Parameterized model-checking problems

Stéphane Demri

Laboratoire Spécification et Vérification (LSV) CNRS UMR 8643 & ENS de Cachan

Plan of the talk

- 1. State explosion problem.
- 2. Parameterized complexity.
- 3. Parameterized Turing machine problems.
- 4. Parameterized reachability problems.
- 5. Parameterized logical model-checking problems.
- 6. Parameterized behavioral equivalence problems.

Symbolic model-checking

- Model-checking: $\mathcal{M} \models \phi$?
- Symbolic model-checking: $\mathcal{M} \models \phi$?
 - with \mathcal{M} represented succinctly (not in extension);
 - symbolic algorithms have no explicit representation of the state space of \mathcal{M} .
- In practice, composition of subsystems is natural (by synchronization of actions/variables/clocks).
- Examples of succinct representation:
 - $-\mathcal{M} = \mathcal{M}_1 \times \cdots \times \mathcal{M}_k$ synchronized product.
 - Graphs represented as OBDDs.

Succinct makes complex

- Graph Accessibility Problem (GAP)
 - is NLOGSPACE-complete [Jones 75].
 - is PSPACE-complete with graphs represented as OBDDs [Feigenbaum et al 98].

- Finite automaton intersection problem
 - $L(A_1 \cap A_2) = \emptyset$? is NLOGSPACE-complete.
 - $L(A_1 \cap \cdots \cap A_k) = \emptyset$? is PSPACE-complete (even with deterministic automata)
- Succinct representation may cause an increase of complexity.

Verification of non-flat systems

Logic	$\mathcal{M} \models \phi$?	$\mathcal{M}_1 \times \cdots \times \mathcal{M}_k \models \phi?$
LTL	PSPACE-complete	PSPACE-complete
CTL	P-complete	PSPACE-complete
CTL*	PSPACE-complete	PSPACE-complete
μ -cal.	in NP \cap coNP	EXPTIME-complete

See e.g., [Rabinovich 97], [Esparza 98], [Kupferman et al. 00].

In practice, the source of intractability is the size of the model, not the size of the property.

Time complexity

Logic	$\mathcal{M} \models \phi$?
LTL	$2^{\mathcal{O}(\phi)} \times \mathcal{M} $
CTL	$\mathcal{O}(\phi imes \mathcal{M})$
CTL*	$2^{\mathcal{O}(\phi)} \times \mathcal{M} $
μ -calculus	$\mathcal{O}((\phi \times \mathcal{M})^{ \phi })$

- With $\mathcal{M} = \mathcal{M}_1 \times \cdots \times \mathcal{M}_k$, $|\mathcal{M}| = |\mathcal{M}_1| \times \cdots \times |\mathcal{M}_k|$.
- Size of the input product model: $n = \Sigma_i |\mathcal{M}_i|$.
- $|\mathcal{M}| \in \mathcal{O}(n^k)$ and $|\mathcal{M}| \in \mathcal{O}(2^n)$.

Behavioral equivalences

Bisimulation is a typical example.

- $\mathcal{M}, s \stackrel{?}{\sim} \mathcal{M}', s'$ is P-complete [Balcàzar et al 92].
- $\mathcal{M}_1 \times \cdots \times \mathcal{M}_k, \bar{s} \stackrel{?}{\sim} \mathcal{M}'_1 \times \cdots \times \mathcal{M}'_k, \bar{s'}$ is EXPTIME-complete. See e.g.,
 - [Jategaonkar & Meyer 96]
 - [Harel et al 97]
 - [Rabinovich 97]
 - [Laroussinie & Schnoebelen 00]

Any hope to tame intractability?

The state explosion problem seems inescapable in the classical worst-case complexity paradigm.

How Downey & Fellows' parameterized complexity framework can cope with it?

A basic problem

Can $\mathcal{M}_1 \times \cdots \times \mathcal{M}_k \models \phi$ be solved in time $\mathcal{O}(f(k) \times p(|\phi| + \Sigma_i |\mathcal{M}_i|))$ with *f* recursive & *p* polynomial?

Parameterized complexity

- Primary framework for problem analysis and algorithm design.
- Still a worst-case complexity paradigm.
- Analyses of problems in e.g.
 - graph theory, see e.g. [Downey & Fellows 99],
 - database queries [Papamiditriou & Yannakakis 99],
 - logic programming [Lonc & Truszczyński 02],
 - model-checking for first-order logic [Flum & Grohe 01],
 - infinite games [Björklund et al 03],
 - verification of non-flat systems [DLS02],
 - etc.

