Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?

Stéphane Demri
– LSV, CNRS, ENS Paris-Saclay –

Joint work with

Bartosz Bednarczyk
– U. of Dresden & U. of Wroclaw –

I3S, June 2019
Realm of (modal) logics updating models

- Logics of public announcements [Plaza, ISMIS’89]
- Sabotage modal logics [van Benthem, 2002]
- Separation logics [Reynolds, LiCS’02]
- Logic with separating modalities LSM [Courtauld & Galmiche & Pym, TCS 2016]
- Propositional team logic [Hannula et al., ToCL 2018]
- Logics with reactive Kripke semantics [Gabbay, Book 2013]
Overview

1. Second-order modal logics

2. Tree semantics

3. Fragments of quantified CTL under the tree semantics
 - Bounding the branching degree
 - Computational complexity with EX only
 - Harvest of TOWER-hard logics on tree-like models
Second-order modal logics
Modal logics in a nutshell

- Formulae: \(\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \lozenge \phi \mid \Box \phi. \)

- Kripke-style structures \(\mathcal{M} = (W, R, V) \):
 - \(W \): non-empty set of worlds.
 - \(R \subseteq W \times W \): accessibility relation.
 - \(V : \text{PROP} \rightarrow \mathcal{P}(W) \): valuation.

\[
\begin{array}{c}
\vcenter{\hbox{\begin{tikzpicture}
 \node (w) at (0,0) [label=left:w] {w};
 \node (p) at (1,0) [label=left:p] {p};
 \node (q) at (2,0) [label=left:q] {q};
 \node (w') at (1,1) [label=left:w'] {w'};\end{tikzpicture}}}
\quad \vcenter{\hbox{\begin{tikzpicture}
 \node (p) at (0,0) [label=left:p] {p};
 \node (q) at (1,0) [label=left:q] {q};
 \node (p') at (0,1) [label=left:p'] {p'};\end{tikzpicture}}}
\end{array}
\]

- Satisfaction relation:
 - \(\mathcal{M}, w \models p \iff w \in V(p) \).
 - \(\mathcal{M}, w \models \lozenge \phi \iff \text{there is } w' \text{ s.t. } (w, w') \in R \text{ and } \mathcal{M}, w' \models \phi. \)
 - \(\mathcal{M}, w \models \Box \phi \iff \text{for all } w' \text{ s.t. } (w, w') \in R, \mathcal{M}, w' \models \phi. \)
Ubiquity of modal logics

• Satisfiability problem: given a formula \(\phi \), are there \(M, w \) such that \(M, w \models \phi \)?

• Plethora of modal logics depending on the frame conditions:
 • Modal logic S5: \(R \) is an equivalence relation (or \(R = W \times W \)).
 • Modal logic K: \(R \) is arbitrary (or \((W, R) \) is a finite tree).
 • Modal logic S4: \(R \) is reflexive and transitive.

• Epistemic/temporal logics can be viewed as modal logics with
 • specific frame conditions (e.g., \((W, R) \) is a tree),
 • multiple modalities (e.g., \(\Diamond \) and \(\Diamond^* \) associated to \(R^* \)),
 • modalities of arity \(> 1 \) (e.g., the until operator \(U \)).

\(\phi U \psi, \phi \quad \phi \quad \phi \quad \phi \quad \psi \)

• Computation Tree Logic CTL for model-checking:
 • Models are usually total Kripke-style structures.
 • Modalities are \(EX \) (\(\approx \Diamond \)), \(EF \) (\(\approx \Diamond^* \)), \(E(U\cdot) \) and \(A(U\cdot) \).
A natural need for model updates

- At the bottom line: changing the pointed model with \Diamond.

- Saboting the model with \Diamond.

- Removing worlds with the public announcement $[\phi]$.

See e.g., [van Benthem, 2005; Löding & Rohde, FST&TCS’03]

See e.g., [Plaza, ISMIS’89]
Propositional quantification in modal logics
– or, the modal way from SAT to QBF –

• Changing valuations with $\exists p$.

\[
\begin{align*}
\models & \exists p \Box p \\
\end{align*}
\]

See e.g., [Fine, Theoria 1970]

\begin{itemize}
 \item QK formulae: $\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \Diamond \phi \mid \Box \phi \mid \exists p \phi$. \\
 \item $\mathcal{M}, w \models \exists p \phi$ iff there is a p-variant \mathcal{M}' s.t. $\mathcal{M}', w \models \phi$. \\
 \item Variants second-order modal logics QS4, QS5, etc.
\end{itemize}

See e.g. [Kripke, JSL 1959; Fine, PhD 1969; Kaplan, JSL 1970]
Fine’s results [Fine, PhD thesis ’69, Theoria 1970]

- For any modal logic \(\mathcal{L} \) between \(K \) and \(S4 \), the satisfiability problem for \(Q\mathcal{L} \) is undecidable.

