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Plan of the talk

1. State explosion problem.

2. Parameterized complexity.

3. Parameterized Turing machine problems.

4. Parameterized reachability problems.

5. Parameterized logical model-checking problems.

6. Parameterized behavioral equivalence problems.
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Symbolic model-checking

• Model-checking: M |= φ?

• Symbolic model-checking: M |= φ?

− with M represented succinctly
(not in extension);

− symbolic algorithms have no explicit
representation of the state space of M.

• In practice, composition of subsystems is natural (by
synchronization of actions/variables/clocks).

• Examples of succinct representation:

− M = M1 × · · · ×Mk synchronized product.
− Graphs represented as OBDDs.
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Succinct makes complex

• Graph Accessibility Problem (GAP)

− is NLOGSPACE-complete [Jones 75].
− is PSPACE-complete with graphs represented as OBDDs

[Feigenbaum et al 98].

• Finite automaton intersection problem

− L(A1 ∩ A2) = ∅? is NLOGSPACE-complete.
− L(A1 ∩ · · · ∩ Ak) = ∅? is PSPACE-complete (even with

deterministic automata)

• Succinct representation may cause an increase of complexity.
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Verification of non-flat systems

Logic M |= φ? M1 × · · · ×Mk |= φ?

LTL PSPACE-complete PSPACE-complete

CTL P-complete PSPACE-complete

CTL* PSPACE-complete PSPACE-complete

µ-cal. in NP ∩ coNP EXPTIME-complete

See e.g., [Rabinovich 97], [Esparza 98], [Kupferman et al. 00].

In practice, the source of intractability is the size of the model, not
the size of the property.
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Time complexity

Logic M |= φ?

LTL 2O(|φ|) × |M|

CTL O(|φ| × |M|)

CTL* 2O(|φ|) × |M|

µ-calculus O((|φ| × |M|)|φ|)

• With M = M1 × · · · ×Mk, |M| = |M1| × · · · × |Mk|.

• Size of the input product model: n = Σi|Mi|.

• |M| ∈ O(nk) and |M| ∈ O(2n).
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Behavioral equivalences

Bisimulation is a typical example.

• M, s
?
∼ M′, s′ is P-complete [Balcàzar et al 92].

• M1 × · · · ×Mk, s̄
?
∼ M′

1 × · · · ×M′
k, s̄

′ is EXPTIME-complete.
See e.g.,
− [Jategaonkar & Meyer 96]
− [Harel et al 97]
− [Rabinovich 97]
− [Laroussinie & Schnoebelen 00]
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Any hope to tame intractability?

The state explosion problem seems inescapable in the classical
worst-case complexity paradigm.

How Downey & Fellows’
parameterized complexity framework

can cope with it?
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A basic problem

Can M1 × · · · ×Mk |= φ be solved in time
O(f(k) × p(|φ| + Σi|Mi|)) with f recursive & p polynomial?
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Parameterized complexity

• Primary framework for problem analysis and algorithm design.

• Still a worst-case complexity paradigm.

• Analyses of problems in e.g.
− graph theory, see e.g. [Downey & Fellows 99],
− database queries [Papamiditriou & Yannakakis 99],
− logic programming [Lonc & Truszczyński 02],
− model-checking for first-order logic [Flum & Grohe 01],
− infinite games [Björklund et al 03],
− verification of non-flat systems [DLS02],
− etc.
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A few basic definitions

Parameterized language: L subset of Σ∗ × N.
kth slice: Lk = {〈x, k〉 ∈ Σ∗ × N : 〈x, k〉 ∈ L}.
x: main part k: parameter.

Assumption: k varies less than the size of x.

Fixed-parameter tractable: L is FPT, def
⇔ there exist a recursive

function f : N 7→ N and a constant c ∈ N such that the question
〈x, k〉 ∈ L can be solved in time

f(k) × |x|c.

f(k) as a factor not as an exponent.

f(k) = 222k

is allowed.
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Parameterized m-reduction (I)

L ≤fp
m L′: def

⇔ there exist recursive total functions

• f1 : k 7→ k′,

• f2 : k 7→ k′′,

• f3 : 〈x, k〉 7→ x′, and

• a constant c ∈ N

such that

• 〈x, k〉 7→ x′ is computable in time k′′|x|c, and

• 〈x, k〉 ∈ L iff 〈x′, k′〉 ∈ L′.
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Parameterized m-reduction (II)

• Classical reductions carry less structure than parameterized
reductions.