A few basic definitions

Parameterized language: L subset of $\Sigma^* \times \mathbb{N}$. kth slice: $L_k = \{ \langle x, k \rangle \in \Sigma^* \times \mathbb{N} : \langle x, k \rangle \in L \}.$ x: main part k: parameter.

Assumption: k varies less than the size of x.

Fixed-parameter tractable: *L* is FPT, $\stackrel{\text{def}}{\Leftrightarrow}$ there exist a recursive function $f : \mathbb{N} \mapsto \mathbb{N}$ and a constant $c \in \mathbb{N}$ such that the question $\langle x, k \rangle \in L$ can be solved in time

 $f(k) \times |x|^c.$

f(k) as a factor not as an exponent. $f(k) = 2^{2^{2^k}}$ is allowed.

Parameterized m-reduction (I)

 $L \leq_{\mathrm{m}}^{\mathrm{fp}} L'$: $\stackrel{\text{def}}{\Leftrightarrow}$ there exist recursive total functions

- $f_1: k \mapsto k'$,
- $f_2: k \mapsto k''$,
- $f_3:\langle x,k
 angle\mapsto x'$, and
- a constant $c \in \mathbb{N}$

such that

- $\langle x,k\rangle\mapsto x'$ is computable in time $k''|x|^c$, and
- $\langle x,k\rangle \in L \text{ iff } \langle x',k'\rangle \in L'.$

Parameterized m-reduction (II)

- Classical reductions carry less structure than parameterized reductions.
- $L \leq_{\mathrm{m}}^{\mathrm{fp}} L'$: each kth slice of L is reduced to the $f_1(k)$ th slice of L'.
- Adding parameters to a problem makes it easier in the parameterized sense: $L(k, k') \leq_{m}^{fp} L(k)$.
- [X]^{FPT} = {L : L ≤^{fp}_m L', for some L' ∈ X}.
 (X set of parameterized languages)
- FPT is closed under m-reductions.

A non-parameterized reduction (I)

- WEIGHTED CNF SATISFIABILITY
 Instance: a propositional formula φ in CNF;
 Parameter: integer k;
 Question: Does φ have a satisfying valuation such that exactly k variables are set to true?
- WEIGHTED 3CNF SAT. defined as WEIGHTED CNF SAT. except each clause in ϕ has at most 3 literals.
- SAT \leq_m^P 3SAT but what about

Weighted CNF Sat. $\leq^{\mathrm{fp}}_{\mathrm{m}}$ Weighted 3CNF Sat.?

A non-parameterized reduction (II)

- $\phi = C_1 \wedge \cdots \wedge C_n$ with C_i of length l_i .
- $f(\phi)$ in 3CNF obtained from ϕ (by renaming of pairs of literals) with $v \models \phi$ implies $v' \models f(\phi)$ such that v is of weight k implies v'is of weight $g(k, l_1, \ldots, l_n)$.
- To be a parameterized reduction, the weight of v' should only depend on k.

A parameterized reduction

INDEPENDENT SET

Instance: a graph $G = \langle V, E \rangle$;

Parameter: k;

Question: Is there $V' \subseteq V$ of cardinality k such that for all $u, v \in V'$, $\langle u, v \rangle \notin E$?

CLIQUE

Instance: a graph $G = \langle V, E \rangle$;

Parameter: k;

Question: Is there $V' \subseteq V$ of cardinality k such that for all $u, v \in V'$, $\langle u, v \rangle \in E$?

 $\langle V, E \rangle, k \longmapsto \langle V, (V \times V) \setminus E \rangle, k.$

Hierarchies of classes

• W[1]-hardness of L: first evidence that L is likely not to be FPT.

