Dynamic Axioms in Description Logics

Stéphane Demri (CNRS, LMF)

NARCO meeting, IRIF, July 2022
Description logics and updates

• Description logics are well-known logical formalisms for knowledge representation. [Baader et al., Book 2017]

• Interpretations are labeled directed graphs satisfying inclusions $C \sqsubseteq C'$, assertions $C(a)$, role inclusion axioms $r_1 \circ \cdots \circ r_n \sqsubseteq s$, ...

...
Description logics and updates

- Description logics are well-known logical formalisms for knowledge representation. [Baader et al., Book 2017]

- Interpretations are labeled directed graphs satisfying inclusions $C \sqsubseteq C'$, assertions $C(a)$, role inclusion axioms $r_1 \circ \cdots \circ r_n \sqsubseteq s$, ...

- How to specify the evolution of the satisfaction of inclusions or assertions when the current interpretation is updated?
Description logics and updates

- Description logics are well-known logical formalisms for knowledge representation. [Baader et al., Book 2017]

- Interpretations are labeled directed graphs satisfying inclusions $C \sqsubseteq C'$, assertions $C(a)$, role inclusion axioms $r_1 \circ \cdots \circ r_n \sqsubseteq s$, ...

- How to specify the evolution of the satisfaction of inclusions or assertions when the current interpretation is updated?

 This talk: proposal for a framework based on separating connectives from separation logics.

- Separation logics designed to verify heap-manipulating programs. Use of connectives \ast, $\neg\ast$, \otimes, ...
A LC in a nutshell

- Complex concepts.

\[C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C, \]

where \(A \in \mathbb{N}_C \) and \(r \in \mathbb{N}_R \).
\textbf{ALC in a nutshell}

- Complex concepts.

\[C ::= \top \mid \bot \mid A \mid \neg C \mid C \cap C \mid C \cup C \mid \exists r.C \mid \forall r.C, \]

where \(A \in N_C \) and \(r \in N_R \).

- Interpretation \(\mathcal{I} \stackrel{\text{def}}{=} (\Delta^\mathcal{I}, \cdot^\mathcal{I}) \)

 - \(\Delta^\mathcal{I} \): non-empty set (the \textit{domain}).

 - \(\cdot^\mathcal{I} \): \textit{interpretation function} such that
 \[A^\mathcal{I} \subseteq \Delta^\mathcal{I} \quad r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I} \quad a^\mathcal{I} \in \Delta^\mathcal{I} \]
A LC in a nutshell

- Complex concepts.

\[C ::= \top \ | \bot \ | \ A \ | \neg C \ | \ C \cap C \ | \ C \cup C \ | \exists r.C \ | \forall r.C, \]

where \(A \in \mathbb{N}_C \) and \(r \in \mathbb{N}_R \).

- Interpretation \(I \) \text{ def } (\Delta^I, \cdot^I)

 - \(\Delta^I \): non-empty set (the domain).

 - \(\cdot^I \): interpretation function such that

\[A^I \subseteq \Delta^I \quad r^I \subseteq \Delta^I \times \Delta^I \quad a^I \in \Delta^I \]

Concept name \(A \) / role name \(r \) / individual name \(a \)

\(\approx \)

unary predicate / binary predicate / constant
Semantics for complex concepts

\[\top^I \overset{\text{def}}{=} \Delta^I \]

\[\bot^I \overset{\text{def}}{=} \emptyset \]

\[(\neg C)^I \overset{\text{def}}{=} \Delta^I \setminus C^I \]

\[(C_1 \sqcup C_2)^I \overset{\text{def}}{=} C_1^I \cup C_2^I \]

\[(C_1 \sqcap C_2)^I \overset{\text{def}}{=} C_1^I \cap C_2^I \]

\[(\exists r. C)^I \overset{\text{def}}{=} \{ d \in \Delta^I \mid r^I(d) \cap C^I \neq \emptyset \} \]

\[(\forall r. C)^I \overset{\text{def}}{=} \{ d \in \Delta^I \mid r^I(d) \subseteq C^I \} \]

\[\mathcal{R}(d) \overset{\text{def}}{=} \{ e \mid (d, e) \in \mathcal{R} \} \]
Inclusions and assertions

