Logical Aspects of Artificial Intelligence
Temporal Logics for Multi-agent Systems

Stéphane Demri
demi@lmf.cn*s.f*

November 29th, 2023
Plan of the lecture

- Concurrent game structures.
- Introduction to ATL.
- Exercises session.
Exam on Wednesday January 10th 2024, 2pm-5pm.

Room 1E14 (usual room).
Temporal Logics for Multi-Agent Systems
Introduction to multi-agent systems

▶ Multi-agent systems are transition systems in which transitions are fired when simultaneous actions are performed by different agents.

▶ Coalitions are made of agents that can coordinate their respective actions.

▶ Temporal logics for multi-agent systems contain
 – temporal formulae to describe objectives and,
 – strategy modalities parameterised by coalitions.

▶ In this lecture, we present the basic ingredients in the logic ATL and variants.
Other (online) resources

- See also the proceedings of the international conferences:
 - International Conference on Autonomous Agents and Multi-Agent Systems. (AAMAS)
 - European Conference on Artificial Intelligence. (ECAI)
 - International Conference on Principles of Knowledge Representation and Reasoning. (KR)

Concurrent Game Structures
The two-robot example

- Two robots Robot_1 and Robot_2, and a carriage.
- Robot_1 can only push the carriage in clockwise direction, Robot_2 can only push it in anti-clockwise direction.
Concurrent game structure: definition

\[\mathcal{M} = (\text{Agt}, S, \text{Act}, \text{act}, \delta, L) \]

- **Agt** is a non-empty set of *k* agents.
- **S** is a finite non-empty set of states.
- **Act**: finite set of actions.
- **L**: \(S \rightarrow \mathcal{P}(\text{PROP}) \) is a labelling specifying a truth assignment for each state.
- **act**: \(\text{Agt} \times S \rightarrow \mathcal{P}(\text{Act}) \setminus \{\emptyset\} \) is the action manager. \(\text{act}(a, s) \approx \) “set of actions that can be executed by the agent \(a \) from the control state \(s \)”.
- **Transition function** \(\delta : S \times (\text{Agt} \rightarrow \text{Act}) \rightarrow S \). \(\delta(s, f) \) undefined if there is some agent \(a \) such that \(f(a) \not\in \text{act}(a, s) \).
An example

Action manager $\text{act} : \text{Agt} \times S \rightarrow \mathcal{P}(\text{Act}) \setminus \{\emptyset\}$.
$\text{act}(1, s_3) = \{c\}; \text{act}(2, s_3) = \{c\}$.

Transition function $\delta : S \times (\text{Agt} \rightarrow \text{Act}) \rightarrow S$.
$\delta(s_4, [1 \mapsto c, 2 \mapsto c]) = s_3 \quad \text{— undef.} \quad \delta(s_4, [1 \mapsto c, 2 \mapsto a])$.

Labelling $L : S \rightarrow \mathcal{P}(\text{PROP})$.
$L(s_1) = \{p\}$.

$\text{Agt} = \{1, 2\}$
$S = \{s_1, s_2, s_3, s_4\}$
$\text{Act} = \{a, b, c\}$
Another concurrent game structure

- Two agents share a file in a cyberspace,
- Each agent can apply the action Update (U) if she is enabled to do so, or Skip (N).
- State P is reached when both agents have processed the file.
- Action Reset (R) allows to move to the initial state E.
Turn-based CGS

- **Turn-based CGS**: only one agent at a time is executing an action.

- **Turn-based CGS** \mathcal{M}: for all $s \in S$, there is at most one agent $a \in \text{Agt}$ such that $\text{card}(\text{act}(a, s)) > 1$.
The Logic ATL and Variants
Logics of strategic ability

- To express that a coalition of agents has a collective strategy to enforce some property and to reason on it.
- A strategy is a conditional plan intended to work whatever the other agents do.