• XP: $L \in XP \Leftrightarrow^{def}$ for every k, L_k is in P. Languages tractable "by the slice".

$$FPT \subseteq \overbrace{W[1] \subseteq W[2] \subseteq \cdots \subseteq W[SAT] \subseteq W[P]}^{\text{originally defined with decision circuits}}$$

$$\subseteq \underbrace{\mathrm{AW}[1] \subseteq \mathrm{AW}[\mathrm{SAT}] \subseteq \mathrm{AW}[\mathrm{P}]}_{\mathsf{V}} \subseteq \mathrm{XP}$$

defined with $\mathsf{P}\mathsf{ARAMETERIZED}\ \mathsf{QBFSAT}$

• Few problems complete for each class below:

$$AW[1] = AW[*] = \bigcup_{t} AW[t], AW[SAT], AW[P].$$

A definition of W[t]

$$\exists x_{11} \cdots \exists x_{1k_1} \forall x_{21} \cdots \forall x_{2k_2} \cdots Q x_{t1} \cdots Q x_{tk_t} \phi$$

- ϕ quantifier-free formula built over atomic formulae of the form x = y and $R(x_1, \ldots, x_r)$,
- $Q = \forall$ if t is even, $Q = \exists$ otherwise,

 $\Sigma_{t,u}$: Σ_t + all quantifier blocks after the leading \exists block have length $\leq u$.

W[t] and model-checking problems

- P-MC(GRAPH, $\Sigma_{t,u}$) Instance: a graph $G = \langle V, E \rangle$ and $\phi \in \Sigma_{t,u}$; Parameter: $|\phi|$; Question: $G \models \phi$?
- Theorem. [Chen & Flum 2003] W[t] = [{P-MC(GRAPH, $\Sigma_{t,u})$: $u \ge 1$ }]^{FPT}
- Other parameterized classes can be characterized by other model-checking problems.

Example - VERTEX COVER

```
• PARAMETERIZED VERTEX COVER
Instance: a graph G = \langle V, E \rangle;
Parameter: k;
Question: Is there V' \subseteq V with |V'| \leq k such that for every
\langle u, v \rangle \in E, either u \in V' or v \in V'?
```

• VERTEX COVER is NP-complete but

Theorem. [Balasubramanian et al 98] PARAMETERIZED VERTEX COVER is in FPT and can be solved in time $\mathcal{O}((53/40)^k \times k^2 + k \times n)$.

Example - INDEPENDENT SET

• INDEPENDENT SET is NP-complete.

• Theorem. PARAMETERIZED INDEPENDENT SET is W[1]-complete.

• INDEPENDENT SET with graphs represented as OBDDs is NEXPTIME-complete [Feigenbaum et al 98].

Time as a parameter in TMs

• SHORT NDTM COMPUTATION

Instance: a single-tape non-deterministic Turing machine M and a positive integer k (unary);
Parameter: k;
Question: Is there a computation of M on the empty string input that reaches a final accepting state in at most k steps?

- SHORT NDTM COMPUTATION is W[1]-complete [Downey et al 94].
- SHORT DTM COMPUTATION is FPT.
- The multi-tape version of SHORT NDTM COMPUTATION is W[2]-complete [Cesati 03].

SHORT ATM COMPUTATION

• Theorem. [DLS02] SHORT ATM COMPUTATION is AW[1]-complete.

 \rightarrow very high in the hierarchy

- Other problems with ATMs complete for classes of the W/AW hierarchies can be found in [Chen & Flum 03, Chen & Flum & Grohe 03].
- We show fp-equivalence with PARAMETERIZED $QBFSAT_t$.

An AW[1]-complete problem

• PARAMETERIZED **QBFSAT**_t

Instance: $\psi = \exists^{=k_1} X_1 \forall^{=k_2} X_2 \dots \forall^{=k_{2p}} X_{2p} \phi$

 ϕ positive Boolean combination of literals with at most t alternations of \wedge and \lor ;

Parameter:
$$\langle k_1, \ldots, k_{2p} \rangle$$
;

Question: Is ψ true?

 $\exists^{=k_i} X_i$ is interpreted by "does there exist an valuation of weight k_i over X_i such that".

 $\forall^{=k_i} X_i$ is interpreted by "for all valuations of weight k_i over X_i ,".

• Theorem. [Downey & Fellows 99] PARAMETERIZED QBFSAT_t is AW[1]-complete $\forall t \geq 1$.

•
$$AW[*] = AW[1] = AW[t]$$
 for all $t \ge 2$.

Reduction to SHORT ATM COMP.

•
$$\psi = \exists^{=k_1} X_1 \forall^{=k_2} X_2 \dots \forall^{=k_{2p}} X_{2p} \phi$$
.

• Construction of the ATM M_{ψ} .

 M_{ψ} picks $k_1 + \cdots + k_{2p}$ variables in $X_1 \cup \cdots \cup X_{2p}$.

Structure of ϕ reflected by the transition table of M_{ψ} .