- \(QS5 \) has the exponential-size model property, the satisfiability problem is decidable and every formula is logically equivalent to a formula in graded modal logic \(GS5 \).

- Hilbert-style axiomatisation for \(QS5 \) and variants.

- ... and also
 - Reduction from second-order predicate logic to \(QS4.2 \) or for logics weaker than \(S4.2 \). [Kaminski & Tiomkin, NDJFL 1996]
 - Second-order quantification and two \(S5 \)-modalities lead to undecidability. [Antonelli & Thomason, JSL 2002]

\(S4.2 \) is characterised by reflexive, transitive and convergent modal frames.
Our original motivation: relationships with separation logics

- Separation logics for deductive verification use separating conjunction \ast for properties on disjoint parts of the memory. [Reynolds, LiCS’02]

- Memory state (s, h):

 \[
 \text{store } s : \text{PVAR} \rightarrow \text{Val} \quad \text{heap } h : \text{Loc} \rightarrow_{\text{fin}} \text{Val}
 \]

- Disjoint heaps when $\text{dom}(h_1) \cap \text{dom}(h_2) = \emptyset$ and disjoint union $h_1 \uplus h_2$.

- $(s, h) \models \phi_1 \ast \phi_2$ iff there are h_1, h_2 such that $h = h_1 \uplus h_2$, $(s, h_1) \models \phi_1$ and $(s, h_2) \models \phi_2$.

Second-order modal logics
Separating conjunction as propositional quantification

\[
\models \phi_1 \neq \phi_2
\]

\[
\models \phi_1^p \neq \phi_2^p
\]

Second-order quantification is used in many contexts, see e.g.

- To design algorithms for ATL with strategy contexts.
 [Laroussinie & Markey, IC 2015]

- Relationships with epistemic reasoning.
 [Belardinelli & van der Hoek, AAAI’16]

- Enriching the modal μ-calculus for control synthesis.
 [Riedweg & Pinchinat, MFCS’03]

- \downarrow_x in hybrid modal logic is already a form of propositional quantification.
 [Areces & Blackburn & Marx, JSL 2001]
QCTL under the tree semantics
Tree unfolding preserves quantifier-free modal formulae

Tree semantics
QCTL: Quantified CTL

\[\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \text{EX}\phi \mid \exists p \phi \quad (\Diamond \approx \text{EX}) \]

\[\mid E(\phi U \psi) \mid A(\phi U \psi) \]

- Models are total Kripke structures \(M = (W, R, V) \).

- \(M, w \models \exists p \phi \) iff there is \(M' \) s.t. \(M \approx_{AP \backslash \{p\}} M' \) & \(M', w \models \phi \).
Tree semantics [Laroussinie & Markey, LMCS 2014]

- Satisfiability problem for QCTL\(^t\) (tree semantics):

 input: a QCTL formula \(\phi\).

 output: 1 iff there is a finite total Kripke structure whose tree unfolding satisfies \(\phi\).

- \(\text{SAT}(\text{QCTL}^t)\) is \text{TOWER}-complete.

 \text{TOWER:} class of problems of time complexity bounded by a tower of exponentials, whose height is an elementary function of the input

 [Schmitz, TOCT 2016].

RAW_TEXT_START

Tree semantics [Laroussinie & Markey, LMCS 2014]

- Satisfiability problem for QCTL\(^t\) (tree semantics):

 input: a QCTL formula \(\phi\).

 output: 1 iff there is a finite total Kripke structure whose tree unfolding satisfies \(\phi\).

- SAT(QCTL\(^t\)) is TOWER-complete.

 \text{TOWER:} class of problems of time complexity bounded by a tower of exponentials, whose height is an elementary function of the input

 [Schmitz, TOCT 2016].

RAW_TEXT_END
Our investigation

- What is the complexity of \(\text{SAT}(\text{QCTL}^t_X) \), where \(\text{QCTL}^t_X \) is \(\text{QCTL}^t \) restricted to \(\text{EX} \)?
 (known \(\text{TOWER} \)-hardness proof for \(\text{SAT}(\text{QCTL}^t) \) uses \(\text{U} \))

- An elementary upper bound may lead to a similar bound for some modal separation logic [Demri & Fervari, AiML'18].

- Similar question for \(\text{SAT}(\text{QCTL}^{ft}_X) \) where \(\text{QCTL}^{ft}_X \) is the variant of \(\text{QCTL}^t_X \) on finite trees.

- Similar questions with \(\text{EF} \) or \(\text{EXEF} \).

- Second-order extension of modal logics characterised by classes of trees, including results for K, KD, D4, K4, S4, GL.
Nominals and local nominals

- Nominals from hybrid (modal) logics: propositional variables that hold true in a unique world.

