Logical Aspects of Artificial Intelligence
Tableaux for DLs & Undecidability

Stéphane Demri demri@lsv.fr
https://cv.archives-ouvertes.fr/stephane-demri

September 28th, 2022
Plan of the lecture

- Tableaux calculus for checking ALC concept satisfiability.
- Tableaux calculus for checking ALC knowledge base consistency.
- Undecidability result with role axioms.
- Exercises session.
Recapitulation of the Previous Lecture(s)
\mathcal{ALC} in a nutshell

$C ::= \top \mid \bot \mid A \mid \neg C \mid C \cap C \mid C \cup C \mid \exists r.C \mid \forall r.C$

- Interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$.

- $\text{TBox } \mathcal{T} = \{ C \sqsubseteq D, \ldots \}$.

- $\text{ABox } \mathcal{A} = \{ a : C, (b, b') : r, \ldots \}$.

- Knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. (a.k.a. ontology)

- Decision problems include concept satisfiability, knowledge base consistency, and other problems for classification.
$\top^{\mathcal{I}} \quad \text{def} \quad \Delta^{\mathcal{I}}$

$\bot^{\mathcal{I}} \quad \text{def} \quad \emptyset$

$(\neg C)^{\mathcal{I}} \quad \text{def} \quad \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$

$(C_1 \sqcup C_2)^{\mathcal{I}} \quad \text{def} \quad C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$

$(C_1 \sqcap C_2)^{\mathcal{I}} \quad \text{def} \quad C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$

$(\exists r. C)^{\mathcal{I}} \quad \text{def} \quad \{ a \in \Delta^{\mathcal{I}} \mid r^{\mathcal{I}}(a) \cap C^{\mathcal{I}} \neq \emptyset \}$

$(\forall r. C)^{\mathcal{I}} \quad \text{def} \quad \{ a \in \Delta^{\mathcal{I}} \mid r^{\mathcal{I}}(a) \subseteq C^{\mathcal{I}} \}$
A few properties about \textit{ALC}

\begin{itemize}
\item Concept satisfiability problem is PSPACE-complete.
\item Knowledge base consistency problem is EXPTIME-complete.
\item \textit{ALC} has many well-known fragments and extensions, some of them to deal with
 \begin{itemize}
 \item inverse roles,
 \item number restrictions,
 \item properties on the role interpretations,
 \item inclusions between the composition of roles,
 \item etc..
 \end{itemize}
\item Reduction of decision problems for DLs to first-order logic.
 \begin{footnotesize}(to modal logics too, but not presented herein)\end{footnotesize}
\item Filtration construction leading to an NEXPTIME upper bound for the \textit{ALC} knowledge base consistency problem.
\end{itemize}
Expansion rules for \mathcal{ALC} ABox consistency

\sqcap-rule: If $a : C \sqcap D \in \mathcal{A}$ and $\{a : C, a : D\} \not\subseteq \mathcal{A}$ then

\[\mathcal{A} \longrightarrow \mathcal{A} \cup \{a : C, a : D\} \]

\sqcup-rule: If $a : C \sqcup D \in \mathcal{A}$ and $\{a : C, a : D\} \cap \mathcal{A} = \emptyset$ then

\[\mathcal{A} \longrightarrow \mathcal{A} \cup \{a : E\} \quad \text{for some } E \in \{C, D\} \]
Expansion rules for \mathcal{ALC} ABox consistency

\textbf{⊓-rule:} If $a : C \cap D \in \mathcal{A}$ and $\{a : C, a : D\} \not\subseteq \mathcal{A}$ then

$$\mathcal{A} \rightarrow \mathcal{A} \cup \{a : C, a : D\}$$

\textbf{⊔-rule:} If $a : C \cup D \in \mathcal{A}$ and $\{a : C, a : D\} \cap \mathcal{A} = \emptyset$ then

$$\mathcal{A} \rightarrow \mathcal{A} \cup \{a : E\} \quad \text{for some } E \in \{C, D\}$$

\textbf{∃-rule:} If $a : \exists r. C \in \mathcal{A}$ and there is no b such that $\{(a, b) : r, b : C\} \subseteq \mathcal{A}$ then

$$\mathcal{A} \rightarrow \mathcal{A} \cup \{(a, c) : r, c : C\} \quad \text{where } c \text{ is fresh}$$
Expansion rules for \mathcal{ALC} ABox consistency

\square-rule: If $a : C \cap D \in \mathcal{A}$ and $\{a : C, a : D\} \not\subseteq \mathcal{A}$ then

$$\mathcal{A} \rightarrow \mathcal{A} \cup \{a : C, a : D\}$$

\sqcup-rule: If $a : C \sqcup D \in \mathcal{A}$ and $\{a : C, a : D\} \cap \mathcal{A} = \emptyset$ then

$$\mathcal{A} \rightarrow \mathcal{A} \cup \{a : E\} \quad \text{for some } E \in \{C, D\}$$

\exists-rule: If $a : \exists r.C \in \mathcal{A}$ and there is no b such that $\{(a, b) : r, b : C\} \subseteq \mathcal{A}$ then

$$\mathcal{A} \rightarrow \mathcal{A} \cup \{(a, c) : r, c : C\} \quad \text{where } c \text{ is fresh}$$

\forall-rule: If $\{(a, b) : r, a : \forall r.C\} \subseteq \mathcal{A}$ and $b : C \notin \mathcal{A}$, then

$$\mathcal{A} \rightarrow \mathcal{A} \cup \{b : C\}$$
Today’s objectives

- Termination, soundness, completeness, blocking technique.

- Equivalences between
 - \((\mathcal{T}, \mathcal{A})\) is consistent (for \(\mathcal{ALC}\))
 - \(\mathcal{A} \rightarrow \mathcal{A}'\) for some complete and clash-free ABox \(\mathcal{A}'\) \((\rightarrow \text{ depends on } \mathcal{T})\)
 - \(\mathcal{A} \rightarrow \mathcal{A}'\) for some complete and clash-free ABox \(\mathcal{A}'\) derivable in at most \(f(\text{size}(\mathcal{T}, \mathcal{A}))\) steps.
Example

\[A = \{(a, b) : s, (a, c) : r\}\cup \{a : A_1 \cap \exists s. A_5, a : \forall s. (\neg A_5 \cup \neg A_2), b : A_2, c : A_3 \cap \exists s. A_4\} \]
Example

\[\mathcal{A} = \{(a, b) : s, (a, c) : r\} \cup \{a : A_1 \land \exists s.A_5, a : \forall s.(-A_5 \sqcup -A_2), b : A_2, c : A_3 \land \exists s.A_4\} \]

\[\mathcal{A} \xrightarrow{*} \mathcal{A} \cup \{a : A_1, a : \exists s.A_5, a_{\text{new}} : A_5, (a, a_{\text{new}}) : s, b : -A_5 \sqcup -A_2, a_{\text{new}} : (-A_5 \sqcup -A_2), b : -A_5, a_{\text{new}} : -A_2, c : A_3, c : \exists s.A_4, c_{\text{new}} : A_4, (c, c_{\text{new}}) : s\} \]

(is it complete?)
Example

\[\mathcal{A} = \{ (a, b) : s, (a, c) : r \} \cup \{ a : A_1 \cap \exists s. A_5, a : \forall s. (\neg A_5 \sqcup \neg A_2), b : A_2, c : A_3 \cap \exists s. A_4 \} \]

\[\mathcal{A} \xrightarrow{*} \mathcal{A} \cup \{ a : A_1, a : \exists s. A_5, a_{\text{new}} : A_5, (a, a_{\text{new}}) : s, b : \neg A_5 \sqcup \neg A_2, a_{\text{new}} : (\neg A_5 \sqcup \neg A_2), b : \neg A_5, a_{\text{new}} : \neg A_2, c : A_3, c : \exists s. A_4, c_{\text{new}} : A_4, (c, c_{\text{new}}) : s \} \]

