$
 - $|\phi_1| \leq N$ and $n \geq |\phi_1|X + 1$.
 - $n \in \mathbb{N}(\phi_1)$.
 - By (IH), $n + 1 \in \mathbb{N}(\phi_1)$.
 - Hence $n + 1 \in \mathbb{N}(\phi)$.
Second part of until case

- Now suppose that $\sigma^{n+1} = \{p\}^{n+1} \emptyset \{p\}^\omega \models \phi$.

- There exists $j \geq 0$ s.t. $\sigma^{n+1}, j \models \phi_2$ and for $0 \leq k < j$, we have $\sigma^{n+1}, k \models \phi_1$.

- If $j = 0$, then since $|\phi_2| \leq N$ and $n \geq |\phi_2| \chi + 1$, by (IH) $n \in \mathbb{N}(\phi_2)$, whence $n \in \mathbb{N}(\phi)$.

- If $j \geq 1$, then $\sigma^{n+1}, 1 \models \phi$, whence $n \in \mathbb{N}(\phi)$.
Extended temporal logic ETL

- FSA $\mathcal{A} = (\Sigma, S, S_0, \rho, F)$ with $\Sigma = a_1 < \ldots < a_k$.

- ETL = LTL + all formulae $\mathcal{A}(\phi_1, \ldots, \phi_k)$.

- $\sigma, i \models \mathcal{A}(\phi_1, \ldots, \phi_k)$ $\overset{\text{def}}{\iff}$
 - either $S_0 \cap F \neq \emptyset$ ($\epsilon \in L(\mathcal{A})$),
 - or there is a finite word $a_{i_1}a_{i_2} \ldots a_{i_n} \in L(\mathcal{A})$ such that for every $1 \leq j \leq n$, $\sigma, i + (j - 1) \models \phi_{i_j}$.

- If $S_0 \cap F \neq \emptyset$, then $\mathcal{A}(\phi_1, \ldots, \phi_k)$ is equivalent to \top.

- $L(\mathcal{A}) = \{ab^i a : i \geq 0\}$ and $a < b$: $\mathcal{A}(p, q)$

Stéphane Demri
Fondements pour la vérification des systèmes temps-réel et complémentaire
Define X and U with automata-based operators.

Define a formula ϕ in ETL built over p whose models are exactly those in which p holds true at least on even positions.

Model-checking and satisfiability problems for ETL are PSPACE-complete [Vardi & Wolper, IC 94].

ETL has the same expressive power as Büchi automata:
- For any BA A over $\Sigma = \{a_1, \ldots, a_k\}$, for any map $l : \Sigma \rightarrow \mathcal{X}$ where \mathcal{X} is a set of finite subsets of PROP, there is a formula ϕ in ETL built over $\bigcup_i l(a_i)$ s.t. $L(A) = \text{Models}(\phi)$.

Stéphane Demri
Fondements pour la vérification des systèmes temps-réel et concurr...
Expressive power

The class of languages defined by ETL formulae is equal to the class of languages defined by

- Büchi automata,
- formulae from monadic second-order theory for \((\omega, <)\), also known as S1S,
- \(\omega\)-regular expressions (or by finite union of sets \(U \cdot V^\omega\) with regular \(U, V \subseteq \Sigma^*\)),
- formulae from LTL with second-order quantification.
 - \(\sigma, \sigma' : \mathbb{N} \to \mathcal{P}(\text{PROP}), p \in \text{PROP.}\)
 \[
 \sigma \approx_p \sigma' \overset{\text{def}}{\iff} \text{for } i \in \mathbb{N}, \sigma(i) \setminus \{p\} = \sigma'(i) \setminus \{p\}.
 \]
 - LTL with second-order quantification: \(\sigma, i \models \forall p \phi \overset{\text{def}}{\iff} \text{for } \sigma' \)
 \[
 \text{s.t. } \sigma \approx_p \sigma', \text{ we have } \sigma', i \models \phi.
 \]
- formulae from LTL with fixed-point operators [Vardi, POPL 88].
Consiseness