Universal states encode both $\forall^{=k_i}$ and conjunctions.

Existential states encode both $\exists^{=k_i}$ and disjunctions.

• M_{ψ} answers in time $\mathcal{O}(k+t)$, i.e. $\mathcal{O}(k)$.

Space as a parameter in TMs

- COMPACT NDTM COMPUTATION
 - **Instance:** a single-tape non-deterministic Turing machine M and a positive integer k;
 - **Question:** Is there a computation of M on the empty string input that reaches a final accepting state using at most k work tape squares?
- COMPACT NDTM COMPUTATION is AW[SAT]-hard [Chen & Flum & Grohe 03].
- Theorem. COMPACT ATM COMPUTATION is XP-complete.

PARAMETERIZED PEBBLE GAME (I)

```
PARAMETERIZED PEBBLE GAME
```

```
Instance: A pebble game \langle N, R, S, T \rangle;
```

Parameter: |S|;

Question: Does the player I has winning strategy?

N: set of nodes S: set of initial nodes $T \in N$: terminal node $R \subseteq N^3$: set of moves

Move: $\overset{x}{\blacksquare} \overset{y}{\blacksquare} \overset{z}{\square} \Rightarrow \overset{x}{\square} \overset{y}{\blacksquare} \overset{z}{\blacksquare} \text{ if } R(x, y, z).$

Player I wins if he can reach T or if Player II cannot move.

PARAMETERIZED PEBBLE GAME (II)

Theorem. [Adachi & Iwata & Kasai 79] PARAMETERIZED PEBBLE GAME is XP-complete.

The reduction showing PEBBLE GAME is EXPTIME-hard turns out to show also that

Compact ATM Comp. $\leq^{\mathrm{fp}}_{\mathrm{m}}$ Par. Pebble Game.

PAR. PEBBLE GAME (III)

• PARAMETERIZED PEBBLE GAME $\leq^{\rm fp}_{\rm m}$ Compact ATM Computation.

 $PG = \langle N, R, S, T \rangle$; |S| = k.

• Construction of the ATM M_{PG} .

Alphabet: N. k work-tape squares.

Moves of Player I emulated by existential states.

Moves of Player II emulated by universal states.

R and S encoded in the transition table.

•
$$|M_{PG}|$$
 is in $\mathcal{O}(|PG|)$ and $k' = k$.

Parameterized classes and TM pbs

- Labeled transition system (LTS): $\mathcal{A} = \langle Q, \Sigma, \rightarrow \rangle$.
- $\rightarrow \subseteq Q \times \Sigma \times Q.$
- $|\mathcal{A}| = |Q| + |\Sigma| + |\rightarrow|.$
- Product LTS $\mathcal{A}_1 \times \cdots \times \mathcal{A}_n$ with set of states $\prod_{i=1}^n Q_i$ and alphabet $\bigcup_{i=1}^k \Sigma_i$.

Synchronization protocols

Strong synchronization

all components move at the same time:

$$\langle s_1, \ldots, s_k \rangle \xrightarrow{a}_{\text{str}} \langle t_1, \ldots, t_k \rangle$$
 iff $s_i \xrightarrow{a}_i t_i$ for all $i = 1, \ldots, k$.

Binary synchronization

two components synchronize while the rest does not move.

 $\langle s_1, \ldots, s_k \rangle \xrightarrow{a}_{\text{bin}} \langle t_1, \ldots, t_k \rangle$ iff there exist *i* and *j* ($i \neq j$) s.t. $s_i \xrightarrow{a}_i t_i$ and $s_j \xrightarrow{a}_j t_j$ while $s_l = t_l$ for all $l \notin \{i, j\}$.

Parameterized Exact Reachability

Reachability problems are fundamental in model-checking.

Exact Reachability (EXACT-REACH)

Instance: k LTSs $\mathcal{A}_1, \dots, \mathcal{A}_k$, two configurations \overline{s} and \overline{t} of $\mathcal{A}_1 \times \dots \times \mathcal{A}_k$;

Parameter: k;

Question: $\bar{s} \xrightarrow{*} \bar{t}$?