• L ≤fp
m L′: each kth slice of L is reduced to the f1(k)th slice of

L′.

• Adding parameters to a problem makes it easier in the
parameterized sense: L(k, k′) ≤fp

m L(k).

• [X]FPT = {L : L ≤fp
m L′, for some L′ ∈ X}.

(X set of parameterized languages)

• FPT is closed under m-reductions.
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A non-parameterized reduction (I)

• WEIGHTED CNF SATISFIABILITY

Instance: a propositional formula φ in CNF;
Parameter: integer k;
Question: Does φ have a satisfying valuation such that exactly k

variables are set to true?

• WEIGHTED 3CNF SAT. defined as WEIGHTED CNF SAT.
except each clause in φ has at most 3 literals.

• SAT ≤P
m 3SAT but what about

WEIGHTED CNF SAT. ≤fp
m WEIGHTED 3CNF SAT.?
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A non-parameterized reduction (II)

• φ = C1 ∧ · · · ∧ Cn with Ci of length li.

• f(φ) in 3CNF obtained from φ (by renaming of pairs of literals)
with v |= φ implies v′ |= f(φ) such that v is of weight k implies v′

is of weight g(k, l1, . . . , ln).

• To be a parameterized reduction, the weight of v′ should only
depend on k.
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A parameterized reduction

INDEPENDENT SET

Instance: a graph G = 〈V,E〉;

Parameter: k;

Question: Is there V ′ ⊆ V of cardinality k such that for all u, v ∈ V ′,
〈u, v〉 6∈ E?

CLIQUE

Instance: a graph G = 〈V,E〉;

Parameter: k;

Question: Is there V ′ ⊆ V of cardinality k such that for all u, v ∈ V ′,
〈u, v〉 ∈ E?

〈V,E〉, k 7−→ 〈V, (V × V ) \ E〉, k.

Parameterized model-checking problems – p. 16



Hierarchies of classes
• W[1]-hardness of L: first evidence that L is likely not to be FPT.

• XP: L ∈ XP def
⇔ for every k, Lk is in P.

Languages tractable “by the slice”.

FPT ⊆

originally defined with decision circuits

︷ ︸︸ ︷
W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P] ⊆

⊆ AW[1] ⊆ AW[SAT] ⊆ AW[P]︸ ︷︷ ︸
defined with PARAMETERIZED QBFSAT

⊆ XP

• Few problems complete for each class below:

AW[1] = AW[∗] =
⋃

t

AW[t], AW[SAT], AW[P].
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A definition of W[t]

∃ x11 · · · ∃ x1k1 ∀ x21 · · · ∀ x2k2 · · ·Q xt1 · · ·Q xtkt
φ

• φ quantifier-free formula built over atomic formulae of the form
x = y and R(x1, . . . , xr),

• Q = ∀ if t is even, Q = ∃ otherwise,

Σt,u: Σt + all quantifier blocks after the leading ∃ block have length
≤ u.
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W[t] and model-checking problems

• P-MC(GRAPH,Σt,u)
Instance: a graph G = 〈V,E〉 and φ ∈ Σt,u;
Parameter: |φ|;
Question: G |= φ?

• Theorem. [Chen & Flum 2003] W[t] = [{P-MC(GRAPH,Σt,u) :
u ≥ 1}]FPT

• Other parameterized classes can be characterized by other
model-checking problems.
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Example -VERTEX COVER

• PARAMETERIZED VERTEX COVER

Instance: a graph G = 〈V,E〉;
Parameter: k;
Question: Is there V ′ ⊆ V with |V ′| ≤ k such that for every

〈u, v〉 ∈ E, either u ∈ V ′ or v ∈ V ′?

• VERTEX COVER is NP-complete but

Theorem. [Balasubramanian et al 98]
PARAMETERIZED VERTEX COVER is in FPT and can be solved
in time O((53/40)k × k2 + k × n).
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Example -INDEPENDENT SET

• INDEPENDENT SET is NP-complete.