- Well-known specimens.
 - Coalition Logic CL. (one-step strategies)
 - Alternating-time temporal logic ATL. (generalisation of temporal logics)
 - Strategy Logic SL. (explicit quantification over strategies)
Basic concepts: joint action

- **Coalition** $A \subseteq Agt$ with **opponent coalition** $\bar{A} = Agt \setminus A$.

- $g : A \rightarrow Act$: **joint action** by $A \subseteq Agt$ in s.
 Proviso: for all $a \in A$, we have $g(a) \in \text{act}(a, s)$.
 g can be viewed as a tuple of actions of length $\text{card}(A)$.

- $g : A \rightarrow Act \sqsubseteq g' : A' \rightarrow Act \overset{\text{def}}{\iff} A \subseteq A'$ and g is the restriction of g' to A.

\[(a_1, a_2, -, -) \sqsubseteq (a_1, a_2, a_3, a_4)\]

(-' indicates undefinedness)

- $D_A(s)$: set of joint actions by A in s.

Basic concepts: outcome set

- Joint action $g : A \rightarrow \text{Act}$ in s.

- $\text{out}(s, g) \overset{\text{def}}{=} \text{set of states reachable from } s \text{ in one step when the actions performed by the agents in } A \text{ are determined by } g$.

- Set of outcomes:

 $$\text{out}(s, g) \overset{\text{def}}{=} \{ s' \in S \mid \exists f \in D_{Agt}(s) \text{ s.t. } g \sqsubseteq f \text{ and } s' = \delta(s, f) \}$$

```
out(s_0, [1 \mapsto a]) = \{s_2, s_3, s_4\}
out(s_0, [1 \mapsto b, 2 \mapsto a]) = \{s_1\}
```
Basic concepts: computations

- \(\text{card} (\text{out}(s, f)) = 1 \) if \(f \in D_{Agt}(s) \).

- **Computation** \(\lambda = s_0 \xrightarrow{f_0} s_1 \xrightarrow{f_1} s_2 \ldots \) such that for all \(i \), we have \(s_{i+1} \in \delta(s_i, f_i) \). \(\text{(history} = \text{finite computation}) \)

- Herein, computations can be also written \(s_0 s_1 s_2 \ldots \) (without joint actions).

- Linear model \(L(s_0) \rightarrow L(s_1) \rightarrow L(s_2) \ldots \) (sequence of propositional valuations)
Basic concepts: strategies

▶ A strategy is a condition plan intended to fulfill the objectives whatever the agents of the opponent coalition perform.

▶ In a strategy, the agents of the proponent coalition select actions depending on the sequence of states already visited.

▶ **Strategy** \(\sigma \) for \(A \): map from the set of finite computations (histories) to the set of joint actions by \(A \) such that

\[
\sigma(s_0 \xrightarrow{f_0} s_1 \cdots \xrightarrow{f_{n-1}} s_n) \in D_A(s_n)
\]

▶ The domain of a strategy is potentially infinite.
Positional strategies

- Memory-based strategies vs. positional strategies.

- σ is a **positional strategy** $\overset{\text{def}}{\iff}$ for all $s_0 \xrightarrow{f_0} s_1 \cdots \xrightarrow{f_{n-1}} s_n$
 and $s'_0 \xrightarrow{f'_0} s'_1 \cdots \xrightarrow{f'_{m-1}} s'_m$ with $s_n = s'_m$, we have
 \[
 \sigma(s_0 \xrightarrow{f_0} s_1 \cdots \xrightarrow{f_{n-1}} s_n) = \sigma(s'_0 \xrightarrow{f'_0} s'_1 \cdots \xrightarrow{f'_{m-1}} s'_m)
 \]
 \[
 \text{(only the value of the last state matters)}
 \]