ETL is a powerful and concise extension of LTL:

- the nonemptiness problem for Büchi automata is \(\text{NLOGSPACE} \)-complete,

- \(\text{MC}^\exists (\text{ETL}) \) and \(\text{SAT} (\text{ETL}) \) are \(\text{PSPACE} \)-complete,

- satisfiability for LTL with fixed-point operators is \(\text{PSPACE} \)-complete [Vardi, POPL 88],

- satisfiability for S1S is non-elementary (time complexity is not bounded by any tower of exponentials of fixed height).
Extension with context-free languages

- C: class of languages of finite words.

- $\text{LTL} + C$: extension of LTL with formulae $L(\phi_1, \ldots, \phi_n)$ for some $L \in C$.

- ETL = LTL + REG where REG is the class of regular languages represented by finite-state automata.

- Context-free languages (in CF) represented by context-free grammars.

- SAT(LTL + CF) is undecidable.
Proof

- Language equality between context-free grammars is undecidable.

- Reduction to SAT(LTL + CF).

- G_1, G_2: CF grammars over $\Sigma = \{a_1, \ldots, a_n\}$.

- G_1^+, G_2^+: CF grammars over $\Sigma^+ = \{a_1, \ldots, a_n, a_{n+1}\}$ s.t. $L(G_1^+) = L(G_1) \cdot \{a_{n+1}\}$ and $L(G_2^+) = L(G_2) \cdot \{a_{n+1}\}$.

- G_1^+ and G_2^+ can be effectively computed from G_1 and G_2, respectively.

- $L(G_1) = L(G_2)$ iff $L(G_1^+) = L(G_2^+)$.

- We shall construct ϕ_{G_1, G_2} in LTL + CF s.t. ϕ_{G_1, G_2} is satisfiable iff $L(G_1) \neq L(G_2)$.

Stéphane Demri
Building ϕ_{G_1,G_2}

- ϕ_{G_1,G_2} is built over p_1, \ldots, p_{n+1} and holds true only in structures s.t.
 - exactly one variable from p_1, \ldots, p_{n+1}, holds true at each position,
 - p_{n+1} holds true at a unique position (end marker).

- UNI encodes these properties:

$$\text{UNI} \overset{\text{def}}{=} G\left(\bigvee_{1 \leq i \leq n+1} p_i \right) \land G\left(\bigwedge_{1 \leq i \leq n+1} (p_i \Rightarrow \bigwedge_{1 \leq j \neq i \leq n+1} \neg p_j) \right) \land$$

$$\left((p_{n+1} \land XG\neg p_{n+1}) \lor \neg p_{n+1} U(p_{n+1} \land XG\neg p_{n+1}) \right)$$

- Equivalence between
 - $\text{L}(G_1^+) \neq \text{L}(G_2^+)$,
 - $\text{UNI} \land \neg (\text{L}(G_1^+)(p_1, \ldots, p_{n+1}) \Leftrightarrow \text{L}(G_2^+)(p_1, \ldots, p_{n+1}))$ is satisfiable.
Equivalence (I)

- Suppose $L(G_1^+) \neq L(G_2^+)$ with $a_{i_1}a_{i_2} \cdots a_{i_l}a_{n+1} \in L(G_1^+)$ and $a_{i_1}a_{i_2} \cdots a_{i_l}a_{n+1} \not\in L(G_2^+)$.

- Wlog, $l \geq 1$.

- $\sigma:\{p_{i_1}\} \cdot \{p_{i_2}\} \cdots \{p_{i_l}\} \cdot \{p_{n+1}\} \cdot \{p_1\}^\omega$.

- We have
 - $\sigma \models \text{UNI}$,
 - $\sigma \models L(G_1^+) (p_1, \ldots, p_{n+1})$,
 - $\sigma \not\models L(G_2^+) (p_1, \ldots, p_{n+1})$ since the only finite word ending by $\{p_{n+1}\}$ in σ is $\{p_{i_1}\} \cdot \{p_{i_2}\} \cdots \{p_{i_l}\} \cdot \{p_{n+1}\}$ and $a_{i_1}a_{i_2} \cdots a_{i_l}a_{n+1} \not\in L(G_2^+)$.