Parameterized Local Reachability

Local Reachability (LOCAL-REACH)

Instance: $k \text{ LTSs } \mathcal{A}_1, \dots, \mathcal{A}_k$, sets F_1, \dots, F_k of states with $F_i \subseteq Q_i$, a configuration \overline{s} of $\mathcal{A}_1 \times \dots \times \mathcal{A}_k$;

Parameter: k;

```
Question: Does \bar{s} \xrightarrow{*} \bar{t} for some \bar{t} \in \bar{F}
where \bar{F} = F_1 \times \cdots \times F_k?
```

Parameterized Repeated Reachability

Repeated Reachability (REP-REACH)

Instance: $k \text{ LTSs } \mathcal{A}_1, \dots, \mathcal{A}_k$, sets F_1, \dots, F_k of states with $F_i \subseteq Q_i$, a configuration \overline{s} of $\mathcal{A}_1 \times \dots \times \mathcal{A}_k$;

Parameter: k;

Question: Does
$$\bar{s} \xrightarrow{*} \bar{t} \xrightarrow{+} \bar{t}$$
 for some $\bar{t} \in \bar{F}$
where $\bar{F} = F_1 \times \cdots \times F_k$?

(Büchi acceptance condition)

Parameterized Fair Reachability

Fair Reachability (FAIR-REACH)

Instance:
$$k \text{ LTSs } \mathcal{A}_1, \dots, \mathcal{A}_k$$
,
sets $(F_i^j)_{i=1,\dots,k}^{j=1,\dots,p}$ with $F_i^j \subseteq Q_i$ for all i, j ,
a configuration \overline{s} of $\mathcal{A}_1 \times \dots \times \mathcal{A}_k$.
For all j , we write $\overline{F^j}$ for $F_1^j \times \dots \times F_k^j$.

Parameter: k;

Question: Does $\bar{s} \xrightarrow{*} \bar{t_1} \xrightarrow{*} \bar{t_2} \dots \xrightarrow{*} \bar{t_p} \xrightarrow{+} \bar{t_1}$ for some $\bar{t_1}, \dots, \bar{t_p} \in \bar{F^1}, \dots, \bar{F^p}$?

Equivalence

- Theorem. The four parameterized reachability problems are fp-equivalent.
- k-*-REACH: any of the four problems.
- By way of example, we sketch the construction to show k-REP-REACH $\leq_{m}^{fp} k$ -EXACT-REACH:

Sketch of the proof (I)

Sketch of the proof (II)

Equivalence between

1.
$$\bar{s} = \langle q_1, \dots, q_k \rangle \xrightarrow{*} \bar{t} \xrightarrow{+} \bar{t} \text{ in } \mathcal{A}_1 \times \dots \times \mathcal{A}_k;$$

2. $\langle q_1^0, \dots, q_k^0 \rangle \xrightarrow{*} \xrightarrow{\text{choice}} \langle f_1^{j_1}, \dots, f_k^{j_k} \rangle \xrightarrow{+} \langle x_1, \dots, x_k \rangle \text{ in } \mathcal{A}'_1 \times \dots \times \mathcal{A}'_k;$
3. $\langle q_1^0, \dots, q_k^0 \rangle \xrightarrow{*} \langle x_1, \dots, x_k \rangle.$
 $\bar{t} = \langle f_{1,j_1}, \dots, f_{k,j_k} \rangle \in F_1 \times \dots \times F_k.$

Cost of the reduction

- $|\mathcal{A}'_i|$ in $\mathcal{O}((|F_i|+1) \times |\mathcal{A}_i|)$.
- k' = k.
- $|\Sigma'| = 2 \times |\Sigma| + 1$.
- $n' \in \mathcal{O}(n^2)$.
- Simpler reductions exist but we want also to preserve determinism.

fp-equivalence (I)

Theorem. *k*-*-REACH is fp-equivalent to COMPACT NDTM COMPUTATION.

Proof sketch of

COMPACT NDTM COMPUTATION $\leq_{\mathrm{m}}^{\mathrm{fp}} k$ -Local-Reach.

With an NDTM M and an integer k we associate a product $\mathcal{A}_1 \times \cdots \times \mathcal{A}_k \times \mathcal{A}_{state} \times \mathcal{A}_{head}$ of k + 2 LTSs that emulate the behaviour of M on a k-bounded tape.

- each A_i stores the current contents of the *i*-th tape square,
- \mathcal{A}_{state} stores the current control-state of M,
- \mathcal{A}_{head} stores the position of the TM head.

fp-equivalence (II)

- Synchronization on labels of the form $\langle t, i \rangle$ that stand for "rule t of M is fired while head is in position i".
- Successful acceptance by M is directly encoded as a local reachability criterion.
- Finally we translated our instance to a k-LOCAL-REACH instance with k' = k + 2 and $n' = O(kn^2)$.
- See also [Kozen 77] and [Papadimitriou 94] for the PSPACE-hardness proof of reachable deadlock for a system of communicating processes.