(is it complete?)
Terminology: root vs. tree individuals

- **Tree individuals** are generated by application of the \(\exists\)-rule.
- If \((a, b) : r\) is added by application of the \(\exists\)-rule, \(b\) is an \(r\)-successor of \(a\).
- Root individuals have no predecessors or ancestors.
Why “Tableaux”?

\[(a, b): s\]
\[(a, c): r\]

\[a: \forall s. \neg A_5 \lor \neg A_2\]
\[b: A_2\]
\[c: A_3 \land \exists s. A_4\]

\[a: \forall s\]
\[a: \exists s. A_5\]
\[a_{\text{new}}: A_5\]
\[(a, a_{\text{new}}): s\]
\[b: \forall A_5 \lor \forall A_2\]
\[a_{\text{new}}: \forall A_5 \lor \forall A_2\]

\[b: \forall A_2\]

\[a_{\text{new}}: \forall A_5\]
\[c: A_3\]
\[c: \exists s. A_4\]
\[c_{\text{new}}: A_4\]
\[(c, c_{\text{new}}): s\]
Termination

- The **∃-weight** of C is the number of its subconcepts of the form $\exists r. D$.

$$w_\exists(C) \overset{\text{def}}{=} \text{card}(\{\exists r. D \mid \exists r. D \in \text{sub}(C)\})$$

⚠️ The definition assumes that C is in NNF.

- $w_\exists(\mathcal{A}) \overset{\text{def}}{=} \sum_{a: C \in \mathcal{A}} w_\exists(C)$.
Termination

- The **∃-weight** of C is the number of its subconcepts of the form $\exists r. D$.

\[
 w_\exists(C) \overset{\text{def}}{=} \text{card}(\{\exists r. D \mid \exists r. D \in \text{sub}(C)\})
\]

⚠️ The definition assumes that C is in NNF.

- $w_\exists(A) \overset{\text{def}}{=} \sum_{a: C \in A} w_\exists(C)$.

- The **∀∃-depth** of C, written $d_{\forall \exists}(C)$, is the maximal number of imbrications of \exists and \foralls in C.

 \[(\text{a.k.a. quantifier depth, modal depth})\]

- $d_{\forall \exists}(\exists r. \top \sqcup \forall r. \exists s. A) = 2$

- $d_{\forall \exists}(A) = \max\{d_{\forall \exists}(C) \mid a : C \in A\}$.

Decorating individual names

Let \mathcal{A} be an ABox with $W = w_\exists(\mathcal{A})$, $D = d_\forall(\mathcal{A})$ and N is the number of distinct individual names in \mathcal{A}.

Let \mathcal{A}^0 be the variant of \mathcal{A} where $a : C$ is replaced by $a^0 : C$.
Decorating individual names

Let \mathcal{A} be an ABox with $W = w_\exists(\mathcal{A})$, $D = d_\forall(\mathcal{A})$ and N is the number of distinct individual names in \mathcal{A}.

Let \mathcal{A}^0 be the variant of \mathcal{A} where $a : C$ is replaced by $a^0 : C$.

\(\square\)-rule: If $a^i : C \cap D \in \mathcal{A}$ and $\{a^i : C, a^i : D\} \not\subseteq \mathcal{A}$ then
\[
\mathcal{A} \to \mathcal{A} \cup \{a^i : C, a^i : D\}
\]

\(\Box\)-rule: If $a^i : C \cup D \in \mathcal{A}$ and $\{a^i : C, a^i : D\} \cap \mathcal{A} = \emptyset$ then
\[
\mathcal{A} \to \mathcal{A} \cup \{a^i : E\} \quad \text{for some } E \in \{C, D\}
\]

\(\exists\)-rule: If $a^i : \exists r.C \in \mathcal{A}$ and there is no b^j such that $\{(a^i, b^j) : r, b^j : C\} \subseteq \mathcal{A}$ then
\[
\mathcal{A} \to \mathcal{A} \cup \{(a^i, c^{i+1}) : r, c^{i+1} : C\} \quad \text{where } c \text{ is fresh}
\]

\(\forall\)-rule: If $\{(a^i, b^j) : r, a^i : \forall r.C\} \subseteq \mathcal{A}$ and $b^j : C \not\in \mathcal{A}$, then
\[
\mathcal{A} \to \mathcal{A} \cup \{b^j : C\}
\]
Quantities about $\mathcal{A}^0 \rightarrow \mathcal{A}'$

- If $a^i : C \in \mathcal{A}'$, then $i + d_{\forall \exists}(C) \leq D$.

Trees from individual names labelled by zero have depth at most D.
Quantities about $A^0 \rightarrow A'$

- If $a^i : C \in A'$, then $i + d_{\forall\exists}(C) \leq D$. Trees from individual names labelled by zero have depth at most D.

- $a^i : C \in A'$ implies $\text{card}((a^i, b^j) \mid (a^i, b^j) : r \in A') \leq N + W$ (necessarily either $i = j = 0$ or $j = i + 1$)

The maximum branching degree of nodes in the trees is at most $N + W$. (rough overapproximation)
Quantities about $\mathcal{A}^0 \rightarrow \mathcal{A}'$

- If $a^i : C \in \mathcal{A}'$, then $i + d_{\forall \exists}(C) \leq D$. Trees from individual names labelled by zero have depth at most D.

- $a^i : C \in \mathcal{A}'$ implies $\text{card}(\{(a^i, b^j) \mid (a^i, b^j) : r \in \mathcal{A}'\}) \leq N + W$

 (necessarily either $i = j = 0$ or $j = i + 1$)

The maximum branching degree of nodes in the trees is at most $N + W$. (rough overapproximation)

- $a^i : C \in \mathcal{A}'$ implies $C \in \text{sub}(\mathcal{A})$.

Quantities about $A^0 \to A'$

- If $a^i : C \in A'$, then $i + d_{\forall \exists}(C) \leq D$.
 Trees from individual names labelled by zero have depth at most D.

- $a^i : C \in A'$ implies $\text{card}((a^i, b^i) \mid (a^i, b^i) : r \in A') \leq N + W$
 (necessarily either $i = j = 0$ or $j = i + 1$)

 The maximum branching degree of nodes in the trees is at most $N + W$. (rough overapproximation)

- $a^i : C \in A'$ implies $C \in \text{sub}(A)$.

- The length of the derivation $A^0 \to A'$ is at most
 $$N \times (N + W)^{D+1} \times \text{card}(\text{sub}(A))$$
 (why?)
Main algorithm

- We shall show that \mathcal{A} is consistent iff $\mathcal{A} \rightarrow^* \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.
Main algorithm

We shall show that \mathcal{A} is consistent iff $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.

Existence of \mathcal{A}' amounts to explore a finite tree of bounded depth and bounded degree.
The auxiliary function \(\exp \)

- **Expansion function** \(\exp(\mathcal{A}, \mathcal{R}, X) \) taking as arguments
 - an ABox \(\mathcal{A} \),
 - an expansion rule \(\mathcal{R} \),
 - a subset \(X \) of \(\mathcal{A} \) (with one or two elements) allowing the application of \(\mathcal{R} \)

- ... and returning the set of ABoxes obtained from \(\mathcal{A} \) by applying the rule \(\mathcal{R} \) with main assertions in \(X \).

- \(\exp(\{a : E, a : C \sqcup D\}, \sqcup\text{-rule}, \{a : C \sqcup D\}) \) is equal to

 \[
 \{\{a : E, a : C \sqcup D, a : C\}, \{a : E, a : C \sqcup D, a : D\}\}
 \]
Algorithm for depth-first search

1: **procedure** EXPAND(\(\mathcal{A}\))
2: if \(\mathcal{A}\) has a clash then return \(\emptyset\)
3: end if
4: if \(\mathcal{A}\) is clash-free and complete then return \(\mathcal{A}\)
5: end if
6: for applicable \(R, X\) on \(\mathcal{A}\) and \(\mathcal{A}' \in \exp(\mathcal{A}, R, X)\) do
7: if EXPAND(\(\mathcal{A}'\)) \(\neq \emptyset\) then return EXPAND(\(\mathcal{A}'\))
8: end if
9: end for
10: return \(\emptyset\)
11: end procedure
Soundness

Let \mathcal{A} be a finite ABox with at least one concept assertion, complete, clash-free and all the concepts in NNF. Then, \mathcal{A} is consistent.
Soundness

- Let \mathcal{A} be a finite ABox with at least one concept assertion, complete, clash-free and all the concepts in NNF. Then, \mathcal{A} is consistent.