- **Memoryless strategy** $\overset{\text{def}}{=} \text{positional strategy}.$
 \[
 \sigma : s \in S \mapsto g \in D_A(s)
 \]
Computations respecting a strategy

\[\lambda = s_0 \xrightarrow{f_0} s_1 \xrightarrow{f_1} s_2 \cdots \text{ respects } \sigma \ \overset{\text{def}}{\iff} \ \forall i < |\lambda|, \]

\[s_{i+1} \in \text{out}(s_i, \sigma(s_0 \xrightarrow{f_0} s_1 \cdots \xrightarrow{f_{i-1}} s_i)) \cap D_A(s_i) \]

\[\lambda \text{ respecting } \sigma \text{ is maximal whenever } \lambda \text{ cannot be extended further while respecting the strategy.} \]

\[\text{comp}(s, \sigma): \text{ set of maximal computations from the state } s \text{ respecting the strategy } \sigma. \]
Strategy tree (for agent 1)

\[(a, a) \xrightarrow{p_1} s_0 \xrightarrow{(a, b)} s_1 \xrightarrow{(b, a)} s_2 \xrightarrow{p_2} (a, a)\]

\[\ldots \xrightarrow{(a, a)} s_0 \xrightarrow{(a, b)} s_1 \xrightarrow{(b, a)} s_2 \xrightarrow{(a, a)} s_0 \xrightarrow{(a, b)} s_1 \xrightarrow{(b, a)} s_2 \xrightarrow{(a, a)} \ldots\]
Strategy tree (bis)

Positional σ for the agent 1:
select a on s_1, b on s_2, otherwise c.

σ generates a set of computations whose linear models can be defined by a Büchi automaton (BA).

(keep only transitions compatible with σ)
Trimming a CGS

- CGS \(\mathcal{M} = (\text{Agt}, S, \text{Act}, \text{act}, \delta, L) \).

- Coalition \(A \subseteq \text{Agt} \).

- Memoryless strategy \(\sigma : s \in S \mapsto g \in D_A(s) \).

- Underlying transition system \((S, R, L)\) such that for all \(s, s' \in S \), we have
 \[
 (s, s') \in R \iff s' \in \text{out}(s, \sigma(s))
 \]

- \(R \) represents the set of moves allowed by the opponent coalition \((\text{Agt} \setminus A)\) when \(A \) has the positional strategy \(\sigma \).
Examples of strategies

Positional strategy for Robot_1: \(\sigma(s_0) = \text{push}, \sigma(s_1) = \text{push}, \sigma(s_2) = \text{wait}. \)

The set of maximal computations respecting \(\sigma \) from \(s_0 \) (projected on \(S \) only):

\[
\{s_0^\omega\} \cup s_0^+ (s_1^+ s_2^+)^\omega \cup (s_1^+ s_2^+)^* s_1^\omega \cup (s_1^+ s_2^+)^* s_2^\omega
\]

Which temporal properties are satisfied by such computations respecting \(\sigma \)?
Specifying properties on \(\omega \)-sequences

- **LTL**: linear-time temporal logic.

- **LTL formulae**:

 \[
 \varphi, \psi ::= p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U \psi
 \]

- Atomic formulae are propositional variables.

- **LTL models** \(\lambda \) are \(\omega \)-sequences of propositional valuations of the form \(\lambda : \mathbb{N} \to \mathcal{P}(PROP) \).

 (≈ linear models from infinite computations)

- **\(X\varphi \)** states that the next state satisfies \(\varphi \):

 \[\begin{align*}
 X \varphi & \quad \varphi \\
 \sigma & \rightarrow \rho & \rightarrow \sigma & \rightarrow \rho & \rightarrow \sigma & \rightarrow \sigma & \cdots
 \end{align*}\]
Semantics of the linear-time temporal operators

- $F\varphi$ states that some future (or possibly, the current) state satisfies φ without specifying explicitly which one that is.

- $G\varphi$, φ states that φ is always satisfied.