Suppose $\sigma, 0 \models \text{UNI} \land \neg (L(G_1^+)(p_1, \ldots, p_{n+1}) \Leftrightarrow L(G_2^+)(p_1, \ldots, p_{n+1}))$.

Assume $\sigma \models L(G_1^+)(p_1, \ldots, p_{n+1})$ and $\sigma \not\models L(G_2^+)(p_1, \ldots, p_{n+1})$.

A simple reasoning allows to deduce that $L(G_1^+) \neq L(G_2^+)$.
Special context-free languages

- $L_0 = \{a_1^k \cdot a_2 \cdot a_1^{k-1} \cdot a_3 : k \geq 1\}$.

- $L_1 = \{a_1^k \cdot a_2 \cdot a_1^k \cdot a_3 : k \geq 0\}$ ($L_0 = \{a_1\} \cdot L_1$).

- Valid formulae in $LTL + \{L_0, L_1\}$.
 - $L_1(p, q, r) \iff (q \land Xr) \lor L_0(p, q, p \land Xr)$,
 - $L_0(p, q, r) \iff p \land XL_1(p, q, r)$,
 - $F \phi \iff L_1(\top, \phi, \top)$,
 - $X \phi \iff L_1(\bot, \top, \phi)$.
Undecidability

- SAT(LTL + {L₁}) is undecidable.

- Consequently, MC³(LTL + {L₁}) is undecidable. (satisfiability reduces to it by building a complete Kripke structure)

- Reduction from the recurrence problem for domino games [Harel, 85].

 input: a domino game Dom with a distinguished color c.

 output: 1, if Dom can pave \(\mathbb{N} \times \mathbb{N} \) where the color c occurs infinitely often.

- Let Dom = (C, D, Col) be a domino game with

 - C = \{1, \ldots, n\} and c = 1,

 - D = \{d₁, \ldots, dₘ\},

 - Col : D \times \{up, down, left, right\} \rightarrow \{1, \ldots, n\}
Syntactic resources

We use the following propositional variables:

- in holds true when the state encodes a position in \mathbb{N}^2. There are states in the model that do not correspond to positions in \mathbb{N}^2. out is equivalent to the negation of in.

- For $1 \leq j \leq m$, we introduce j: “position in \mathbb{N}^2 associated to the current position has domino type d_j”.

- For every $1 \leq i \leq n$, we use the variables up_i, $down_i$, $left_i$, $right_i$.
Every state encoding a position in \mathbb{N}^2 is occupied by a unique domino:

$$G(in \Rightarrow \bigvee_{j=1}^{m} (j \land \bigwedge_{j' = 1, j' \neq j}^{m} \neg j'))$$

Propositional variables for colours are compatible with the definition of domino types:

$$G(in \Rightarrow \bigwedge_{j=1}^{m} j \implies \bigwedge_{side \in \{up, down, right, left\}} \bigwedge_{1 \leq j' \neq Col(d_j, side) \leq n} \neg side_{j'})$$

PAVE: conjunction of above formulae.
SNAKE formula

SNAKE: conjunction of following formulae:

- $G(in \Leftrightarrow \neg out)$,

- $in \land Xout \land XXin \land XXXin \land XXXXXout$,

- $G(out \Rightarrow XL_1(in, out, in \land Xout))$.
 ($L_1 = \{a_1^k \cdot a_2 \cdot a_1^k \cdot a_3 : k \geq 0\}$).

- Only structure (built over in and out) satisfying SNAKE:
 $$\{in\} \cdot \{out\} \cdot \{in\}^2 \cdot \{out\} \cdot \{in\}^3 \cdot \{out\} \cdot \{in\}^4 \ldots$$
Stéphane Demri

Fondements pour la vérification des systèmes temps-réel et concurrents
Difficulty of the proof is not to design a path through \mathbb{N}^2 but to define a path on which it is easy to access to neighbours (right or top).