- For each individual name a occurring in \mathcal{A}, we write $\text{con}_{\mathcal{A}}(a)$ to denote the set $\{C \mid a : C \in \mathcal{A}\}$.
Soundness

Let \mathcal{A} be a finite ABox with at least one concept assertion, complete, clash-free and all the concepts in NNF. Then, \mathcal{A} is consistent.

For each individual name a occurring in \mathcal{A}, we write $\text{con}_{\mathcal{A}}(a)$ to denote the set $\{ C \mid a : C \in \mathcal{A} \}$.

Let us define $\mathcal{I} \overset{\text{def}}{=} (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ as follows.

\[
\begin{align*}
\Delta^\mathcal{I} & \overset{\text{def}}{=} \{ a \mid a : C \in \mathcal{A} \}, \\
a^\mathcal{I} & \overset{\text{def}}{=} a \text{ for all individual names } a \text{ in } \mathcal{A}, \\
A^\mathcal{I} & \overset{\text{def}}{=} \{ a \mid A \in \text{con}_{\mathcal{A}}(a) \} \text{ for all concept names } A \in \text{sub}(\mathcal{A}), \\
r^\mathcal{I} & \overset{\text{def}}{=} \{ (a, b) \mid (a, b) : r \in \mathcal{A} \}.
\end{align*}
\]

Let us show that for all $a : C \in \mathcal{A}$, we have $a^\mathcal{I} \in C^\mathcal{I}$.

Proof by structural induction

▶ The base case with concept assertions $a : A$ is immediate by definition of A^I.

▶ Case $a : C \sqcup D$ in the induction step.

▶ As A is complete, $a : C \in A$ or $a : D \in A$.

▶ W.l.o.g., suppose $a : C \in A$. By (IH), $a I \in C^I$.

▶ By definition of \cdot^I, we conclude $a I \in (C \sqcup D)^I$.

▶ Case $a : \exists r . C$ in the induction step.

▶ As A is complete, $\{ (a, b) : r, b : C \} \subseteq A$ for some b.

▶ By definition of r^I, $(a, b) \in r^I$.

▶ By (IH), $b I \in C^I$.

▶ By definition of \cdot^I, we conclude $a I \in (\exists r . C)^I$.
Proof by structural induction

- The base case with concept assertions $a : A$ is immediate by definition of $A^\mathcal{I}$.

- The base case with concept assertions $a : \neg A$ is immediate by definition of $A^\mathcal{I}$ as \mathcal{A} is clash-free.
Proof by structural induction

- The base case with concept assertions $a : A$ is immediate by definition of $A^\mathcal{I}$.

- The base case with concept assertions $a : \neg A$ is immediate by definition of $A^\mathcal{I}$ as \mathcal{A} is clash-free.

- Case $a : C \sqcup D$ in the induction step.
 - As \mathcal{A} is complete, $a : C \in \mathcal{A}$ or $a : D \in \mathcal{A}$.
 - W.l.o.g., suppose $a : C \in \mathcal{A}$. By (IH), $a^\mathcal{I} \in C^\mathcal{I}$.
 - By definition of $\cdot^\mathcal{I}$, we conclude $a^\mathcal{I} \in (C \sqcup D)^\mathcal{I}$.
Proof by structural induction

- The base case with concept assertions $a : A$ is immediate by definition of $A^\mathcal{I}$.

- The base case with concept assertions $a : \neg A$ is immediate by definition of $A^\mathcal{I}$ as A is clash-free.

- Case $a : C \sqcup D$ in the induction step.
 - As A is complete, $a : C \in A$ or $a : D \in A$.
 - W.l.o.g., suppose $a : C \in A$. By (IH), $a^\mathcal{I} \in C^\mathcal{I}$.
 - By definition of $\cdot^\mathcal{I}$, we conclude $a^\mathcal{I} \in (C \sqcup D)^\mathcal{I}$.

- Case $a : \exists r. C$ in the induction step.
 - As A is complete, $\{(a, b) : r, b : C\} \subseteq A$ for some b.
 - By definition of $r^\mathcal{I}$, $(a, b) \in r^\mathcal{I}$.
 - By (IH), $b^\mathcal{I} \in C^\mathcal{I}$.
 - By definition of $\cdot^\mathcal{I}$, we conclude $a^\mathcal{I} \in (\exists r. C)^\mathcal{I}$.
Concluding the soundness

- The cases in the induction step for \(\sqcap \)-concept assertions and \(\forall \)-concept assertions are similar.
Concluding the soundness

- The cases in the induction step for \land-concept assertions and \forall-concept assertions are similar.

- If $\text{expand}(\mathcal{A}) \neq \emptyset$, then \mathcal{A} is consistent.
Concluding the soundness

- The cases in the induction step for \cap-concept assertions and \forall-concept assertions are similar.

- If $\text{expand}(\mathcal{A}) \neq \emptyset$, then \mathcal{A} is consistent.

- Indeed, $\text{expand}(\mathcal{A}) \neq \emptyset$ if there is some \mathcal{A}' with $\mathcal{A} \subseteq \mathcal{A}'$ such that \mathcal{A}' is complete and clash-free.

- Consistency of \mathcal{A}' leads to the consistency of \mathcal{A}.
Moving towards completeness

- If \mathcal{A} is consistent, then $\mathcal{A} \rightarrow^* \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.
Moving towards completeness

- If \mathcal{A} is consistent, then $\mathcal{A} \rightarrow \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.

- Let $\mathcal{I} \overset{\text{def}}{=} (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ be such that $\mathcal{I} \models \mathcal{A}$.

- If \mathcal{A} is complete, we are done.

- Otherwise, if \mathcal{A} is not complete, we show that there is \mathcal{A}' such that $\mathcal{A} \rightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.
Moving towards completeness

- If \mathcal{A} is consistent, then $\mathcal{A} \rightarrow \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.

- Let $\mathcal{I} \overset{\text{def}}{=} (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be such that $\mathcal{I} \models \mathcal{A}$.

- If \mathcal{A} is complete, we are done.

- Otherwise, if \mathcal{A} is not complete, we show that there is \mathcal{A}' such that $\mathcal{A} \rightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.

- As the length of a derivation from \mathcal{A} is bounded by an exponential in the size of \mathcal{A}, there is \mathcal{A}' such that $\mathcal{A} \rightarrow^* \mathcal{A}'$ and \mathcal{A}' is complete, clash-free (and consistent).
It remains to prove that non-completeness implies the existence of one expansion preserving consistency.

Guidance from the interpretations to choose disjuncts and tree individuals.

If the \sqcup-rule is applicable on $a : C \sqcup D$, then there is $E \in \{ C, D \}$ such that $\mathcal{I} \models \mathcal{A} \cup \{ a : E \}$.

$\mathcal{A} \rightarrow \mathcal{A} \cup \{ a : E \}$ and $\mathcal{I} \models \mathcal{A} \cup \{ a : E \}$.
Single steps in the completeness proof (II)

- If the \exists-rule is applicable on $a : \exists r . C$, then we use the fact that $a^I \in (\exists r . C)^I$.

- There is $a \in \Delta^I$ such that $a \in C^I$ and $(a^I, a) \in r^I$.

- Let I' be equal to I except that $I'(c) = a$ for some fresh c.