- $\varphi U\psi$ states that φ is true until ψ is true.
Satisfaction relation

- \(\lambda, i \models p \overset{\text{def}}{\iff} p \in \lambda(i) \),

- \(\lambda, i \models \neg \varphi \overset{\text{def}}{\iff} \lambda, i \not\models \varphi \),

- \(\lambda, i \models \varphi_1 \land \varphi_2 \overset{\text{def}}{\iff} \lambda, i \models \varphi_1 \text{ and } \lambda, i \models \varphi_2 \),

- \(\lambda, i \models X \varphi \overset{\text{def}}{\iff} \lambda, i + 1 \models \varphi \),

- \(\lambda, i \models \varphi_1 \mathcal{U} \varphi_2 \overset{\text{def}}{\iff} \text{there is } j \geq i \text{ such that } \lambda, j \models \varphi_2 \text{ and } \lambda, k \models \varphi_1 \text{ for all } i \leq k < j \).

\[
F \varphi \overset{\text{def}}{=} \top \mathcal{U} \varphi \quad G \varphi \overset{\text{def}}{=} \neg F \neg \varphi \quad \varphi \Rightarrow \psi \overset{\text{def}}{=} \neg \varphi \lor \psi \ldots
\]
About LTL

- **Models(φ):** set of models λ such that $\lambda, 0 \models \varphi$.

- Models can be viewed as ω-words over the alphabet $\mathcal{P}(\text{PROP})$.

- Models(φ) can be effectively represented by a Büchi automaton A_φ. (automata-based approach)

- LTL satisfiability problem is PSPACE-complete.
The logic ATL
(Alternating-time Temporal Logic)

- $\langle A \rangle \Phi$: the agents are divided into proponents in A and opponents in $Agt \setminus A$.

- Φ: property on computations (“objective”).

- $M, s \models \langle A \rangle \Phi$ equivalent to solving a game with winning condition Φ.

 \[
 \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle A \rangle X \varphi \mid \langle A \rangle G \varphi \mid \langle A \rangle \varphi U \varphi \\
 p \in \text{PROP} \quad A \subseteq \text{Agt}
 \]
ATL modalities, informally

- $\langle A \rangle \text{X}\varphi$: “The coalition A has a collective action ensuring that any outcome (state) satisfies φ”.

- $\langle A \rangle \text{G}\varphi$: “The coalition A has a collective strategy to maintain forever outcomes satisfying φ on every computation respecting that strategy”.

- $\langle A \rangle \text{U}\psi \varphi$: “The coalition A has a collective strategy to eventually reach an outcome satisfying φ, while maintaining in the meantime the truth of ψ, on every computation respecting that strategy”.
Satisfaction relation, formally

\[M, s \models p \iff p \in L(s) \]

\[M, s \models \langle A \rangle X \varphi \iff \text{there is a strategy } \sigma \text{ s.t. for all } s_0 \xrightarrow{f_0} s_1 \ldots \in \text{comp}(s, \sigma), \text{ we have } M, s_1 \models \varphi \]

\[M, s \models \langle A \rangle \varphi_1 U \varphi_2 \iff \text{there is a strategy } \sigma \text{ s.t. for all } \lambda = s_0 \xrightarrow{f_0} s_1 \ldots \in \text{comp}(s, \sigma), \text{ there is some } i \text{ s.t. } M, s_i \models \varphi_2 \text{ and for all } j \in [0, i-1], \text{ we have } M, s_j \models \varphi_1. \]

\[M, s \models \langle A \rangle G \varphi \iff \text{there is a strategy } \sigma \text{ s.t. for all } \lambda = s_0 \xrightarrow{f_0} s_1 \ldots \in \text{comp}(s, \sigma), \text{ for all } i, \text{ we have } M, s_i \models \varphi. \]
The semantics for “$\langle A \rangle G$” involves an existential quantification followed by two universal quantifications.

The coalition A has a joint strategy to eventually reach an outcome satisfying φ.

$\langle A \rangle F\varphi \overset{\text{def}}{=} \langle A \rangle (\top U \varphi)$.

$[\varphi]^M \overset{\text{def}}{=} \{ s \in S \mid M, s \models \varphi \}$.
Playing with formulae

▷ $M, s_0 \not\models \langle 1 \rangle X pos_1$ because if the agent 2 performs the action $push$, no transition leads to s_1 from s_0.