• Theorem. PARAMETERIZED INDEPENDENT SET is
W[1]-complete.

• INDEPENDENT SET with graphs represented as OBDDs is
NEXPTIME-complete [Feigenbaum et al 98].
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Time as a parameter in TMs

• SHORT NDTM COMPUTATION

Instance: a single-tape non-deterministic Turing machine M
and a positive integer k (unary);

Parameter: k;
Question: Is there a computation of M on the empty string input

that reaches a final accepting state in at most k steps?

• SHORT NDTM COMPUTATION is W[1]-complete [Downey et al
94].

• SHORT DTM COMPUTATION is FPT.

• The multi-tape version of SHORT NDTM COMPUTATION is
W[2]-complete [Cesati 03].
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SHORT ATM COMPUTATION

• Theorem. [DLS02] SHORT ATM COMPUTATION is
AW[1]-complete.

→ very high in the hierarchy

• Other problems with ATMs complete for classes of the W/AW
hierarchies can be found in [Chen & Flum 03, Chen & Flum &
Grohe 03].

• We show fp-equivalence with PARAMETERIZED QBFSATt.

Parameterized model-checking problems – p. 23



An AW[1]-complete problem
• PARAMETERIZED QBFSATt

Instance: ψ = ∃=k1X1∀
=k2X2 . . . ∀

=k2pX2pφ
φ positive Boolean combination of literals with
at most t alternations of ∧ and ∨;

Parameter: 〈k1, . . . , k2p〉;
Question: Is ψ true?
∃=kiXi is interpreted by “does there exist an valuation of weight
ki over Xi such that . . . ”.
∀=kiXi is interpreted by “for all valuations of weight ki over Xi,
. . . ”.

• Theorem. [Downey & Fellows 99] PARAMETERIZED QBFSATt is
AW[1]-complete ∀t ≥ 1.

• AW [∗] = AW [1] = AW [t] for all t ≥ 2.
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Reduction toSHORT ATM COMP.

• ψ = ∃=k1X1∀
=k2X2 . . . ∀

=k2pX2pφ.

• Construction of the ATM Mψ.

Mψ picks k1 + · · · + k2p variables in X1 ∪ · · · ∪X2p.

Structure of φ reflected by the transition table of Mψ.

Universal states encode both ∀=ki and conjunctions.

Existential states encode both ∃=ki and disjunctions.

• Mψ answers in time O(k + t), i.e. O(k).
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Space as a parameter in TMs

• COMPACT NDTM COMPUTATION

Instance: a single-tape non-deterministic Turing machine M
and a positive integer k;

Question: Is there a computation of M on the empty string input
that reaches a final accepting state using at most k work
tape squares?

• COMPACT NDTM COMPUTATION is AW[SAT]-hard [Chen &
Flum & Grohe 03].

• Theorem. COMPACT ATM COMPUTATION is XP-complete.
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PARAMETERIZED PEBBLE GAME (I)

PARAMETERIZED PEBBLE GAME

Instance: A pebble game 〈N,R, S, T 〉;

Parameter: |S|;

Question: Does the player I has winning strategy?

N : set of nodes
S: set of initial nodes
T ∈ N : terminal node
R ⊆ N3: set of moves

Move:
x

�
y

�
z

� ⇒
x

�
y

�
z

� if R(x, y, z).

Player I wins if he can reach T or if Player II cannot move.
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PARAMETERIZED PEBBLE GAME (II)

Theorem. [Adachi & Iwata & Kasai 79]
PARAMETERIZED PEBBLE GAME is XP-complete.

The reduction showing PEBBLE GAME is EXPTIME-hard turns out
to show also that

COMPACT ATM COMP. ≤fp
m PAR. PEBBLE GAME.
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PAR. PEBBLE GAME (III)

• PARAMETERIZED PEBBLE GAME ≤fp
m COMPACT ATM

COMPUTATION.

PG = 〈N,R, S, T 〉 ; |S| = k.

• Construction of the ATM MPG.

Alphabet: N . k work-tape squares.