- Then, $A \rightarrow A \cup \{c : C, (a, c) : r\}$ and

 $I' \models A \cup \{c : C, (a, c) : r\}$

 (freshness is required here)
Decision procedure of ABox consistency

- \mathcal{A} is consistent iff $\mathcal{A} \overset{*}{\rightarrow} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.

- Derivations $\mathcal{A} \overset{*}{\rightarrow} \mathcal{A}'$ have length bounded by an exponential in $\text{size}(\mathcal{A})$.

- Existence of \mathcal{A}' amounts to explore a tree of bounded depth and bounded degree.
Adding a TBox – First properties

- $\mathcal{I} \models C \subseteq D$ iff $\mathcal{I} \models \top \subseteq \neg C \sqcup D$.

- $\mathcal{I} \models C \equiv D$ iff $\mathcal{I} \models \top \subseteq (\neg C \sqcup D) \cap (\neg D \sqcup C)$.

- In the sequel, GCIs are of the form $\top \subseteq E$ with E in NNF.
Adding a TBox – First properties

- $\models I \models C \subseteq D$ iff $\models I \models \top \subseteq \neg C \sqcup D$.

- $\models I \models C \equiv D$ iff $\models I \models \top \subseteq (\neg C \sqcup D) \cap (\neg D \sqcup C)$.

- In the sequel, GCIs are of the form $\top \subseteq E$ with E in NNF.

\hline
\hline
\textbf{⊑-rule}: If a in \mathcal{A}, $\top \subseteq D \in \mathcal{T}$ and $a : D \notin \mathcal{A}$, then

$\mathcal{A} \rightarrow \mathcal{A} \cup \{a : D\}$

\hline
\hline
Adding a TBox – First properties

\[\mathcal{I} \models C \subseteq D \text{ iff } \mathcal{I} \models \top \subseteq \neg C \cup D. \]

\[\mathcal{I} \models C \equiv D \text{ iff } \mathcal{I} \models \top \subseteq (\neg C \cup D) \cap (\neg D \cup C). \]

\[\text{In the sequel, GCIs are of the form } \top \subseteq E \text{ with } E \text{ in NNF.} \]

\[\sqsubseteq \text{-rule: If } a \text{ in } \mathcal{A}, \top \subseteq D \in \mathcal{T} \text{ and } a : D \notin \mathcal{A}, \text{ then} \]

\[\mathcal{A} \longrightarrow \mathcal{A} \cup \{a : D\} \]

\[\text{The termination argument for ABox consistency does not work anymore. \quad (Why?)} \]
Termination with the blocking technique

Given $A \xrightarrow{*} A'$, a is an ancestor of b in A' iff

$$\{(a_1, a_2) : r_1, \ldots, (a_k, a_{k+1}) : r_k\} \subseteq A'$$

with $a_1 = a$, $a_{k+1} = b$ and b is a tree individual.

⚠️ The notion of ancestor assumes that one can distinguish the root individuals (individual names from A) from the tree individuals (those introduced by applying the \exists-rule).
Termination with the blocking technique

- Given $\mathcal{A} \xrightarrow{\ast} \mathcal{A}'$, a is an **ancestor** of b in \mathcal{A}' iff

$$\{(a_1, a_2) : r_1, \ldots, (a_k, a_{k+1}) : r_k\} \subseteq \mathcal{A}'$$

with $a_1 = a$, $a_{k+1} = b$ and b is a tree individual.

⚠️ The notion of ancestor assumes that one can distinguish the **root individuals** (individual names from \mathcal{A}) from the **tree individuals** (those introduced by applying the \exists-rule).

- An individual name b in \mathcal{A}' is **blocked by** a if
 - a is an ancestor of b,
 - $\text{con}_{\mathcal{A}'}(b) \subseteq \text{con}_{\mathcal{A}'}(a)$.

- An individual name b is **blocked in** \mathcal{A}' iff it is blocked by some individual name or, one or more of its ancestors is blocked in \mathcal{A}'.
b blocked by a

$A_0 \rightarrow A_2 \rightarrow \ldots \rightarrow A_k = \{ \}

\{ D_0, \ldots, D_m \} \subseteq \{ c_0, \ldots, c_m \}$

root individuals

\(a: c_1, \ldots, a: c_n \)

\(b: D_{d_1}, \ldots, b: D_{d_m} \)

\(\ldots \)
Expansion rules with blocking

□-rule: If \(a : C \cap D \in A \), \(a \) is not blocked and \(\{ a : C, a : D \} \not\subseteq A \) then \(A \rightarrow A \cup \{ a : C, a : D \} \).

⊔-rule: If \(a : C \cup D \in A \), \(a \) is not blocked and \(\{ a : C, a : D \} \cap A = \emptyset \) then \(A \rightarrow A \cup \{ a : E \} \) for some \(E \in \{ C, D \} \).

∃-rule: If \(a : \exists r.C \in A \), \(a \) is not blocked and there is no \(b \) such that \(\{(a, b) : r, b : C\} \subseteq A \) then
\[
A \rightarrow A \cup \{(a, c) : r, c : C\} \quad \text{where } c \text{ is fresh}
\]

∀-rule: If \(\{(a, b) : r, a : \forall r.C\} \subseteq A \), \(a \) is not blocked and \(b : C \not\subseteq A \), then \(A \rightarrow A \cup \{b : C\} \).

⊑-rule: If \(a \) in \(A \), \(\top \subseteq D \in T \), \(a \) is not blocked and \(a : D \not\subseteq A \), then
\[
A \rightarrow A \cup \{a : D\}.
\]
Termination

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \sqsubseteq D$.

- \mathbf{N}: number of root individuals in \mathcal{A}, $\mathbf{M} = \text{card}(\text{sub}(\mathcal{K}))$, $\mathbf{W} = w_\exists(\mathcal{K})$.
Termination

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \sqsubseteq D$.

- \mathbf{N}: number of root individuals in \mathcal{A}, $\mathbf{M} = \text{card}(\text{sub}(\mathcal{K}))$, $\mathbf{W} = w_{\exists}(\mathcal{K})$.

- $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ and $a : C \in \mathcal{A}'$ imply
 \[\text{card}(\{(a, b) \mid (a, b) : r \in \mathcal{A}'\}) \leq \mathbf{N} + \mathbf{W} \]

- $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ and $a : C \in \mathcal{A}'$ imply $C \in \text{sub}(\mathcal{K})$.
 ("subconcept property")
Termination

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIIs of the form $\top \subseteq D$.

- N: number of root individuals in \mathcal{A}, $M = \text{card}(\text{sub}(\mathcal{K}))$, $W = w_3(\mathcal{K})$.

- $\mathcal{A} \rightarrow^* \mathcal{A}'$ and $a : C \in \mathcal{A}'$ imply
 \[\text{card}(\{(a, b) | (a, b) : r \in \mathcal{A}'\}) \leq N + W \]

- $\mathcal{A} \rightarrow^* \mathcal{A}'$ and $a : C \in \mathcal{A}'$ imply $C \in \text{sub}(\mathcal{K})$.
 \[\text{("subconcept property")} \]

- $\{(a_1, a_2) : r_1, \ldots, (a_k, a_{k+1}) : r_k\} \subseteq \mathcal{A}'$ and a_2 is a tree individual imply $k \leq 2^M$.

Termination

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \subseteq D$.

- N: number of root individuals in \mathcal{A}, $M = \text{card}(\text{sub}(\mathcal{K}))$, $W = w_\exists(\mathcal{K})$.

- $\mathcal{A} \xrightarrow{\ast} \mathcal{A}'$ and $a : C \in \mathcal{A}'$ imply
 \[
 \text{card}(\{(a, b) \mid (a, b) : r \in \mathcal{A}'\}) \leq N + W
 \]

- $\mathcal{A} \xrightarrow{\ast} \mathcal{A}'$ and $a : C \in \mathcal{A}'$ imply $C \in \text{sub}(\mathcal{K})$.
 ("subconcept property")

- $\{(a_1, a_2) : r_1, \ldots, (a_k, a_{k+1}) : r_k\} \subseteq \mathcal{A}'$ and a_2 is a tree individual imply $k \leq 2^M$.