▷ $M, s_0 \not\models \langle 2 \rangle X pos_1$ because if the agent 1 performs the action $wait$, no transition leads to s_1 from s_0.

▷ $M, s_0 \models \langle 1, 2 \rangle X pos_0 \land \langle 1, 2 \rangle X pos_1 \land \langle 1, 2 \rangle X pos_2$ because each conjunct can be satisfied using a distinct (positional) strategy.

By way of example, for the satisfaction of $\langle 1, 2 \rangle X pos_0$, the strategy σ verifies $\sigma(s_0) = [1 \mapsto push, 2 \mapsto push]$.
Playing with formulae (II)

$\langle 1 \rangle F \langle 1 \rangle F pos_1$ because the positional strategy for the agent 2 that consists in performing push on s_0 and wait on s_2 never leads to the state s_1 from the state s_0.

$\langle 1 \rangle F (pos_1 \lor pos_2)$ because any strategy for the agent 1 would be fine. Indeed, s_1 already satisfies pos_1 by definition of the CGS M.

$\langle 1, 2 \rangle X \langle 1 \rangle (pos_0 \cup pos_2)$ because $\langle 1 \rangle (pos_0 \cup pos_2)$ (any strategy is fine as s_2 satisfies pos_2) and the coalition $\{1, 2\}$ has a strategy with $\sigma(s_0) = [1 \mapsto \text{wait}, 2 \mapsto \text{push}]$, leading to s_2 in one step.
Decision problems

- **Model-checking problem for ATL:**
 - Input: ϕ in ATL, a finite CGS \mathcal{M} and a state s,
 - Question: $\mathcal{M}, s \models \phi$?

- **Satisfiability problem for ATL:**
 - Input: ϕ in ATL,
 - Question: Is there a CGS \mathcal{M} and s in \mathcal{M} such that $\mathcal{M}, s \models \phi$?

- **Validity problem for ATL:**
 - Input: ϕ in ATL,
 - Question: Is it true that for all CGS \mathcal{M} and s in \mathcal{M}, we have $\mathcal{M}, s \models \phi$?
Computational complexity

- Model-checking problem for ATL is PTIME-complete. Labeling algorithm presented during the next lecture. (Positional strategies are sufficient)

- Satisfiability and validity problems are EXPTIME-complete.
Positional strategies are sufficient for ATL!

- \models_{pos}: variant of \models in which only positional strategies are legitimate.
 (alternative notation: \models_R for \models versus \models_r for \models_{pos})

- Positional strategies amount to remove transitions in the CGS (and keep only the transitions compatible with the positional strategy of A).

- Positional strategies are sufficient for ATL:
 $$\mathcal{M}, s \models \varphi \iff \mathcal{M}, s \models_{pos} \varphi$$
 (Great! Quantifications over finite sets)

- This property does not hold for the extension ATL*. (see next lecture)
“Proof”: positional strategies are sufficient for ATL
Formulae $\langle A \rangle_{Gp}$
Formula $\langle A \rangle (\varphi_1 U \varphi_2)$
Relationships between ATL and CTL

- Computation Tree Logic CTL: branching-time temporal logic well-known to perform model-checking.
- A CGS without transitions labelled by action tuples defines a model for CTL (or a CGS with only one agent).

- Existential path quantifier E in CTL corresponds to $\langle \text{Agt} \rangle$.
- Universal path quantifier A in CTL corresponds to $\langle \emptyset \rangle$.
CTL in a nutshell

▶ CTL formulae

\[\varphi ::= p \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \text{EX}\varphi \mid \text{E}(\varphi \cup \varphi) \mid \text{A}(\varphi \cup \varphi). \]

▶ CTL models of the form \(\mathcal{T} = (S, R, L) \).
Informal semantics for $A(\varphi U \psi)$

$$AF\varphi \overset{\text{def}}{=} A\top U \varphi \quad EG\varphi \overset{\text{def}}{=} \neg AF\neg \varphi$$
CTL semantics