• Expressions of the form $C \sqsubseteq D$ are called general concept inclusions (GCIs).

\[\text{Employee} \sqsubseteq \exists \text{WorksFor}. \top \]

\[\mathcal{I} \models C \sqsubseteq D \quad \overset{\text{def}}{=} \quad C^\mathcal{I} \subseteq D^\mathcal{I} \]

\[\text{Concept assertion:} \quad C(a) (\text{Student} \sqcap \neg \exists \text{Pays}. \text{Tax})(Alice) \]

\[\mathcal{I} \models C(a) \quad \overset{\text{def}}{=} \quad a^\mathcal{I} \in C^\mathcal{I} \]

\[\text{Role assertion:} \quad r(a, b) (\text{WorksFor}(Laura, \text{CNRS})) \]

\[\mathcal{I} \models r(a, b) \quad \overset{\text{def}}{=} \quad (a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I} \]
Inclusions and assertions

- Expressions of the form $C \sqsubseteq D$ are called general concept inclusions (GCIs).

- Concept assertion: $C(a)$ \quad (Student $\sqcap \neg \exists$Pays.Tax)(Alice)

\[
\mathcal{I} \models C(a) \iff a^\mathcal{I} \in C^\mathcal{I}
\]
Inclusions and assertions

- Expressions of the form $C \sqsubseteq D$ are called general concept inclusions (GCIs).

- **Concept assertion:** $C(a)$ \quad (Student $\sqcap \neg \exists \text{Pays.Tax})(\text{Alice})$

 $\mathcal{I} \models C(a) \iff a^\mathcal{I} \in C^\mathcal{I}$

- **Role assertion:** $r(a, b)$ \quad \text{WorksFor}(\text{Laura, CNRS})

 $\mathcal{I} \models r(a, b) \iff (a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I}$
Knowledge bases (a.k.a. ontologies)

- Terminological Box (TBox) \(\mathcal{T} \): finite collection of GCIs.
- Assertional Box (ABox) \(\mathcal{A} \): finite collection of assertions.
- Knowledge base \(\mathcal{K} \) is a pair \((\mathcal{T}, \mathcal{A}) \).
Knowledge bases (a.k.a. ontologies)

- Terminological Box (TBox) T: finite collection of GCIs.
- Assertional Box (ABox) A: finite collection of assertions.
- Knowledge base K is a pair (T, A).
- Interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$, knowledge base $K = (T, A)$.

\[\mathcal{I} \models K \iff \text{for all } \alpha \in A \cup T, \mathcal{I} \models \alpha \]
Knowledge bases (a.k.a. ontologies)

- Terminological Box (TBox) \mathcal{T}: finite collection of GCIs.
- Assertional Box (ABox) \mathcal{A}: finite collection of assertions.
- Knowledge base \mathcal{K} is a pair $(\mathcal{T}, \mathcal{A})$.

- Interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \mathcal{I}^\mathcal{I})$, knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$.
 \[\mathcal{I} \models \mathcal{K} \iff \text{for all } \alpha \in \mathcal{A} \cup \mathcal{T}, \mathcal{I} \models \alpha \]

- \mathcal{K} is consistent \iff there is some \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$.
- Consistency problem for \mathcal{ALC} is ExpTime-complete.
Adding dynamic axioms in KBs

- Problems from [Liu et al., KR’06] are related to the construction of \mathcal{A}' equivalent to \mathcal{A} after (deterministic) update \mathcal{U}.

$$\mathcal{A}' = \mathcal{A} \ast \mathcal{U} \quad \text{Inter}(\mathcal{A}') = \{ \mathcal{I}^{\mathcal{U}} \mid \mathcal{I} \in \text{Inter}(\mathcal{A}) \}$$

(symbol \ast overloaded)
Adding dynamic axioms in KBs

• Problems from [Liu et al., KR’06] are related to the construction of A' equivalent to A after (deterministic) update U.

$$A' = A \ast U \quad \text{Inter}(A') = \{ \mathcal{I}^U \mid \mathcal{I} \in \text{Inter}(A) \}$$

(s symbol * overloaded)

• In this talk, dynamic axioms update the interpretations using the separating connectives \ast and \ominus.