- The length of the derivation $\mathcal{A} \xrightarrow{\ast} \mathcal{A}'$ is at most
 \[
 N \times (N + W)^{(2^M + 1)} \times M
 \]
Soundness

- $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ with concepts in NNF, and GCIs of the form $\top \sqsubseteq D$.

- $\mathcal{A} \overset{*}{\to} \mathcal{A}'$ with \mathcal{A}' complete and clash-free.

- We construct \mathcal{A}'' as the ABox made of the following assertions

\[
\{a : C \mid a : C \in \mathcal{A}', \ a \text{ is not blocked}\} \cup
\{(a, b) : r \mid (a, b) : r \in \mathcal{A}', \ b \text{ is not blocked}\} \cup
\{(a, b') : r \mid (a, b) : r \in \mathcal{A}', \ a \text{ is not blocked and } b \text{ is blocked by } b'\}
\]
Construction of A''

Diagram showing the construction process with nodes labeled a_0, b_0, and a_{10}, among others, with arrows indicating relationships and blocking conditions.
Properties of \mathcal{A}''

- $\mathcal{A} \subseteq \mathcal{A}''$ as root individuals cannot be blocked and $\mathcal{A} \subseteq \mathcal{A}'$.
Properties of A''

- $A \subseteq A''$ as root individuals cannot be blocked and $A \subseteq A'$.
- None of the individual names occurring in A'' is blocked.
Properties of \mathcal{A}''

- $\mathcal{A} \subseteq \mathcal{A}''$ as root individuals cannot be blocked and $\mathcal{A} \subseteq \mathcal{A}'$.
- None of the individual names occurring in \mathcal{A}'' is blocked.
- For all a in \mathcal{A}'', we have $\text{con}_{\mathcal{A}''}(a) = \text{con}_{\mathcal{A}'}(a)$.

(Left as an exercise)
Properties of \mathcal{A}''

- $\mathcal{A} \subseteq \mathcal{A}''$ as root individuals cannot be blocked and $\mathcal{A} \subseteq \mathcal{A}'$.
- None of the individual names occurring in \mathcal{A}'' is blocked.
- For all a in \mathcal{A}'', we have $\text{con}_{\mathcal{A}''}(a) = \text{con}_{\mathcal{A}'}(a)$.

 \begin{center}
 \textit{(left as an exercise)}
 \end{center}

- \mathcal{A}'' is complete and clash-free.
Proof: \mathcal{A}'' is complete

\[(\star) \; \text{con}_{\mathcal{A}''}(a) = \text{con}_{\mathcal{A}'}(a) \quad \text{for all} \; a \in \mathcal{A}''\]
Proof: \mathcal{A}'' is complete

\[(\star) \text{ } \text{con}_{\mathcal{A}''}(a) = \text{con}_{\mathcal{A}'}(a) \text{ for all } a \in \mathcal{A}''\]

- Suppose $a : C \cap D \in \mathcal{A}''$.
 - By (\star), $a : C \cap D \in \mathcal{A}'$.
 - As \mathcal{A}' is complete, $\{a : C, a : D\} \subseteq \mathcal{A}'$.
 - By (\star), $\{a : C, a : D\} \subseteq \mathcal{A}''$.
Proof: \mathcal{A}'' is complete

$(\star) \ con_{\mathcal{A}''}(a) = con_{\mathcal{A}'}(a)$ for all $a \in \mathcal{A}''$

- Suppose $a : C \cap D \in \mathcal{A}''$.

 By (\star), $a : C \cap D \in \mathcal{A}'$.

 As \mathcal{A}' is complete, $\{a : C, a : D\} \subseteq \mathcal{A}'$.

 By (\star), $\{a : C, a : D\} \subseteq \mathcal{A}''$.

- Suppose that $a : C \in \mathcal{A}''$ and $\top \subseteq D \in \mathcal{T}$.

 By (\star), $a : C \in \mathcal{A}'$.

 As \mathcal{A}' is complete, $a : D \in \mathcal{A}'$.

 By (\star), $a : D \in \mathcal{A}''$.
Case with the \exists-rule

- Suppose that $a : \exists r. C \in A''$.
 By (\star), $a : \exists r. C \in A'$ and a not blocked.
 By completeness of A', there is b such that
 $\{(a, b) : r, b : C\} \subseteq A'$.

- If b is not blocked, then $\{(a, b) : r, b : C\} \subseteq A''$.
Case with the \exists-rule

- Suppose that $a : \exists r. C \in A''$.
 By (⋆), $a : \exists r. C \in A'$ and a not blocked.
 By completeness of A', there is b such that
 $\{(a, b) : r, b : C\} \subseteq A'$.

- If b is not blocked, then $\{(a, b) : r, b : C\} \subseteq A''$.

- As a is not blocked, if b is blocked, then b is blocked by b' in A' and b' is not blocked.
Case with the \exists-rule

- Suppose that $a : \exists r.C \in A''$.
 By (\star), $a : \exists r.C \in A'$ and a not blocked.
 By completeness of A', there is b such that
 $\{(a, b) : r, b : C\} \subseteq A'$.

- If b is not blocked, then $\{(a, b) : r, b : C\} \subseteq A''$.

- As a is not blocked, if b is blocked, then b is blocked by b' in A' and b' is not blocked.

- By definition of A'', $(a, b') : r \in A''$.
Case with the \(\exists \)-rule

> Suppose that \(a : \exists r. C \in A'' \).

By (\(\star \)), \(a : \exists r. C \in A' \) and \(a \) not blocked.
By completeness of \(A' \), there is \(b \) such that
\[
\{(a, b) : r, b : C\} \subseteq A'.
\]

> If \(b \) is not blocked, then \(\{(a, b) : r, b : C\} \subseteq A'' \).

> As \(a \) is not blocked, if \(b \) is blocked, then \(b \) is blocked by \(b' \)
in \(A' \) and \(b' \) is not blocked.

> By definition of \(A'' \), \((a, b') : r \in A'' \).

> \(\text{con}_{A'}(b) \subseteq \text{con}_{A'}(b') \) (blocking). By (\(\star \)),
\[
C \in \text{con}_{A'}(b) \subseteq \text{con}_{A'}(b') = \text{con}_{A''}(b')
\]
So, \(b' : C \in A'' \).
Case with the \exists-rule

- Suppose that $a : \exists r. C \in A''$.

 By (\star), $a : \exists r. C \in A'$ and a not blocked.

 By completeness of A', there is b such that

 $(a, b) \cup r, b : C) \subseteq A'$.

- If b is not blocked, then $(a, b) \cup r, b : C) \subseteq A''$.

- As a is not blocked, if b is blocked, then b is blocked by b'
 in A' and b' is not blocked.

- By definition of A'', $(a, b') : r \in A''$.

- $\text{con}_{A'}(b) \subseteq \text{con}_{A'}(b')$ (blocking). By (\star),

 $C \in \text{con}_{A'}(b) \subseteq \text{con}_{A'}(b') = \text{con}_{A''}(b')$

 So, $b' : C \in A''$.

- Case with the \forall-rule left as an exercise.
More about the soundness proof

- $A \xrightarrow{*} A'$ with A' complete and clash-free and A'' computed as above.

- Let us define $\mathcal{I} \overset{\text{def}}{=} (\Delta \mathcal{I}, a \mathcal{I})$ from A'' as follows.
 - $\Delta \mathcal{I} \overset{\text{def}}{=} \{ a \mid a : C \in A'' \}$.
 - $a \mathcal{I} \overset{\text{def}}{=} a$ for all individual names a in A''.
 - $A \mathcal{I} \overset{\text{def}}{=} \{ a \mid A \in \text{con}_{A''}(a) \}$ for all concept names $A \in \text{sub}(A'')$.
 - $r \mathcal{I} \overset{\text{def}}{=} \{ (a, b) \mid (a, b) : r \in A'' \}$.