Moves of Player I emulated by existential states.

Moves of Player II emulated by universal states.

R and S encoded in the transition table.

• |MPG| is in O(|PG|) and k′ = k.
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Parameterized classes and TM pbs

FPT

W[1]

AW[1]

AW[SAT]

AW[P]

XP

SHORT DTM

SHORT NDTM

SHORT ATM

COMPACT DTM

COMPACT NDTM

COMPACT ATM

??
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LTSs

• Labeled transition system (LTS): A = 〈Q,Σ,→〉.

• →⊆ Q× Σ ×Q.

• |A| = |Q| + |Σ| + |→|.

• Product LTS A1 × · · · × An with set of states Πn
i=1Qi and

alphabet
⋃k

i=1 Σi.
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Synchronization protocols

Strong synchronization
all components move at the same time:
〈s1, . . . , sk〉

a
−→str 〈t1, . . . , tk〉 iff si

a
−→i ti for all i = 1, . . . , k.

Binary synchronization
two components synchronize while the rest does not move.
〈s1, . . . , sk〉

a
−→bin 〈t1, . . . , tk〉 iff there exist i and j (i 6= j) s.t. si

a
−→i ti

and sj
a
−→j tj while sl = tl for all l 6∈ {i, j}.
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Parameterized Exact Reachability

Reachability problems are fundamental in model-checking.

Exact Reachability (EXACT-REACH)

Instance: k LTSs A1, · · · ,Ak,
two configurations s̄ and t̄ of A1 × · · · × Ak;

Parameter: k;

Question: s̄
∗
−→ t̄ ?
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Parameterized Local Reachability

Local Reachability (LOCAL-REACH)

Instance: k LTSs A1, · · · ,Ak,
sets F1, . . . , Fk of states with Fi ⊆ Qi,
a configuration s̄ of A1 × · · · × Ak;

Parameter: k;

Question: Does s̄ ∗
−→ t̄ for some t̄ ∈ F̄

where F̄ = F1 × · · · × Fk?
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Parameterized Repeated Reachability

Repeated Reachability (REP-REACH)

Instance: k LTSs A1, · · · ,Ak,
sets F1, . . . , Fk of states with Fi ⊆ Qi,
a configuration s̄ of A1 × · · · × Ak;

Parameter: k;

Question: Does s̄ ∗
−→ t̄

+
−→ t̄ for some t̄ ∈ F̄

where F̄ = F1 × · · · × Fk?

(Büchi acceptance condition)
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Parameterized Fair Reachability

Fair Reachability (FAIR-REACH)

Instance: k LTSs A1, · · · ,Ak,
sets (F j

i )
j=1,...,p
i=1,...,k with F j

i ⊆ Qi for all i, j,
a configuration s̄ of A1 × · · · × Ak.
For all j, we write F̄ j for F j

1 × · · · × F j
k .

Parameter: k;

Question: Does s̄ ∗
−→ t̄1

∗
−→ t̄2 . . .

∗
−→ t̄p

+
−→ t̄1 for some

t̄1, . . . , t̄p ∈ F̄ 1, . . . , F̄ p?
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Equivalence

• Theorem. The four parameterized reachability problems are
fp-equivalent.

• k-∗-REACH: any of the four problems.

• By way of example, we sketch the construction to show
k-REP-REACH ≤fp

m k-EXACT-REACH:
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Sketch of the proof (I)
A: q1

q2 q3

a

b

c
c

A′:

a

b

c
c

a

b

c
c a

b

c
c

x

c′

a′

b′

choice choice

A× {q2} A × {q3}
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Sketch of the proof (II)

Equivalence between

1. s̄ = 〈q1, . . . , qk〉
∗
−→ t̄

+
−→ t̄ in A1 × · · · × Ak;

2. 〈q0
1, . . . , q

0
k〉

∗
−→

choice
−−→ 〈f j11 , . . . , f

jk
k 〉

+
−→ 〈x1, . . . , xk〉 in A′

1 × · · · × A′
k;

3. 〈q0
1, . . . , q

0
k〉

∗
−→ 〈x1, . . . , xk〉.

t̄ = 〈f1,j1 , . . . , fk,jk〉 ∈ F1 × · · · × Fk.
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Cost of the reduction

• |A′
i| in O((|Fi| + 1) × |Ai|).