 [Areces & Blackburn & Marx, JSL 2001]

- \(Q\phi \): there is a unique world satisfying \(\phi \) [Fine, PhD 1969].

 See also [Garson, 1984; Kaminski & Tiomkin, NDFL 1996].

- A toolkit for introducing local nominals \(x \).
 - \(\text{nom}(x, k) \): there is exactly one descendant at depth \(k \) satisfying \(x \).

 \[
 \text{nom}(x, k) \overset{\text{def}}{=} \text{EX}^k x \land \neg \exists p \left(\text{EX}^k(x \land p) \land \text{EX}^k(x \land \neg p) \right).
 \]

 - \(\@_x^k \phi \overset{\text{def}}{=} \text{EX}^k(x \land \phi) \): this unique descendant satisfies \(\phi \).

 - \(\text{diff-nom}(x_1, \ldots, x_\alpha, k) \): \(\alpha \) distinct descendants at depth \(k \).

 \[
 \text{diff-nom}(x_1, \ldots, x_\alpha, k) \overset{\text{def}}{=} \bigwedge_{i \in [1, \alpha]} \text{nom}(x_i, k) \land \bigwedge_{i < j \in [1, \alpha]} \neg \@_x^k x_j.
 \]
Local nominals are helpful!

- Simulation of first-order quantification on a given set of nodes of bounded depth.

- At most 2^n children ($\Diamond_{\leq 2^n} \top$ in graded modal logics):

 $$\exists p_0, \ldots, p_{n-1} \forall x, y \; \text{diff-nom}(x, y, 1) \rightarrow$$

 $$\neg \left(\bigwedge_{i \in [0, n-1]} @^1_x p_i \leftrightarrow @^1_y p_i \right).$$

[David & Laroussinie & Markey, CONCUR’16]
Bounding the branching degree
Bounding the branching degree

- $\text{QCTL}^t_{\leq N}$: variant of QCTLt_X with N-bounded tree models.

- A formula ϕ of modal depth k can only reach the nodes of depth at most k from the root.

- $\text{SAT}(\text{QCTL}^t_{\leq N})$ is in EXPSPACE:
 1. Guess a finite tree \mathcal{T} with at most N children per node and of depth k.
 2. Check whether $\mathcal{T}, \varepsilon \models \phi$, using a polynomial-space algorithm running on exponential-size inputs.
 3. Invoke Savitch’s Theorem for getting rid of the non-determinism and get EXPSPACE.
Alternating multi-tiling problem

- AExp_{POL}: class of problems decidable with an exponential-time ATM and a polynomial number of alternations. ($\text{Nexptime} \subseteq \text{AExp}_{\text{POL}} \subseteq \text{ExpSpace}$)

- The algorithm can be refined to obtain AExp_{POL}.

- AExp_{POL}-complete alternating multi-tiling problem.

[Bozzelli et al., GANDALF’17; Molinari, PhD 2019]

for all $w_1 \in T_0^{2^n}$, there is $w_2 \in T_0^{2^n}$ such that \cdots for all $w_{n-1} \in T_0^{2^n}$, there is $w_n \in T_0^{2^n}$ such that there is a solution (τ_1, \ldots, τ_n)?
Idea of the reduction

• The grid $[0, 2^n - 1]^2$ is encoded by a binary tree of depth $2n$.

• Horizontal and vertical constraints encoded thanks to local nominals (at depth $2n$) and standard arithmetical reasoning on n-bit numbers.

• Quantifications on the first rows naturally expressed by propositional quantifications.

• For all $N \geq 2$, $\text{SAT}(\text{QCTL}_{X, \leq N}^t)$ is AEXP_{POL}-complete.

• $\text{SAT}(\text{QCTL}_{X, \leq 1}^t)$ is PSPACE-complete (easy).
Tower-hardness of $\text{SAT}(\text{QCTL}^t_X)$
How to prove Tower-hardness

• Uniform elementary reduction from k-\textsc{NExpTime}-complete tiling problems Tiling_k.

• $t(0, n) = n$ and $t(k + 1, n) = 2^{t(k, n)}$.

• Tiling_k:

 \textbf{input:}
 \begin{itemize}
 \item $(\mathcal{T}, \mathcal{H}, \mathcal{V})$ (tile types, horizontal and vertical matching relations),
 \item $c = t_0, t_1, \ldots, t_{n-1} \in \mathcal{T}^n$: initial condition.
 \end{itemize}

 \textbf{output:} 1 iff the grid $[0, t(k, n) - 1] \times [0, t(k, n) - 1]$ can be tiled (with usual constraints)?
High-level description of the reduction from Tiling_k

- Grid $[0, t(k, n) - 1] \times [0, t(k, n) - 1]$ as a tree model:
 - The root ε has $t(k + 1, n)$ children.
 - $t(k, n)$ children of ε are distinguished and receive a number in $[0, t(k, n) - 1]$.
 - Each child of ε has exactly $t(k, n)$ children and each child has a number in $[0, t(k, n) - 1]$.