Robustness of the equivalence

Variants fp-equivalent to k-*-REACH:

Binary synchronization:

k-*-REACH_{bin} k, Σ -*-REACH_{bin}

Bounded size alphabet:

 k, Σ -*-REACH k-*-REACH_{$|\Sigma|=2$}

Determinism:

 k, Σ -*-REACH_{det} k-*-REACH_{$|\Sigma|=2,det$}

Bounding $|\Sigma|$

Parameterized temporal logic pbs.

- Kripke structure $\mathcal{M} = \langle \mathcal{A}, m \rangle$ \mathcal{A} LTS, $m \subseteq Q \times AP$. $\langle \mathcal{A}_1, m_1 \rangle \times \cdots \times \langle \mathcal{A}_k, m_k \rangle = \langle \mathcal{A}_1 \times \cdots \times \mathcal{A}_k, \bigoplus_i m_i \rangle$
- Sometimes, the labels are used only for the synchronization and not in the product models.
- Parameterized model checking for logic L (MC_L)

Instance: Kripke structures $\mathcal{M}_1, \dots, \mathcal{M}_k$, a configuration \overline{s} , an *L*-formula ϕ ;

Parameter: $k, |\phi|$; Question: $\mathcal{M}_1 \times \cdots \times \mathcal{M}_k, \bar{s} \models \phi$?

LTL

• Linear-time temporal logic for the specification of critical systems.

$$\phi := \mathbf{p} \mid \neg \phi \mid \phi \land \phi' \mid \mathsf{X}\phi \mid \phi \mathsf{U}\phi'.$$

• Models: $\sigma : \mathbb{N} \to 2^{AP}$. Satisfiability relation: $\sigma, i \models \phi$

• Model-checking: $\mathcal{M}, s \models \phi$? Is there a path σ starting at s such that $\sigma, 0 \models \phi$?

Par. model checking for LTL

- Theorem. k, ϕ -MC_{LTL} is fp-equivalent to COMPACT NDTM COMPUTATION (and hence is AW[SAT]-hard).
- COMPACT NDTM COMPUTATION $\leq_{m}^{fp} k, \phi$ -MC_{LTL} because LTL can express reachability questions.
- k, ϕ -MC_{LTL} $\leq_{\mathrm{m}}^{\mathrm{fp}}$ COMPACT NDTM COMPUTATION reduces to a repeated reachability question on $\mathcal{M}_1 \times \cdots \times \mathcal{M}_k \times \mathcal{B}_{\phi}$.

W[1]-completeness

LTL0: poor fragment of LTL that cannot express reachability.

$$\phi := \mathbf{p} \mid \phi \lor \phi' \mid \mathsf{X}\phi.$$

Theorem. k, ϕ -MC_{LTL0} is W[1]-complete, even with only using a single atomic proposition.

Modal μ -calculus

• Theorem. k, ϕ -MC_{μ} is XP-complete.

Writing n for $\sum_{i} |\mathcal{M}_{i}|$, k, ϕ -MC $_{\mu}$ can be solved in time $\mathcal{O}((|\phi|.n^{k})^{|\phi|})$.

- XP-hardness is proved by a reduction from non-flat bisimilarity. Equivalence between
 - \mathcal{A} and \mathcal{B} are bisimilar;
 - $\begin{array}{l} \ \mathcal{A} \parallel \mathcal{B}' \models \nu X. \bigwedge_{a \in \Sigma} ([a] \langle a' \rangle X \land [a'] \langle a \rangle X). \\ \mathcal{A} \parallel \mathcal{B}' \text{ interleaved product with } \mathcal{B}' \text{ obtained from } \mathcal{B} \text{ by} \\ \text{renaming the actions } a \in \Sigma \text{ by } a'. \end{array}$
- Non-flat bisimilarity is XP-hard already when $|\Sigma| = 2$. \rightarrow we can bound the size of the μ -formula and have an fp-reduction.