• Partial composition operator $\oplus : \mathbb{I} \times \mathbb{I} \rightarrow \mathbb{I}$ with AC \oplus.
Adding dynamic axioms in KBs

- Problems from [Liu et al., KR’06] are related to the construction of A' equivalent to A after (deterministic) update U.

$$A' = A \ast U \quad \text{Inter}(A') = \{ I^U | I \in \text{Inter}(A) \}$$

(symmetric * overloaded)

- In this talk, dynamic axioms update the interpretations using the separating connectives \ast and \ominus.

- Partial composition operator $\oplus : \mathbb{I} \times \mathbb{I} \rightarrow \mathbb{I}$ with AC \oplus.

- KB $\mathcal{K} = (\mathcal{I}, \mathcal{A}, \mathcal{D})$ with dynamic box \mathcal{D}.
Connective \bigotimes in dynamic axioms

- $\mathcal{I} \not\models (\exists r. T \sqsubseteq \exists s. T)$ but there is \mathcal{J} such that $\mathcal{I} \oplus \mathcal{J}$ is defined and satisfies $\mathcal{I} \oplus \mathcal{J} \models \exists r. T \sqsubseteq \exists s. T$.

Connective \bigotimes in separation logics introduced in [Vafeiadis & Parkinson, CONCUR’07].
Connective \ominus in dynamic axioms

- $I \not\models (\exists r. T \subseteq \exists s. T)$ but there is J such that $I \oplus J$ is defined and satisfies $I \oplus J \models \exists r. T \subseteq \exists s. T$.

- Property specified by
 \[\neg (\exists r. T \subseteq \exists s. T) \cap (T \ominus (\exists r. T \subseteq \exists s. T)) \]

- Connective \ominus in separation logics introduced in
 [Vafeiadis & Parkinson, CONCUR’07]
Positive dynamic axioms

\[U, V := \top \mid C(a) \mid r(a, b) \mid C \sqsubseteq D \mid \]

\[
\begin{align*}
U \cup V \mid U \cap V & \mid U \ast V \mid U \leftarrow \ast V \\
& \text{positive Boolean part} \quad \text{compositional part}
\end{align*}
\]

(existential separating connectives)
Positive dynamic axioms

\[U, V := \top | C(a) | r(a, b) | C \sqsubseteq D | \]

\[
\begin{array}{l}
U \sqcup V \mid U \sqcap V \mid U \ast V \mid U \smallcircleast V \\
positive \ Boolean \ part \mid \ \text{compositional part}
\end{array}
\]

(existental separating connectives)

\[\mathcal{I} \models U_1 \ast U_2 \ \text{iff} \ \text{there are } \mathcal{I}_1, \mathcal{I}_2 \ \text{s.t. } \mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2, \]
\[\mathcal{I}_1 \models U_1 \text{ and } \mathcal{I}_2 \models U_2 \]

\[\mathcal{I} \models U_1 \smallcircleast U_2 \ \text{iff} \ \text{there is } \mathcal{I}' \ \text{s.t. } \mathcal{I} \oplus \mathcal{I}' \text{ is defined,} \]
\[\mathcal{I}' \models U_1 \text{ and } \mathcal{I} \oplus \mathcal{I}' \models U_2. \]
Interpretation composition (for this talk)

- \(\mathcal{I} = \mathcal{I}_1 + \mathcal{I}_2 \) whenever,
 - \(\mathcal{I}, \mathcal{I}_1 \) and \(\mathcal{I}_2 \) share the same domain,
 - they agree on the interpretation of the individual names \(a \) and concept names \(A \),
 - for all \(r \in \mathbb{N}_R \), we have \(r^\mathcal{I} = r^\mathcal{I}_1 \cup r^\mathcal{I}_2 \).