(Previous construction with A'' instead)

- One can show that for all $a : C \in A''$, we have $a \mathcal{I} \in C \mathcal{I}$.
 (left as an exercise.)
The final step about soundness

► It remains to check that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.

► One can show that for all $a : C \in \mathcal{A}^{''}$, we have $a \mathcal{I} \in C$.

► Consequently, $\mathcal{I} \models \mathcal{A}$ as $\mathcal{A} \subseteq \mathcal{A}^{''}$.

► Moreover, $\mathcal{I} \models \mathcal{T}$ for all $\mathcal{T} \subseteq \mathcal{C}$.

► $a \in \Delta \mathcal{I} \rightarrow a : C \in \mathcal{A}^{''}$ (see above)
The final step about soundness

- It remains to check that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.

- One can show that for all $a : C \in \mathcal{A}''$, we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$.

- Consequently, $\mathcal{I} \models \mathcal{A}$ as $\mathcal{A} \subseteq \mathcal{A}''$.
The final step about soundness

- It remains to check that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.

- One can show that for all $a : C \in \mathcal{A}''$, we have $a^\mathcal{I} \in C^\mathcal{I}$.

- Consequently, $\mathcal{I} \models \mathcal{A}$ as $\mathcal{A} \subseteq \mathcal{A}''$.

- Moreover, $\mathcal{I} \models \top \subseteq C$ for all $\top \subseteq C \in \mathcal{T}$.

- $a \in \Delta^\mathcal{I}$
 $\rightarrow a : C \in \mathcal{A}''$ (\mathcal{A}'' is complete)
 $\rightarrow a \in C^\mathcal{I}$ (see above)
Completeness (bis)

If $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then $\mathcal{A} \rightarrow \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.

Let $I \overset{\text{def}}{=} (\Delta_I, \cdot_I)$ be such that $I \models (\mathcal{T}, \mathcal{A})$.

If \mathcal{A} is complete, we are done.

Otherwise (\mathcal{A} is not complete), we show there is \mathcal{A}' such that $\mathcal{A} \rightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.

As the length of a derivation from \mathcal{A} is bounded by a double-exponential in the size of \mathcal{A}, there is \mathcal{A}' such that $\mathcal{A}^* \rightarrow \mathcal{A}'$ and \mathcal{A}' is complete, clash-free (and consistent).

One can prove that non-completeness implies the existence of one expansion preserving consistency.
Completeness (bis)

- If $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then $\mathcal{A} \rightarrow^\ast \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.

- Let $\mathcal{I} \overset{\text{def}}{=} (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ be such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.

- If \mathcal{A} is complete, we are done.

- Otherwise (\mathcal{A} is not complete), we show there is \mathcal{A}' such that $\mathcal{A} \rightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.
Completeness (bis)

- If $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then $\mathcal{A} \rightarrow^* \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.

- Let $\mathcal{I} \overset{\text{def}}{=} (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ be such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.

- If \mathcal{A} is complete, we are done.

- Otherwise (\mathcal{A} is not complete), we show there is \mathcal{A}' such that $\mathcal{A} \rightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.

- As the length of a derivation from \mathcal{A} is bounded by a double-exponential in the size of \mathcal{A}, there is \mathcal{A}' such that $\mathcal{A} \rightarrow^* \mathcal{A}'$ and \mathcal{A}' is complete, clash-free (and consistent).
Completeness (bis)

- If $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then $\mathcal{A} \xrightarrow{\ast} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}'.

- Let $\mathcal{I} \overset{\text{def}}{=} (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ be such that $\mathcal{I} \models (\mathcal{T}, \mathcal{A})$.

- If \mathcal{A} is complete, we are done.

- Otherwise (\mathcal{A} is not complete), we show there is \mathcal{A}' such that $\mathcal{A} \rightarrow \mathcal{A}'$ and \mathcal{A}' is consistent.

- As the length of a derivation from \mathcal{A} is bounded by a double-exponential in the size of \mathcal{A}, there is \mathcal{A}' such that $\mathcal{A} \xrightarrow{\ast} \mathcal{A}'$ and \mathcal{A}' is complete, clash-free (and consistent).

- One can prove that non-completeness implies the existence of one expansion preserving consistency.
Complexity issues

- \mathcal{ALC} concept satisfiability in PSPACE, knowledge base consistency in EXPTIME.

- The algorithm for ABox consistency runs in exponential space:
 - Because of the nondeterministic \sqcup-rule, exponentially many ABoxes may be generated.
 - Complete ABoxes may be exponentially large.

- PSPACE bound for ABox consistency can be regained by exploring the tree-like interpretations in a depth-first manner having only one path at a time.
Recapitulation: Tableaux for \mathcal{ALC} knowledge base consistency

- Tableaux-based algorithm to decide \mathcal{ALC} knowledge base consistency.

- All other standard decision problems can be handled too.

- Termination is guaranteed thanks to the blocking technique.

- In the worst-case, exponential space is used but optimisations exist to meet the optimal upper bound EXPTime.

- Tableaux can be extended to richer variants of \mathcal{ALC} (with inverses, nominals, number restrictions, etc.)
Undecidability with Role Inclusion Axioms
DLs: a playground to study extensions and fragments

- Many developments to extend \mathcal{ALC} while preserving the decidability status / complexity of the main decision problems.

- Many developments to study fragments of \mathcal{ALC} (or variants) to identify tractable fragments.

- It is also important to identify undecidable extensions.
Tiling system

- **Tiling system**: \((T, H, V, t_0)\) where
 - \(T\) is a finite set of **tile types** and \(t_0 \in T\),
 - \(H, V \subseteq T \times T\) are two relations referred to as the **horizontal**, resp. **vertical matching relation**.
Tiling system

- **Tiling system**: \((T, H, V, t_0)\) where
 - \(T \) is a finite set of **tile types** and \(t_0 \in T \),
 - \(H, V \subseteq T \times T \) are two relations referred to as the horizontal, resp. vertical matching relation.

- **A set of tile types** (a.k.a. **tiles**)

 \[
 t_1 = \begin{array}{c}
 2 \\
 1 \\
 0 \\
 2 \\
 \end{array}
 \quad t_2 = \begin{array}{c}
 1 \\
 2 \\
 1 \\
 2 \\
 \end{array}
 \quad t_3 = \begin{array}{c}
 0 \\
 1 \\
 2 \\
 \end{array}
 \quad t_4 = \begin{array}{c}
 2 \\
 2 \\
 2 \\
 \end{array}
 \]

- **...with its matching relations**
 - \(H = \{(t_1, t_3), (t_1, t_4), (t_2, t_1), (t_3, t_2), (t_4, t_1)\} \)
 - \(V = \{(t_1, t_2), (t_1, t_4), (t_2, t_3), (t_4, t_1), (t_4, t_2)\} \)
A tiling for the \(([0, 3] \times [0, 2])\)-arena

\[
\text{tiling } \tau : [0, 3] \times [0, 2] \rightarrow T
\]
An undecidable tiling problem

▶ The ($\infty \times \infty$)-tiling problem.

Input: A tiling system (T, H, V, t_0).

Question: Is there a tiling $\tau : \mathbb{N} \times \mathbb{N} \rightarrow T$ such that for all $i, j \in \mathbb{N}$,

(hori) if $\tau(i, j) = t$ and $\tau(i + 1, j) = t'$, then $(t, t') \in H$,

(verti) if $\tau(i, j) = t$ and $\tau(i, j + 1) = t'$, then $(t, t') \in V$

▶ The ($\infty \times \infty$)-tiling problem is undecidable.
Complexity about \mathcal{ALC} problems

▶ Concept satisfiability problem is PSPACE-complete.

▶ PSPACE-hardness by reduction from $(n \times n)$-tiling game problem.
Complexity about \mathcal{ALC} problems

- Concept satisfiability problem is PSpace-complete.