HML

$\phi ::= \mathbf{p} \mid \phi \lor \phi' \mid \phi \land \phi' \mid \Box \phi \mid \Diamond \phi.$

- Theorem. k, ϕ -MC_{HML} is AW[1]-complete.
- Idea of the proof: k, φ-MC_{HML} is fp-equivalent to SHORT ATM COMPUTATION.
- Use of the standard correspondence between □ and ◊ and the behaviour of the ATMs with univ. states and exist. states, resp.

Computation Tree Logic CTL

- CTL can express reachability questions:
- Theorem. COMPACT NDTM COMPUTATION $\leq_{\mathrm{m}}^{\mathrm{fp}} k, \phi$ -MC_{CTL}.
- Hence k, ϕ -MC_{CTL} is AW[SAT]-hard.
- Open question: Do we have k, ϕ -MC_{CTL} \leq_{m}^{fp} COMPACT NDTM COMPUTATION?

Parameterized bisimulation

Parameterized Bisimulation (BISIM)

Instance: 2k LTSs $\mathcal{A}_1, \dots, \mathcal{A}_k, \mathcal{A}'_1, \dots, \mathcal{A}'_k$, a configuration \overline{s} of $\mathcal{A}_1 \times \dots \times \mathcal{A}_k$, a configuration $\overline{s'}$ of $\mathcal{A}'_1 \times \dots \times \mathcal{A}'_k$.

Question: Is $\langle \mathcal{A}_1 \times \cdots \times \mathcal{A}_k, \bar{s} \rangle$ (strongly) bisimilar to $\langle \mathcal{A}'_1 \times \cdots \times \mathcal{A}'_k, \bar{s'} \rangle$?

Similar definition for other behavioral equivalence R between trace inclusion \subseteq_{tr} and bisimulation.

XP-complete problems

- **Theorem**. *k*-BISIM is XP-complete.
- k-BISIM is in XP since bisimilarity of flat systems is in P.
- XP-hardness is by observing that the reduction in the proof of Theorem 4.1 in [Laroussinie & Schnoebelen 00] can be seen as an fp-reduction from COMPACT ATM COMPUTATION to *k*-BISIM.
- Theorem. k-BISIM and k-BISIM_{$|\Sigma|=2$} are fp-equivalent.

Other behavioral equivalences

- Theorem. For any relation R lying between the simulation preorder and bisimilarity, k-R-CHECKING is XP-hard.
- Consequence of [Laroussinie & Schnoebelen 00].
- Another hardness result:

Theorem. For any relation R lying between trace inclusion and bisimilarity, coCOMPACT NDTM COMPUTATION is fp-reducible to k-R-CHECKING, i.e. the problem of checking whether $\langle A_1 \times \cdots \times A_k, \bar{s} \rangle R \langle A'_1 \times \cdots \times A'_k, \bar{s'} \rangle$.

Sketch of the proof

Reduction of \overline{k} -EXACT-REACH to k-R-CHECKING.

 $\mathcal{A}_1, \ldots, \mathcal{A}_k$, \overline{s} , \overline{t} instance of k-EXACT-REACH where $\overline{t} = \langle t_1, \ldots, t_k \rangle$.

 \mathcal{A}'_i : \mathcal{A}_i + a loop $t_i \xrightarrow{\#} t_i$, # new label.

$$\mathcal{S}=\mathcal{A}_1 imes\cdots imes\mathcal{A}_k$$
, $\mathcal{S}'=\mathcal{A}'_1 imes\cdots imes\mathcal{A}'_k$

(1) $\langle \mathcal{S}, \bar{s} \rangle \sim \langle \mathcal{S}', \bar{s} \rangle$ iff (2) $\langle \mathcal{S}', \bar{s} \rangle \subseteq_{\mathrm{tr}} \langle \mathcal{S}, \bar{s} \rangle$ iff (3) not $\bar{s} \xrightarrow{*} \bar{t}$ in \mathcal{S} .

Consequently, for $\sim \subseteq R \subseteq \subseteq_{tr}$, $\langle S, \bar{s} \rangle R \langle S', \bar{s} \rangle$ iff not $\bar{s} \xrightarrow{*} \bar{t}$.

Summary

Some concluding remarks

- Parameterized complexity framework is not yet in a stable condition. (see e.g. the introduction of the class MINI[1]).
- There are plenty of complexity issues related to verification problems in this framework (timed automata, Rabin automata, etc ...).
- Many problems from formal verification can be naturally parameterized but how parameterized complexity can be used to induce improvements in practice? (mainly dark side presented during this talk)