\[\begin{array}{ccc}
\begin{array}{ccc}
A, B & A, B & A, B \\
& A & A, B \\
é & e & f
\end{array}
\end{array}\]

\[\begin{array}{ccc}
\begin{array}{ccc}
A, B & A, B & A, B \\
& A & A, B \\
é & e & f
\end{array}
\end{array}\]

\[\begin{array}{ccc}
\begin{array}{ccc}
A, B & A, B & A, B \\
& A & A, B \\
é & e & f
\end{array}
\end{array}\]
Consistency problem with dynamic axioms

- Dynamic axioms (closure under Boolean operators)

\[U, V ::= \top \mid \neg U \mid U \sqcup V \mid U \sqcap V \]

- EL concepts:
 \[C ::= \top \mid A \mid C \sqcap D \mid \exists r.C \]
 (EL fragment of ALC, no \(\neg \), \(\sqcup \))

<table>
<thead>
<tr>
<th>Logic \ Dynamic axioms</th>
<th>Positive DAs</th>
<th>DAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>in PTIME</td>
<td>undecidable</td>
</tr>
<tr>
<td>ALC</td>
<td>EXPTIME-complete</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
Fragment \mathcal{EL}

- \mathcal{EL} concepts: $C ::= \top | A | C \sqcap D | \exists r.C$

- Consistency problem for PDA with \mathcal{EL} (no \sqcup, \neg; $C, D \in \mathcal{EL}$)

\[U, V ::= \top | C(a) \mid r(a, b) \mid C \sqsubseteq D \mid U \sqcap V \mid U \ast V \mid U \ominus V \]
Fragment \mathcal{EL}

- **\mathcal{EL} concepts:** $C ::= \top \mid A \mid C \cap D \mid \exists r.C$

- Consistency problem for PDA with \mathcal{EL} (no \sqcup, \neg; $C, D \in \mathcal{EL}$)
 \[
 U, V ::= \top \mid C(a) \mid r(a, b) \mid C \sqsubseteq D \mid U \cap V \mid U \star V \mid U \ominus V
 \]

- A KB with PDAs for \mathcal{EL} is not always consistent.
 \[
 r(a, b) \sqcap (r(a, b) \ominus \top)
 \]
Interpretable positions

- PDA \mathbb{U} represented by a labelled finite tree.

$$(\mathbb{U}_1 \oplus \mathbb{U}_2) \cap (\mathbb{U}'_1 \oplus \mathbb{U}'_2)$$
Interpretable positions

- PDA \mathcal{U} represented by a labelled finite tree.

$$\big((\mathcal{U}_1 \ominus \mathcal{U}_2) \cap (\mathcal{U}_1' \ominus \mathcal{U}_2')\big)$$

- $\text{Int}_{\mathcal{U}}$: set of interpretable positions, smallest subset of positions such that
 - $\varepsilon \in \text{Int}_{\mathcal{U}}$ and,
 - $n \cdot 1, n \cdot 2 \in \text{Int}_{\mathcal{U}}$, for n labelled by a PDA of the form either $\mathcal{U}_1 \ominus \mathcal{U}_2$ or $\mathcal{U}_1 \ast \mathcal{U}_2$.

...
PTime upper bound

- Derivation of statements of the form \((n \in \text{Int}_U)\)

\[n : r(a, b), \quad n : \neg r(a, b), \quad \bot \]

(see paper for the definition of the calculus)
PTime upper bound

- Derivation of statements of the form \((n \in \text{Int}_U)\)

\[
\begin{align*}
\varepsilon : r(a, b), & \quad \varepsilon : \neg r(a, b), \quad \bot \\
\text{(see paper for the definition of the calculus)}
\end{align*}
\]

\[
\begin{align*}
\varepsilon : r(a, b) & \quad \varepsilon + 2.1 = 2.2 \\
\frac{2.1 : r(a, b)}{\varepsilon : \neg r(a, b)} \quad 2.1 : r(a, b) \\
\bot
\end{align*}
\]
PTime upper bound