- PSpace-hardness by reduction from $(n \times n)$-tiling game problem.

- ExpTime-complete knowledge base consistency problem. ExpTime-hardness from $(n \times \infty)$-tiling game problem.
A standard undecidability result

- \mathcal{ALC} + role axioms $r \circ s \sqsubseteq q$ and $q \sqsubseteq r \circ s$ has undecidable knowledge base consistency problem.

 (actually CBox consistency is undecidable)

- Reduction from $(\infty \times \infty)$-tiling problem.
A standard undecidability result

- $\mathcal{ALC} + \text{role axioms } r \circ s \sqsubseteq q \text{ and } q \sqsubseteq r \circ s \text{ has undecidable knowledge base consistency problem.}$

 (actually CBox consistency is undecidable)

- Reduction from $(\infty \times \infty)$-tiling problem.

- $\mathcal{ALC} + \text{local role value maps } r \circ s \sqsubseteq q \text{ and } q \sqsubseteq r \circ s \text{ has undecidable concept satisfiability problem.}$

 (not presented herein)
An undecidable extension of \(\text{ALC} \)

Let us consider the extension of \(\text{ALC} \) in which we allow role axioms of the form

\[r \circ s \sqsubseteq q \quad q \sqsubseteq r \circ s, \]

\[\mathcal{I} \models r \circ s \sqsubseteq q \quad \text{def} \quad r^{\mathcal{I}} \circ s^{\mathcal{I}} \sqsubseteq q^{\mathcal{I}} \]

\[\mathcal{I} \models q \sqsubseteq r \circ s \quad \text{def} \quad q^{\mathcal{I}} \subseteq r^{\mathcal{I}} \circ s^{\mathcal{I}} \]
An undecidable extension of ALC

Let us consider the extension of ALC in which we allow role axioms of the form

\[r \circ s \sqsubseteq q \quad q \sqsubseteq r \circ s, \]

\[\mathcal{I} \models r \circ s \sqsubseteq q \iff r^\mathcal{I} \circ s^\mathcal{I} \subseteq q^\mathcal{I} \quad \mathcal{I} \models q \sqsubseteq r \circ s \iff q^\mathcal{I} \subseteq r^\mathcal{I} \circ s^\mathcal{I} \]

Role axioms \(r \circ s \equiv s \circ r \) can be encoded by introducing a fresh role name \(q \):

\[\{ r \circ s \sqsubseteq q, q \sqsubseteq r \circ s, s \circ r \sqsubseteq q, q \sqsubseteq s \circ r \} \]

(correctness left as an exercise)
An undecidable extension of \(\text{ALC} \)

- Let us consider the extension of \(\text{ALC} \) in which we allow role axioms of the form

\[
\begin{align*}
 r \circ s & \subseteq q \quad q \subseteq r \circ s, \\
 \mathcal{I} \models r \circ s \subseteq q & \iff r^\mathcal{I} \circ s^\mathcal{I} \subseteq q^\mathcal{I} \quad \mathcal{I} \models q \subseteq r \circ s & \iff q^\mathcal{I} \subseteq r^\mathcal{I} \circ s^\mathcal{I}
\end{align*}
\]

- Role axioms \(r \circ s \equiv s \circ r \) can be encoded by introducing a fresh role name \(q \):

\[
\{ r \circ s \subseteq q, q \subseteq r \circ s, s \circ r \subseteq q, q \subseteq s \circ r \}
\]

(correctness left as an exercise)

- Reduction from the \((\infty \times \infty) \)-tiling problem to knowledge base consistency for such an \(\text{ALC} \) extension.
The reduction

Given a tiling system $\mathcal{T} = (T, H, V, t_0)$, we introduce two role names r_x and r_y.

We build a TBox $\mathcal{T}_\mathcal{T}$ such that \mathcal{T} is a positive instance of the $(\infty \times \infty)$-tiling problem iff $\mathcal{T}_\mathcal{T}$ is consistent.
The reduction

- Given a tiling system $\mathcal{T} = (T, H, V, t_0)$, we introduce two role names r_x and r_y.

- We build a TBox \mathcal{T}_T such that \mathcal{T} is a positive instance of the $(\infty \times \infty)$-tiling problem iff \mathcal{T}_T is consistent.

- Every individual has a horizontal and a vertical successor:

 $T \subseteq \exists r_x. T \land \exists r_y. T$
The reduction

Given a tiling system \(T = (T, H, V, t_0) \), we introduce two role names \(r_x \) and \(r_y \).

We build a TBox \(\mathcal{T}_T \) such that \(T \) is a positive instance of the \((\infty \times \infty)\)-tiling problem iff \(\mathcal{T}_T \) is consistent.

Every individual has a horizontal and a vertical successor:
\[
\top \subseteq \exists r_x. T \sqcap \exists r_y. T
\]

Every individual belongs to a unique tile type.
\[
\top \subseteq \bigcup_{t \in T} (t \sqcap \bigsqcap_{t' \neq t} \neg t')
\]
The reduction

Given a tiling system $\mathcal{T} = (T, H, V, t_0)$, we introduce two role names r_x and r_y.

We build a TBox \mathcal{T}_T such that \mathcal{T} is a positive instance of the $(\infty \times \infty)$-tiling problem iff \mathcal{T}_T is consistent.

Every individual has a horizontal and a vertical successor:

$$\top \sqsubseteq \exists r_x. T \cap \exists r_y. T$$

Every individual belongs to a unique tile type.

$$\top \sqsubseteq \bigsqcup_{t \in T} (t \cap \bigsqcap_{t' \neq t} \neg t')$$

Tile types of adjacent individuals satisfy the matching relations:

$$\top \sqsubseteq \bigsqcup_{(t, t') \in H} (t \cap \forall r_x. t') \cap \bigsqcup_{(t, t') \in V} (t \cap \forall r_y. t')$$
The properties

- The set of $r_x r_y$-successors is equal to the set of $r_y r_x$-successors.

\[r_x \circ r_y \equiv r_y \circ r_x \]
The properties

- The set of r_xr_y-successors is equal to the set of r_yr_x-successors.
 \[r_x \circ r_y \equiv r_y \circ r_x \]

- \mathcal{T}_T is made of the above GCIs and role axioms.
The properties

- The set of $r_x r_y$-successors is equal to the set of $r_y r_x$-successors.
 \[r_x \circ r_y \equiv r_y \circ r_x \]

- \mathcal{T}_T is made of the above GCIs and role axioms.

- \mathcal{T}_T is consistent iff \mathcal{T} is a positive instance.

- TBox consistency problem for \mathcal{ALC} augmented with role axioms of the form $r \circ s \sqsubseteq q$ and $q \sqsubseteq r \circ s$ is undecidable.
Correctness proof (or how to extract a grid)

Let \mathcal{I} be an interpretation satisfying the TBox \mathcal{T}_T.

We define a map $f : \mathbb{N} \times \mathbb{N} \rightarrow \Delta^\mathcal{I}$ such that for all i, j

- $(f(i, j), f(i + 1, j)) \in r_x^\mathcal{I}$
- $(f(i, j), f(i, j + 1)) \in r_y^\mathcal{I}$

Unicity of t guaranteed by $I |= \top \sqsubseteq F_t \in T (t \sqcap dt \neq t \neg t \neg t')$.

Afterwards, easy to check τ is a tiling as $I |= \mathcal{T}_T$.
Correctness proof (or how to extract a grid)

- Let \mathcal{I} be an interpretation satisfying the TBox $\mathcal{T}_{\mathcal{I}}$.

- We define a map $f : \mathbb{N} \times \mathbb{N} \rightarrow \Delta^\mathcal{I}$ such that for all i, j
 - $(f(i, j), f(i + 1, j)) \in r^\mathcal{I}_x$
 - $(f(i, j), f(i, j + 1)) \in r^\mathcal{I}_y$

- Then, we define $\tau : \mathbb{N} \times \mathbb{N} \rightarrow T$ from f as follows:
 \[
 \tau(i, j) \overset{\text{def}}{=} \text{unique } t \text{ such that } f(i, j) \in t^\mathcal{I}
 \]
Correctness proof (or how to extract a grid)

▶ Let \mathcal{I} be an interpretation satisfying the TBox \mathcal{T}_T.