• k′ = k.

• |Σ′| = 2 × |Σ| + 1.

• n′ ∈ O(n2).

• Simpler reductions exist but we want also to preserve
determinism.
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fp-equivalence (I)

Theorem. k-∗-REACH is fp-equivalent to COMPACT NDTM
COMPUTATION.

Proof sketch of
COMPACT NDTM COMPUTATION ≤fp

m k-LOCAL-REACH.

With an NDTM M and an integer k we associate a product
A1 × · · · × Ak ×Astate ×Ahead of k + 2 LTSs that emulate the
behaviour of M on a k-bounded tape.

• each Ai stores the current contents of the i-th tape square,

• Astate stores the current control-state of M ,

• Ahead stores the position of the TM head.
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fp-equivalence (II)

• Synchronization on labels of the form 〈t, i〉 that stand for “rule t
of M is fired while head is in position i”.

• Successful acceptance by M is directly encoded as a local
reachability criterion.

• Finally we translated our instance to a k-LOCAL-REACH

instance with k′ = k + 2 and n′ = O(kn2).

• See also [Kozen 77] and [Papadimitriou 94] for the
PSPACE-hardness proof of reachable deadlock for a system of
communicating processes.
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Robustness of the equivalence

Variants fp-equivalent to k-∗-REACH:

Binary synchronization:
k-∗-REACHbin k,Σ-∗-REACHbin

Bounded size alphabet:
k,Σ-∗-REACH k-∗-REACH|Σ|=2

Determinism:
k,Σ-∗-REACHdet k-∗-REACH|Σ|=2,det
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Bounding|Σ|
A: Â:

q

q′

q

q′

a111

a011a000

0 1

10 10

10 0 1 10 10

0 1

10 10

10 0 1 10 10

0

0

0

q
a000−→ q′ iff q 0000

−→ q′.
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Parameterized temporal logic pbs.

• Kripke structure M = 〈A,m〉
A LTS, m ⊆ Q× AP .
〈A1,m1〉 × · · · × 〈Ak,mk〉 = 〈A1 × · · · × Ak,

⊕
imi〉

• Sometimes, the labels are used only for the synchronization
and not in the product models.

• Parameterized model checking for logic L (MCL)
Instance: Kripke structures M1, · · · ,Mk,

a configuration s̄,
an L-formula φ;

Parameter: k, |φ|;
Question: M1 × · · · ×Mk, s̄ |= φ?
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LTL

• Linear-time temporal logic for the specification of critical
systems.

φ := p | ¬φ | φ ∧ φ′ | Xφ | φUφ′.

• Models: σ : N → 2AP .
Satisfiability relation: σ, i |= φ

p, q q q, r

(p ∨ q)Ur Xr q ∧ r

• Model-checking: M, s |= φ?
Is there a path σ starting at s such that σ, 0 |= φ?
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Par. model checking for LTL

• Theorem. k, φ-MCLTL is fp-equivalent to COMPACT NDTM
COMPUTATION (and hence is AW[SAT]-hard).

• COMPACT NDTM COMPUTATION ≤fp
m k, φ-MCLTL because LTL

can express reachability questions.

• k, φ-MCLTL ≤fp
m COMPACT NDTM COMPUTATION reduces to a

repeated reachability question on M1 × · · · ×Mk × Bφ.
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W[1]-completeness

LTL0: poor fragment of LTL that cannot express reachability.

φ := p | φ ∨ φ′ | Xφ.

Theorem. k, φ-MCLTL0 is W[1]-complete, even with only using a
single atomic proposition.
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Modalµ-calculus
• Theorem. k, φ-MCµ is XP-complete.

Writing n for
∑

i|Mi|, k, φ-MCµ can be solved in time
O

(
(|φ|.nk)|φ|

)
.

• XP-hardness is proved by a reduction from non-flat bisimilarity.
Equivalence between
− A and B are bisimilar;
− A ‖ B′ |= νX.

∧
a∈Σ([a]〈a′〉X ∧ [a′]〈a〉X).