- Derivation of statements of the form \((n \in \text{Int}_U)\)

\[n : r(a, b), \quad n : \neg r(a, b), \quad \bot \]

(see paper for the definition of the calculus)

\[r(a, b) \sqcap (r(a, b) \neg \top) \]

\[\varepsilon : r(a, b) \quad \varepsilon + 2.1 = 2.2 \quad 2.1 : r(a, b) \]

\[\bot \]

- Equivalence between:
 - \(\mathcal{X} = (T, A, D) \) is consistent,
 - \(\bot \) cannot be derived from \(U = \bigcap_{\alpha \in T \cup A \cup D} \alpha \).

- Consistency problem for \(\mathcal{EL} \) with PDAs is in \(\text{PTime} \).
Designing disjointness axioms from PDAs

- \(i(n) \overset{\text{def}}{=} \) maximal prefix of \(n\) that is in \(\text{Int}_U\).
Designing disjointness axioms from PDAs

• $i(n) \overset{\text{def}}{=} \text{maximal prefix of } n \text{ that is in } \text{Int}_U$.

\begin{center}
\begin{tikzpicture}
 \node (U_1) at (0,0) {U_1};
 \node (U_2) at (1.5,0) {U_2};
 \node (U_1') at (0,1.5) {U_1'};
 \node (U_2') at (1.5,1.5) {U_2'};
 \draw (U_1) edge (U_1') edge (U_2) edge (U_2');
 \draw (U_2) edge (U_1') edge (U_2');
\end{tikzpicture}
\end{center}

• Disj_U: smallest set of disjointness axioms of the form $n = n_1 + n_2$ with $n, n_1, n_2 \in \text{Int}_U$ such that
 • if n labelled by $U_1 \ast U_2$ then $i(n) = (n \cdot 1) + (n \cdot 2) \in \text{Disj}_U$,
 • if n labelled by $U_1 \ominus U_2$ then $(n \cdot 2) = (n \cdot 1) + i(n) \in \text{Disj}_U$.

• With $U^* = (U_1 \ominus U_2) \cap (U_1' \ominus U_2')$,
 \[
 \text{Disj}_{U^*} \supseteq \{ 1 \cdot 2 = \varepsilon + 1 \cdot 1, \ 2 \cdot 2 = \varepsilon + 2 \cdot 1 \} \]
Designing disjointness axioms from PDAs (II)

- With $U^* = (U_1 \oplus U_2) \cap (U'_1 \ominus U'_2)$,

\[
\text{Disj}_{U^*} \supseteq \{1 \cdot 2 = \varepsilon + 1 \cdot 1, \ 2 \cdot 2 = \varepsilon + 2 \cdot 1\}
\]
Designing disjointness axioms from PDAs (II)

- With $U^* = (U_1 ∪ U_2) \cap (U'_1 ∪ U'_2)$,

 $$\text{Disj}_{U^*} \supseteq \{1 \cdot 2 = \varepsilon + 1 \cdot 1, \ 2 \cdot 2 = \varepsilon + 2 \cdot 1\}$$

- A map $g: \text{Int}_U \rightarrow \mathbb{I}$ is said to be a complete witness for U iff for all $n \in \text{Int}_U$,
 - $g(n) \models U_n$ with n labelled by U_n and,
 - if $n = n_1 + n_2$ is in Disj_U, then $g(n) = g(n_1) + g(n_2)$.

Consistency of U amounts to find interpretations for the interpretable positions that can be composed according to disjointness axioms.