DIRECTION: conjunction of formulae:

- $G(\uparrow \iff \neg \downarrow)$,
- $\downarrow \land X \uparrow$,
- $G(in \land X_{in} \land \uparrow \Rightarrow X \uparrow)$
 ("we stay on ascending chain"),
- $G(in \land X_{in} \land \downarrow \Rightarrow X \downarrow)$
 ("we stay on descending chain"),
- $G(in \land X_{out} \land \uparrow \Rightarrow (X \downarrow \land XX \downarrow))$
 ("we pass from ascending to descending chain"),
- $G(in \land X_{out} \land \downarrow \Rightarrow (X \uparrow \land XX \uparrow))$
 ("we pass from descending to ascending chain").
Only structure (built over \textit{in}, \textit{out}, \textit{↑} and \textit{↓}) satisfying \textbf{SNAKE} \land \textbf{DIRECTION}:

\[
\{\textit{in}, \downarrow\}\{\textit{out}, \uparrow\} \cdot \{\textit{in}, \uparrow\}^2 \cdot \{\textit{out}, \downarrow\} \cdot \{\textit{in}, \downarrow\}^3 \cdot \{\textit{out}, \uparrow\} \cdot \{\textit{in}, \uparrow\}^4 \ldots
\]
The path allows to access to adjacent states as follows:
- in \(\{\text{in}, \uparrow\} \), we access to the right neighbour with \(L_1 \),
- in \(\{\text{in}, \uparrow\} \), we access to the up neighbour with \(L_0 \),
- in \(\{\text{in}, \downarrow\} \), we access to the right neighbour with \(L_0 \),
- in \(\{\text{in}, \downarrow\} \), we access to the up neighbour with \(L_1 \).

\textbf{CONSTRAINTS:} conjunction of formulae
- \[G(\text{in} \land \uparrow \implies (\land_{1 \leq i \leq n} \text{right}_i \Rightarrow L_1(\text{in}, \text{out}, \text{left}_i))))), \]
- \[G(\text{in} \land \uparrow \implies (\land_{1 \leq i \leq n} \text{up}_i \Rightarrow L_0(\text{in}, \text{out}, \text{down}_i))))), \]
- \[G(\text{in} \land \downarrow \implies (\land_{1 \leq i \leq n} \text{right}_i \Rightarrow L_0(\text{in}, \text{out}, \text{left}_i))))), \]
- \[G(\text{in} \land \downarrow \implies (\land_{1 \leq i \leq n} \text{up}_i \Rightarrow L_1(\text{in}, \text{out}, \text{down}_i))))). \]
High undecidability

- **REC**: $\text{GF}(\text{in} \land \bigvee_{\text{side} \in \{\text{left, right, up, down}\}} \text{side}_1)$.

- *Dom* can pave \mathbb{N}^2 by repeating infinitely often the colour 1 iff

 $\text{PAVE} \land \text{SNAKE} \land \text{DIRECTION} \land \text{CONSTRAINTS} \land \text{REC}$

 is satisfiable in $\text{LTL} + \{L_0, L_1\}$.

- Since X, F and L_0 can expressed with L_1, satisfiability and model-checking problems for propositional calculus with the temporal operator defined with L_1 are highly undecidable.
Exercise (bis)

1. $\phi[\psi]\rho$ be an LTL formula with subformula ψ at the occurrence ρ. Show that $\phi[\psi]\rho$ is satisfiable iff $\phi[p]\rho \land G(p \leftrightarrow \psi)$ is satisfiable where p is a new propositional variable no occurring in $\phi[\psi]\rho$.

2. Conclude that there is a logarithmic space reduction from SAT(LTL) to SAT(LTL$_{2\omega}$).

3. Show that SAT(LTL$_1(X)$) is NP-complete (independent of 1. and 2.).