- Path π in \mathcal{T}: sequence of states in the graph (S, R).
- A path is maximal if it is either infinite, or is finite and ends in a state with no successors.
- We assume that in CTL models no deadlock states.

\[\mathcal{T}, s \models \text{EX} \varphi \quad \text{iff} \quad \text{there is } s' \text{ such that } (s, s') \in R \text{ and } \mathcal{T}, s' \models \varphi \]

\[\mathcal{T}, s \models \text{E}(\varphi_1 \text{U} \varphi_2) \quad \text{iff} \quad \text{there is a path } \pi \text{ starting at } s \text{ and an } i \geq 0 \text{ such that } \pi(0) = s, \mathcal{T}, \pi(i) \models \varphi_2 \text{ and for every } j \in [0, i - 1], \text{we have } \mathcal{T}, \pi(j) \models \varphi_1 \]

\[\mathcal{T}, s \models \text{A}(\varphi_1 \text{U} \varphi_2) \quad \text{iff} \quad \text{for all paths } \pi \text{ such that } \pi(0) = s, \text{there is } i \geq 0 \text{ such that } \mathcal{T}, \pi(i) \models \varphi_2 \text{ and for every } j \in [0, i - 1], \text{we have } \mathcal{T}, \pi(j) \models \varphi_1 \]
Relating CTL and ATL

- CTL model-checking problem is PTIME-complete.
- CTL satisfiability problem is EXPTIME-complete.
- Reduction from CTL satisfiability (resp. model-checking) to ATL satisfiability (resp. model-checking).

(E corresponds to $\langle \text{Agt} \rangle$ and A corresponds to $\langle \emptyset \rangle$.)
Fixpoints and Operators
Introducing a predecessor operator pre

- **CGS $\mathcal{M} = (\text{Agt}, S, \text{Act}, \text{act}, \delta, L)$**, $A \subseteq \text{Agt}$, and $Z \subseteq S$.

- $\text{pre}(\mathcal{M}, A, Z)$: set of states from which A has a collective move that guarantees that the outcome to be in Z.

- **Definition of $\text{pre}(\mathcal{M}, A, \cdot)$**: $\mathcal{P}(S) \rightarrow \mathcal{P}(S)$

 \[
 \text{pre}(\mathcal{M}, A, Z) \overset{\text{def}}{=} \{ s \in S \mid \text{there is } g \in D_A(s) \text{ such that } \text{out}(s, g) \subseteq Z \}
 \]
Example

\[
\text{pre}(\mathcal{M}, \{1\}, \{D, U_1, P\}) = \quad ??
\]
Proof of $\llbracket \langle A \rangle X \varphi \rrbracket^m = \mathsf{pre}(M, A, \llbracket \varphi \rrbracket^m)$

- By definition, $\mathsf{pre}(M, A, \llbracket \varphi \rrbracket^m)$ is equal to
 $$\{ s \in S \mid \text{there is } g \in D_A(s) \text{ such that } \text{out}(s, g) \subseteq \llbracket \varphi \rrbracket^m \}$$

- Let $s \in \mathsf{pre}(M, A, \llbracket \varphi \rrbracket^m)$. There is $g \in D_A(s)$ such that $\text{out}(s, g) \subseteq \llbracket \varphi \rrbracket^m$.

- Let σ be a strategy such that $\sigma(s) = g$.

- The strategy σ witnesses satisfaction of $M, s \models \langle A \rangle X \varphi$.

- Conversely, if $M, s \models \langle A \rangle X \varphi$ witnessed by σ, then $s \in \mathsf{pre}(M, A, \llbracket \varphi \rrbracket^m)$ as $\text{out}(s, \sigma(s)) \subseteq \llbracket \varphi \rrbracket^m$
Equivalences based on fixpoint characterisations

- How to compute $[[A] \varphi U \psi]^m$ and $[[A] G \varphi]^m$?