U is consistent iff there is a complete witness for U. Useful to show that consistency problem of PDAs with A LC concepts in ExpTime.
Designing disjointness axioms from PDAs (II)

- With $\mathbb{U}^* = (\mathbb{U}_1 \oplus \mathbb{U}_2) \cap (\mathbb{U}_1' \oplus \mathbb{U}_2')$,

 $$\text{Disj}_{\mathbb{U}^*} \supseteq \{1 \cdot 2 = \varepsilon + 1 \cdot 1, \ 2 \cdot 2 = \varepsilon + 2 \cdot 1\}$$

- A map $g : \text{Int}_\mathbb{U} \to \mathbb{I}$ is said to be a complete witness for \mathbb{U} iff for all $n \in \text{Int}_\mathbb{U}$,
 - $g(n) \models \mathbb{U}_n$ with n labelled by \mathbb{U}_n and,
 - if $n = n_1 + n_2$ is in Disj$_\mathbb{U}$, then $g(n) = g(n_1) + g(n_2)$.

- Consistency of \mathbb{U} amounts to find interpretations for the interpretable positions that can be composed according to disjointness axioms.
Designing disjointness axioms from PDAs (II)

- With $U^* = (U_1 \oplus U_2) \cap (U_1' \ominus U_2')$,
 $$\text{Disj}_{U^*} \supseteq \{ 1 \cdot 2 = \varepsilon + 1 \cdot 1, \ 2 \cdot 2 = \varepsilon + 2 \cdot 1 \}$$

- A map $g : \text{Int}_U \to I$ is said to be a complete witness for U iff for all $n \in \text{Int}_U$,
 - $g(n) \models U_n$ with n labelled by U_n and,
 - if $n = n_1 + n_2$ is in Disj_U, then $g(n) = g(n_1) + g(n_2)$.

- Consistency of U amounts to find interpretations for the interpretable positions that can be composed according to disjointness axioms.

- U is consistent iff there is a complete witness for U.
Designing disjointness axioms from PDAs (II)

- With $\mathbb{U}^* = (\mathbb{U}_1 \oplus \mathbb{U}_2) \cap (\mathbb{U}_1' \ominus \mathbb{U}_2')$,
 \[\text{Disj}_{\mathbb{U}^*} \supseteq \{1 \cdot 2 = \varepsilon + 1 \cdot 1, \ 2 \cdot 2 = \varepsilon + 2 \cdot 1\} \]

- A map $g : \text{Int}_\mathbb{U} \rightarrow \mathbb{I}$ is said to be a complete witness for \mathbb{U} iff for all $n \in \text{Int}_\mathbb{U}$,
 - $g(n) \models \mathbb{U}_n$ with n labelled by \mathbb{U}_n and,
 - if $n = n_1 + n_2$ is in Disj$_\mathbb{U}$, then $g(n) = g(n_1) + g(n_2)$.

- Consistency of \mathbb{U} amounts to find interpretations for the interpretable positions that can be composed according to disjointness axioms.

- \mathbb{U} is consistent iff there is a complete witness for \mathbb{U}.

- Useful to show that consistency problem of PDAs with $A\mathcal{LC}$ concepts in ExpTime.
A simple proof system (parameterised by \mathbb{U})

Derivation of statements of the form $(n \in \text{Int}_\mathbb{U})$

\[n : r(a, b), \quad n : \neg r(a, b), \quad \bot \]

\[\frac{n : r(a, b) \quad n : \neg r(a, b)}{\bot} \quad \frac{n \text{ labelled by } r(a, b)}{i(n) : r(a, b)} \]

\[n = n_1 + n_2 \in \text{Disj}_\mathbb{U} \quad n_i : r(a, b) \]

\[n : r(a, b) \]

\[n = n_1 + n_2 \in \text{Disj}_\mathbb{U} \quad n_i : r(a, b) \]

\[n_{3-i} : \neg r(a, b) \]

\text{etc.}
Correctness

- $\mathbb{U} \vdash n : r(a, b)$ implies for all complete witnesses g for \mathbb{U}, we have $g(n) \models r(a, b)$.

- $\mathbb{U} \vdash n : \neg r(a, b)$ implies for all complete witnesses g for \mathbb{U}, we have $g(n) \not\models r(a, b)$.

- So, \mathcal{H} consistent implies \bot is not derivable.
Sketch of the proof (other direction)

• $\mathcal{RA}(U)$: set of role assertions occurring in U.