Encoding of the grid $[0, t(k, n) - 1] \times [0, t(k, n) - 1]$
Enforcing $t(k, n)$ children

- The most difficult and substantial part of the proof.

- Any node is of type 0.

- Node v of type $k > 0$:
 - every child is of type $k - 1$.
 - v has $t(k, n)$ children numbered from 0 to $t(k, n) - 1$.

- A number for a node of type 0 is encoded by p_{n-1}, \ldots, p_0.

- A number for a node of type $k > 0$
 - is encoded by the truth value val on its children,
 - it belongs to $[0, t(k + 1, n) - 1]$.
Enforcing $t(k, n)$ children

Type k

$\text{val} = \top, \text{nb} = 0$

$\text{nb} = t(k+1, n) - 1$

Type $(k-1)$

$\text{val} = \top, \text{nb} = t(k, n) - 1$

Type $(k-2)$

$\text{val} = \bot, \text{nb} = 0$

$\text{val} = \bot, \text{nb} = t(k-1, n) - 1$

Type 0

$\text{nb} = 1$

$p_{n-1} = \ldots = p_1 = \bot, p_0 = \top$
Specifications for a node of type $k > 0$

- Every child is of type $k - 1$.
- There is a child with number equal to zero.
- Distinct children have distinct numbers in $[0, t(k, n) - 1]$.
- If a child has number $m < t(k, n) - 1$, then there is a sibling with number equal to $m + 1$.

\[
\text{type}(k) \overset{\text{def}}{=} \text{AX}(\text{type}(k - 1)) \land \text{EX}(\text{first}(k - 1)) \land \text{uniq}(k) \land \text{compl}(k).
\]

- $\text{SAT}(\text{QCTL}_X^t)$ is Tower-complete \cite{Bednarczyk & Demri, LiCS’19} (many developments are omitted here)
Other Tower-hard logics on tree-like models
Other fragments of quantified CTL

- **QCTL** formulae: \(\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid EF \phi \mid \exists p \phi. \)

\[
\bigwedge_{0 \leq i \leq k} AG(l_i \rightarrow \neg \exists p (p \land EF(l_i \land \neg p))) \quad \text{(no stuttering)}
\]

\[
t(i, \exists p \psi) \overset{\text{def}}{=} \exists p t(i, \psi) \quad t(i, \text{EX} \psi) \overset{\text{def}}{=} EF(l_{i-1} \land t(i - 1, \psi)).
\]
Hardness results

- Given ϕ of modal depth k, ϕ is satisfiable for QCTL^t_X iff $t(k, \phi) \land \text{shape}(k)$ is satisfiable for QCTL^t_F.

- $\text{SAT}(\text{QCTL}^t_F)$ and $\text{SAT}(\text{QCTL}^t_{XF})$ are Tower-hard.

- Tower-hardness holds also for $\text{SAT}(\text{QCTL}^f_{XF})$ and $\text{SAT}(\text{QCTL}^f_{XF})$ with the finite tree semantics.

- Latest news: $\text{SAT}(\text{QCTL}^t_F)$ restricted to formulae of temporal depth two is already Tower-hard. [Mansutti, to be sub.]
Characterisation for standard modal logics

• Pick a modal logic \mathcal{L} characterised by a class of tree-like frames \mathcal{C} and extend it with propositional quantification.

• Examples of class \mathcal{C} for standard modal logics
 • K: finite trees. ($\Box \approx \text{EX}$)
 • GL (after Gödel & Löb): structures (W, R^+, V) such that (W, R) is a finite tree. ($\Box \approx \text{EXEF}$)
 • S4: structures (W, R^*, V) s.t. (W, R) is a finite-branching tree for which all the maximal branches are infinite. ($\Box \approx \text{EF}$)
 • etc.

• Over the appropriate classes of trees, these modal logics with propositional quantification are TOWER-complete.

• E.g., for GL, it corresponds exactly to $\text{QCTL}^{ft}_{\text{XF}}$.
Concluding remarks

- \(\text{SAT}(\text{QCTL}^t_X) \) is Tower-hard, as well as second-order K on finite trees.

- As by-products, \(\text{SAT}(\text{QCTL}^t_{XF}) \) and \(\text{SAT}(\text{QCTL}^t_F) \) are Tower-hard too!

- Moreover, Tower-hardness for
 - second-order S4 on finite-branching trees for which all maximal branches are infinite (\(\approx \text{QCTL}^t_F \)),
 - second-order GL under the finite transitive tree semantics.

- Future direction:
 - Expressive power of fragments.
 - Interesting fragments with elementary complexity.
 - Fragments preserving Tower-hardness.
 See e.g. recent Mansutti’s results restricting temp. depth.