- Validity of the equivalences:

 $\langle A \rangle G \varphi \iff \varphi \land \langle A \rangle X \langle A \rangle G \varphi$

 $\langle A \rangle (\varphi U \psi) \iff (\psi \lor (\varphi \land \langle A \rangle X \langle A \rangle (\varphi U \psi)))$

- $[[A] G \varphi]^m$ and $[[A] (\varphi U \psi)]^m$ are fixpoints.

 (but in which sense?)
Fixpoint theory (rudiments)

- \(\mathcal{G} : \mathcal{P}(X) \rightarrow \mathcal{P}(X) \) is monotone if for all \(Y_1, Y_2 \subseteq X \), \(Y_1 \subseteq Y_2 \) implies \(\mathcal{G}(Y_1) \subseteq \mathcal{G}(Y_2) \).

- Given \(\mathcal{G} : \mathcal{P}(X) \rightarrow \mathcal{P}(X) \), a set \(Y \subseteq X \) is
 - a fixpoint of \(\mathcal{G} \) if \(\mathcal{G}(Y) = Y \),
 - a least fixpoint if \(Y \) is a fixpoint and \(Y \subseteq Z \) for every fixpoint \(Z \),
 - a greatest fixpoint if \(Y \) is a fixpoint and \(Y \supseteq Z \) for every fixpoint \(Z \).
Knaster-Tarski Theorem: a restricted form

Let $\mathcal{G} : \mathcal{P}(X) \to \mathcal{P}(X)$ be a monotone operator. Then \mathcal{G} has

- a least fixpoint $\mu \mathcal{G}$ and,
- a greatest fixpoint $\nu \mathcal{G}$.

Moreover, $\mu \mathcal{G}$ obtained by applying the successive iterations of \mathcal{G} beginning with \emptyset until a fixpoint is reached.

$$\emptyset \subseteq \mathcal{G}(\emptyset) \subseteq \mathcal{G}^{2}(\emptyset) \subseteq \mathcal{G}^{3}(\emptyset) \cdots$$

$\nu \mathcal{G}$ obtained by applying the successive iterations of \mathcal{G}, beginning with X, until a fixpoint is reached.

$$X \supseteq \mathcal{G}(X) \supseteq \mathcal{G}^{2}(X) \supseteq \mathcal{G}^{3}(X) \cdots$$

If X is finite, the fixpoints $\mu \mathcal{G}$ and $\nu \mathcal{G}$ can be obtained in a number of steps bounded by $\text{card}(X)$.
$[[A]G\varphi]^m$ is a greatest fixpoint

- Given $A \subseteq \text{Agt}$, a formula φ, and a CGS \mathcal{M}, we define $G_{A,\varphi} : \mathcal{P}(S) \rightarrow \mathcal{P}(S)$:

 $$G_{A,\varphi}(Z) \overset{\text{def}}{=} [\varphi]^m \cap \text{pre}(\mathcal{M}, A, Z).$$

- $G_{A,\varphi}(S)$ contains all the states satisfying φ.

 $$(\text{pre}(\mathcal{M}, A, S) = S)$$

- $G_{A,\varphi}(G_{A,\varphi}(S))$ contains all the states satisfying φ and A has a strategy such that in one step all the states satisfy φ.

- $G_{A,\varphi}^n(S)$ contains all the states satisfying φ and A has a strategy such that in the steps $0, \ldots, n - 1$ all the states satisfy φ.

 $$(G_{A,\varphi}^n(S) \subseteq G_{A,\varphi}^{n-1}(S) \subseteq \cdots \subseteq G_{A,\varphi}^1(S))$$

- $[[A]G\varphi]^m = \nu Z.([\varphi]^m \cap \text{pre}(\mathcal{M}, A, Z))$ (greatest fixpoint)
About $G_{A,\Phi}$

- $G_{A,\Phi}$ is monotone as pre is monotone.