• Complete snapshot $f: \text{Int}_U \times \mathcal{RA}(U) \rightarrow \{0, 1\}$ such that for all $r(a, b) \in \mathcal{RA}(U)$,

 • for all $n \in \text{Int}_U$, $U \vdash n: r(a, b)$ implies $f(n, r(a, b)) = 1$, and $U \vdash n: \neg r(a, b)$ implies $f(n, r(a, b)) = 0$,

 • $f(n, r(a, b)) = f(n_1, r(a, b)) + f(n_2, r(a, b)) \leq 1$, whenever $n = n_1 + n_2 \in \text{Disj}_U$.

The other direction is much more involved and requires to use the following properties.

• Non-derivability of \bot implies the existence of a complete snapshot.

• (T, A) is EL consistent, say $I | = (T, A)$.

• The interpretation for U is made of copies of I taking care of disjointness axioms and the complete snapshot.
Sketch of the proof (other direction)

- $RA(U)$: set of role assertions occurring in U.

- Complete snapshot $f: \text{Int}_U \times RA(U) \to \{0, 1\}$ such that for all $r(a, b) \in RA(U)$,
 - for all $n \in \text{Int}_U$, $U \vdash n: r(a, b)$ implies $f(n, r(a, b))=1$, and
 - $U \vdash n: \neg r(a, b)$ implies $f(n, r(a, b)) = 0$,

- $f(n, r(a, b)) = f(n_1, r(a, b)) + f(n_2, r(a, b)) \leq 1$, whenever $n = n_1 + n_2 \in \text{Disj}_U$.

- The other direction is much more involved and requires to use the following properties.
 - Non-derivability of \bot implies the existence of a complete snapshot.
 - $(\mathcal{I}, \mathcal{A})$ is \mathcal{EL} consistent, say $\mathcal{I} \models (\mathcal{I}, \mathcal{A})$.
 - The interpretation for U is made of copies of \mathcal{I} taking care of disjointness axioms and the complete snapshot.
\mathcal{ALC} with dynamic axioms

- Consistency of DA with \mathcal{ALC} concepts is undecidable.
- Reduction from \mathcal{ALC} concept satisfiability w.r.t. RBoxes R.

$\mathcal{I}_1 \sqsubseteq \cdots \sqsubseteq \mathcal{I}_n \sqsubseteq s \iff \mathcal{I}_1 \sqsubseteq \cdots \sqsubseteq \mathcal{I}_n \subseteq s_{\text{def}}$
ALC with dynamic axioms

- Consistency of DA with \(ALC \) concepts is undecidable.

- Reduction from \(ALC \) concept satisfiability w.r.t. RBoxes \(\mathcal{R} \).

\[
\mathcal{I} \models r_1 \circ \cdots \circ r_n \sqsubseteq s \; \text{def} \; r_1^\mathcal{I} \circ \cdots \circ r_n^\mathcal{I} \subseteq s^\mathcal{I}.
\]

- \(ALC \) concept satisfiability w.r.t. RBoxes is undecidable.

[Baldoni et al., TABLEAUX’98]
ALC with dynamic axioms

- Consistency of DA with ALC concepts is undecidable.

- Reduction from ALC concept satisfiability w.r.t. RBoxes R.

- $I \models r_1 \circ \cdots \circ r_n \sqsubseteq s \iff r_1^I \circ \cdots \circ r_n^I \subseteq s^I$.

- ALC concept satisfiability w.r.t. RBoxes is undecidable. [Baldoni et al., TABLEAUX’98]

- C satisfiable w.r.t. R iff DA below consistent (V’s are PDAs):

$$C(a) \cap ((\exists t_1.T) \sqsubseteq \bot) \cap \prod_{r \sqsubseteq s \in R} \neg V(r \sqsubseteq s, t_1, t_2)$$
Expressing $t^\mathcal{I} = \emptyset$ and $C^\mathcal{I} \neq \emptyset$

- Fresh role names t, t_1, t_2 interpreted by the empty relation.
- We use $t \equiv \emptyset$ for $(\exists t. \top) \sqsubseteq \bot$.
Expressing \(t^\mathcal{I} = \emptyset \) and \(C^\mathcal{I} \neq \emptyset \)

- Fresh role names \(t, t_1, t_2 \) interpreted by the empty relation.