▶ We define a map $\emptyset: \mathbb{N} \times \mathbb{N} \rightarrow \Delta^\mathcal{I}$ such that for all i, j

 ▶ $(\emptyset(i, j), \emptyset(i + 1, j)) \in r^\mathcal{I}_x$

 ▶ $(\emptyset(i, j), \emptyset(i, j + 1)) \in r^\mathcal{I}_y$

▶ Then, we define $\tau: \mathbb{N} \times \mathbb{N} \rightarrow T$ from \emptyset as follows:

$$\tau(i, j) \overset{\text{def}}{=} \text{unique } t \text{ such that } \emptyset(i, j) \in t^\mathcal{I}$$

▶ Unicity of t guaranteed by $\mathcal{I} \models T \subseteq \bigcup_{t \in T} (t \cap \bigcap_{t' \neq t} t')$.

▶ Afterwards, easy to check τ is a tiling as $\mathcal{I} \models \mathcal{T}_T$.
How to define f while maintaining properties?

- $f(0,0)$ is chosen arbitrarily in Δ^I (non-empty).
How to define f while maintaining properties?

- $f(0, 0)$ is chosen arbitrarily in Δ^I (non-empty).

- As $\mathcal{I} \models \top \subseteq \exists r_x. \top$, when $f(i, i)$ is already defined, pick $a \in \Delta^I$ such that
 - $(f(i, i), a) \in r_x^I$,
 - $f(i + 1, i) \overset{\text{def}}{=} a$
How to define f while maintaining properties?

- $f(0, 0)$ is choosen arbitrarily in Δ^I (non-empty).

- As $\mathcal{I} \models \top \sqsubseteq \exists r_x. \top$, when $f(i, i)$ is already defined, pick $a \in \Delta^I$ such that
 - $(f(i, i), a) \in r_x^I$,
 - $f(i + 1, i) \overset{\text{def}}{=} a$

- As $\mathcal{I} \models \top \sqsubseteq \exists r_y. \top$, when $f(i + 1, i)$ is already defined, pick $b \in \Delta^I$ such that
 - $(f(i + 1, i), b) \in r_y^I$,
 - $f(i + 1, i + 1) \overset{\text{def}}{=} b$
More cases for defining f

- As $\mathcal{I} \models r_x \circ r_y \equiv r_y \circ r_x$, when

$$f(i,j), f(i+1,j), f(i+1,j+1)$$

are defined and $f(i,j+1)$ undefined, pick $a \in \Delta^\mathcal{I}$ such that

- $(f(i,j), a) \in r_y^\mathcal{I}$
- $(a, f(i+1,j+1)) \in r_x^\mathcal{I}$
- $f(i,j+1) \overset{\text{def}}{=} a$
More cases for defining \(f \)

- As \(\mathcal{I} \models r_x \circ r_y \equiv r_y \circ r_x \), when
 \[
 f(i, j), f(i + 1, j), f(i + 1, j + 1)
 \]
 are defined and \(f(i, j + 1) \) undefined, pick \(\alpha \in \Delta^\mathcal{I} \) such that
 \[
 (f(i, j), \alpha) \in r_y^\mathcal{I}, \quad \alpha \xrightarrow{r_x} f(i + 1, j + 1)
 \]
 \[
 (\alpha, f(i + 1, j + 1)) \in r_x^\mathcal{I}, \quad \xrightarrow{r_y} f(i, j)
 \]
 \[
 f(i, j + 1) \overset{\text{def}}{=} \alpha
 \]

- When \(f(i, j), f(i, j + 1), f(i + 1, j + 1) \) are defined and \(f(i + 1, j) \) undefined, pick \(\alpha \in \Delta^\mathcal{I} \) such that
 \[
 (f(i, j), \alpha) \in r_x^\mathcal{I}, \quad \xrightarrow{r_y} f(i + 1, j + 1)
 \]
 \[
 (\alpha, f(i + 1, j + 1)) \in r_y^\mathcal{I}, \quad \xrightarrow{r_x} f(i, j)
 \]
 \[
 f(i + 1, j) \overset{\text{def}}{=} \alpha
 \]
More cases for defining f

- As $\mathcal{I} \models r_x \circ r_y \equiv r_y \circ r_x$, when

$$f(i, j), f(i + 1, j), f(i + 1, j + 1)$$

are defined and $f(i, j + 1)$ undefined, pick $a \in \Delta^{\mathcal{I}}$ such that

- $(f(i, j), a) \in r_y^{\mathcal{I}}$
- $(a, f(i + 1, j + 1)) \in r_x^{\mathcal{I}}$
- $f(i, j + 1) \overset{\text{def}}{=} a$

- When $f(i, j), f(i, j + 1), f(i + 1, j + 1)$ are defined and $f(i + 1, j)$ undefined, pick $a \in \Delta^{\mathcal{I}}$ such that

 - $(f(i, j), a) \in r_x^{\mathcal{I}}$
 - $(a, f(i + 1, j + 1)) \in r_y^{\mathcal{I}}$
 - $f(i + 1, j) \overset{\text{def}}{=} a$

- With these four cases, how to build f on $\mathbb{N} \times \mathbb{N}$?
Construction of the map f: a bit of organisation

Ordering to define f:
$f : \mathbb{N} \times \mathbb{N} \to \Delta$
The other direction (easy)

Let $\mathcal{T} = (T, H, V, t_0)$ be a tiling system and $\tau : \mathbb{N} \times \mathbb{N} \rightarrow T$ be a tiling.

Interpretation $\mathcal{I} \overset{\text{def}}{=} (\Delta^\mathcal{I}, \cdot^\mathcal{I})$:

- $\Delta^\mathcal{I} \overset{\text{def}}{=} \mathbb{N} \times \mathbb{N}$
- $r_x^\mathcal{I} \overset{\text{def}}{=} \{(((i, j), (i + 1, j)) \mid i, j \in \mathbb{N}\}$
- $r_y^\mathcal{I} \overset{\text{def}}{=} \{(((i, j), (i, j + 1)) \mid i, j \in \mathbb{N}\}$
- $t^\mathcal{I} \overset{\text{def}}{=} \{(n, m) \mid \tau(n, m) = t\}$ for every $t \in T$

It is easy to check \mathcal{I} satisfies all the GCIs and the role axioms from $\mathcal{T}_\mathcal{T}$.
Interpretation \mathcal{I}

Tiling τ

\[
\begin{array}{cccccc}
0 & 2 & 1 & 2 & 2 & 0 \\
1 & 2 & 1 & 0 & 2 & 1 \\
2 & 1 & 1 & 0 & 2 & 2 \\
2 & 2 & 1 & 1 & 0 & 2 \\
0 & 1 & 1 & 0 & 2 & 2 \\
0 & 2 & 2 & 1 & 2 & 2 \\
\end{array}
\]

\[\ldots\]
Conclusion

- Today lecture: tableaux for DLs.
 - Rules for checking concept satisfiability.
 - Rules for checking knowledge base consistency.
 - Termination, soundness, completeness.
 - Undecidability result with role axioms.

- Next week lecture: reasoning about multiagent systems with ATL.
Other topics related to DLs

- More tableaux-style systems and complexity results for \mathcal{ALC} extensions (e.g. for \mathcal{SROIQ}, \mathcal{ALCIQ}, \mathcal{ALCOI}, etc.)

- More fragments with nice computational properties while retaining sufficient expressivity (e.g. \mathcal{EL}, \mathcal{FL}_0, DL-Lite, etc.)

- Playing with ontologies, ontology editors, etc....

- Query answering with respect to ontologies for large data sets.