- Computing $\nu Z.([\Phi]^m \cap \text{pre}(M, A, Z))$.
 - $X_0 = S$.
 - $X_1 = [\Phi]^m \cap \text{pre}(M, A, X_0)$.
 - $X_2 = [\Phi]^m \cap \text{pre}(M, A, X_1)$.
 - \ldots
 - $X_{i+1} = [\Phi]^m \cap \text{pre}(M, A, X_i)$.
 - \ldots

- For all i, $X_{i+1} \subseteq X_i$.
 (proof left as an exercise)

- There is $N \leq \text{card}(S)$ such that $X_N = X_{N+1} = X_{N+2} = \cdots$.
\[[\langle A \rangle \varphi \cup \psi]^M\] is a least fixpoint

- Given \(A \subseteq Agt \), formulae \(\varphi, \psi \), and a CGS \(M \), we define \(O_{A,\varphi,\psi} : \mathcal{P}(S) \rightarrow \mathcal{P}(S) \):

\[
O_{A,\varphi,\psi}(Z) \overset{\text{def}}{=} \lbrack \psi \rbrack^M \cup \left(\lbrack \varphi \rbrack^M \cap \text{pre}(M, A, Z) \right)
\]

- \(O_{A,\varphi,\psi}(\emptyset) \) contains all the states satisfying \(\psi \).

\[
(\text{pre}(M, A, \emptyset) = \emptyset)
\]

- \(O_{A,\varphi,\psi}(O_{A,\varphi,\psi}(\emptyset)) \) contains all the states satisfying \(\psi \) or those satisfying \(\varphi \) and such that \(A \) has a strategy such that in one step all the states satisfy \(\psi \).
$\lbrack \langle A \rangle \varphi U \psi \rbrack^m$ is a least fixpoint (bis)

- $O^n_{A,\varphi,\psi}(\emptyset)$ contains all the states satisfying ψ or those satisfying φ and such that A has a strategy such that in at most n steps, a state satisfying ψ is reached and in between all the states satisfy φ.

- $O^1_{A,\varphi,\psi}(\emptyset) \subseteq O^2_{A,\varphi,\psi}(\emptyset) \subseteq \cdots \subseteq O^n_{A,\varphi,\psi}(\emptyset)$.

- $\lbrack \langle A \rangle \varphi U \psi \rbrack^m = \mu Z. (\lbrack \psi \rbrack^m \cup (\lbrack \varphi \rbrack^m \cap \text{pre}(\mathcal{M}, A, Z)))$.

- (least fixpoint)

- Valid formula

$$\langle A \rangle \varphi U \psi \iff \psi \lor (\varphi \land \langle A \rangle X \langle A \rangle \varphi U \psi)$$
About $\mathcal{O}_{A,\varphi,\psi}$

- $\mathcal{O}_{A,\varphi,\psi}$ is monotone as pre is monotone.

- Computing $\mu Z.([\varphi]^m \cup ([\varphi]^m \cap \text{pre}(M, A, Z)))$.
 - $X_0 = \emptyset$.
 - $X_1 = ([\psi]^m \cup ([\varphi]^m \cap \text{pre}(M, A, X_0))$.
 - $X_2 = ([\psi]^m \cup ([\varphi]^m \cap \text{pre}(M, A, X_1))$.
 - \ldots
 - $X_{i+1} = ([\psi]^m \cup ([\varphi]^m \cap \text{pre}(M, A, X_i))$.
 - \ldots

- For all i, $X_i \subseteq X_{i+1}$. (proof left as an exercise)

- There is $N \leq \text{card}(S)$ such that $X_N = X_{N+1} = X_{N+2} = \ldots$.
Conclusion

▶ Today lecture.
 - Concurrent game structures (CGS).
 - Introduction to ATL.
 - Fixpoints and operators.

▶ Next week lecture.
 - Correction of the exercises.
 - Model-checking problem for ATL in PTIME and other variants from ATL.
 - ATL with incomplete information
 - ATL^+: between ATL and ATL^*, PSPACE-hardness.