- We use \(t \equiv \emptyset \) for \((\exists t. \top) \sqsubseteq \bot \).

- \(C \) built over the role names in \(\{s_1, \ldots, s_m\} \).

\[
\langle C \not\equiv t \perp \rangle \overset{\text{def}}{=} (\prod_{r \in \{s_1, \ldots, s_m\}} (r \equiv \emptyset)) \oslash (\top \sqsubseteq \exists t. C)
\]

- \(C^\mathcal{I} \) is non-empty iff \(\mathcal{I} \models \langle C \not\equiv t \perp \rangle \) holds.
Encoding \(r_1 \circ \cdots \circ r_n \sqsubseteq s \)

- When \(t_1^\mathcal{I} = \emptyset \),
 \(\mathcal{I} \models \neg V((r_1, \ldots, r_n), s, t_1, t_2) \) iff \(\mathcal{I} \models r_1 \circ \cdots \circ r_n \sqsubseteq s \).

\[V((r_1, \ldots, r_n), s, t_1, t_2) \overset{\text{def}}{=} (\prod_{r \in \{r_1, \ldots, r_n, s\}} (r \equiv \emptyset) \odot (\langle \exists r_1 \ldots \exists r_n \exists t_1. \top \cap \neg \exists s. \exists t_1. \top \rangle \neq t_2 \bot)) \]
Encoding $r_1 \circ \cdots \circ r_n \sqsubseteq s$

- When $t_1^\mathcal{I} = \emptyset$,

 $\mathcal{I} \models \neg \mathcal{V}((r_1, \ldots, r_n), s, t_1, t_2)$ iff $\mathcal{I} \models r_1 \circ \cdots \circ r_n \sqsubseteq s$.

\[
\mathcal{V}((r_1, \ldots, r_n), s, t_1, t_2) \overset{\text{def}}{=} \left(\bigcap_{r \in \{r_1, \ldots, r_n, s\}} (r \equiv \emptyset) \right) \text{ and } \left(\langle \exists r_1 \cdots \exists r_n \exists t_1. \top \land \neg \exists s. \exists t_1. \top \rangle \neq t_2 \bot \right)
\]

- C satisfiable wrt \mathcal{R} iff DA below is consistent:

\[
C(a) \sqcap (t_1 \equiv \emptyset) \sqcap \prod_{\overline{r} \subseteq s} \neg \mathcal{V}((r_1, \ldots, r_n), s, t_1, t_2)
\]

- Consistency problem for \mathcal{ALC} with dynamic axioms is undecidable. (a refinement leads to undec. for \mathcal{EL} too)
Concluding remarks

- New framework for updates in DL interpretations.
- Complexity/decidability results for some specific DLs and composition.
Concluding remarks

- New framework for updates in DL interpretations.
- Complexity/decidability results for some specific DLs and composition.

<table>
<thead>
<tr>
<th>Logic \ Dynamic axioms</th>
<th>Positive DAs</th>
<th>DAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>in PTIME</td>
<td>undecidable</td>
</tr>
<tr>
<td>ALC</td>
<td>EXPTIME-complete</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

Study of subproblems/variants with student Pranay Agrawal.

Alternative (non-aggregative) compositions.
Concluding remarks

- New framework for updates in DL interpretations.
- Complexity/decidability results for some specific DLs and composition.

<table>
<thead>
<tr>
<th>Logic \ Dynamic axioms</th>
<th>Positive DAs</th>
<th>DAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>in PTIME</td>
<td>undecidable</td>
</tr>
<tr>
<td>ALC</td>
<td>EXPTIME-complete</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

- Subsumption problem with PDA for EL (no \neg, \sqcup): $\mathcal{U} \models \mathcal{V}$?
 Study of subproblems/variants with student Pranay Agrawal.

- Alternative (non-aggregative) compositions.