A ‖ B′ interleaved product with B′ obtained from B by
renaming the actions a ∈ Σ by a′.

• Non-flat bisimilarity is XP-hard already when |Σ| = 2.
→ we can bound the size of the µ-formula and have an
fp-reduction.
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HML

φ ::= p | φ ∨ φ′ | φ ∧ φ′ | �φ | ♦φ.

• Theorem. k, φ-MCHML is AW[1]-complete.

• Idea of the proof: k, φ-MCHML is fp-equivalent to SHORT ATM
COMPUTATION.

• Use of the standard correspondence between � and ♦ and the
behaviour of the ATMs with univ. states and exist. states, resp.
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Computation Tree Logic CTL

• CTL can express reachability questions:

• Theorem. COMPACT NDTM COMPUTATION ≤fp
m k, φ-MCCTL.

• Hence k, φ-MCCTL is AW[SAT]-hard.

• Open question: Do we have k, φ-MCCTL ≤fp
m COMPACT NDTM

COMPUTATION?
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Parameterized bisimulation

Parameterized Bisimulation (BISIM)

Instance: 2k LTSs A1, · · · ,Ak,A
′
1, · · · ,A

′
k,

a configuration s̄ of A1 × · · · × Ak,
a configuration s̄′ of A′

1 × · · · × A′
k.

Question: Is 〈A1 × · · · × Ak, s̄〉 (strongly) bisimilar to
〈A′

1 × · · · × A′
k, s̄

′〉?

Similar definition for other behavioral equivalence R between trace
inclusion ⊆tr and bisimulation.
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XP-complete problems

• Theorem. k-BISIM is XP-complete.

• k-BISIM is in XP since bisimilarity of flat systems is in P.

• XP-hardness is by observing that the reduction in the proof of
Theorem 4.1 in [Laroussinie & Schnoebelen 00] can be seen
as an fp-reduction from COMPACT ATM COMPUTATION to
k-BISIM.

• Theorem. k-BISIM and k-BISIM|Σ|=2 are fp-equivalent.
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Other behavioral equivalences

• Theorem. For any relation R lying between the simulation
preorder and bisimilarity, k-R-CHECKING is XP-hard.

• Consequence of [Laroussinie & Schnoebelen 00].

• Another hardness result:

Theorem. For any relation R lying between trace inclusion and
bisimilarity, coCOMPACT NDTM COMPUTATION is fp-reducible
to k-R-CHECKING, i.e. the problem of checking whether
〈A1 × · · · × Ak, s̄〉R〈A

′
1 × · · · × A′

k, s̄
′〉.
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Sketch of the proof

Reduction of k-EXACT-REACH to k-R-CHECKING.

A1, . . . ,Ak, s̄, t̄ instance of k-EXACT-REACH where t̄ = 〈t1, . . . , tk〉.

A′
i: Ai + a loop ti

#
−→ ti, # new label.

S = A1 × · · · × Ak, S ′ = A′
1 × · · · × A′

k

(1) 〈S, s̄〉 ∼ 〈S ′, s̄〉 iff (2) 〈S ′, s̄〉 ⊆tr 〈S, s̄〉 iff (3) not s̄ ∗
−→ t̄ in S.

Consequently, for ∼⊆ R ⊆⊆tr, 〈S, s̄〉R〈S ′, s̄〉 iff not s̄ ∗
−→ t̄.
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Summary

FPT

W[1]

AW[1]

AW[SAT]

AW[P]

XP

SHORT DTM

SHORT NDTM

SHORT ATM

COMPACT DTM

COMPACT NDTM

COMPACT ATM

MC(BT0),MC(LTL0)

MC(HML)

REACHABILITY

MC(CTL)

MC(CTL*)

BISIMILARITY MC(µ)

MC(LTL)
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Some concluding remarks

• Parameterized complexity framework is not yet in a stable
condition. (see e.g. the introduction of the class MINI[1]).

• There are plenty of complexity issues related to verification
problems in this framework (timed automata, Rabin automata,
etc ...).

• Many problems from formal verification can be naturally
parameterized but how parameterized complexity can be used
to induce improvements in practice?
(mainly dark side presented during this talk)
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