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2.1 TuaEe EFreEcTs OF BOUNDING THE NUMBER OF REVERSALS

Most reachability problems for Presburger counter machines are undecidable since
counter machines are Turing-complete devices. A way to overcome this negative
result is to restrict the class of runs for such machines so that decidability can
be regained. An obvious way to restrict the runs is to require that the length of
the runs is bounded by a bound 6. Other types of bound exist and in the class
of reversal-bounded counter machines introduced in this chapter, the runs are re-
stricted differently so that the number of reversals in a run is bounded by a bound
r. A reversal for a counter occurs in a run when there is an alternation from
nonincreasing mode to nondecreasing mode and vice-versa. A counter machine
is reversal-bounded whenever there is a bound r such that every run witnesses
a number of reversals bounded by r. Reversal-bounded counter machines have
been first studied in (Ibarra, 1978) and several extensions have been considered in
the literature, see e.g. (Finkel and Sangnier, 2008).

For instance, in the sequence below, there are three reversals identified by an
upper line:

00112233344443332223334444555554.

Similarly, the sequence 00111222223333334444 has no reversal. Figure 2.1 presents
schematically the behavior of a counter with 5 reversals. A counter machine is
reversal-bounded whenever there is 7 > 0 such that for all the runs from a given
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Figure 2.1: Five reversals in a row

initial configuration, every counter makes no more than r reversals. A formal def-
inition will follow, but before going any further, it is worth pointing out a few pe-
culiarities of this subclass. Firstly, reversal-boundedness is defined for initialized
counter machines (a counter machine augmented with an initial configuration)
and the bound r usually depends on the initial configuration. Secondly, this class
is not defined from the full class of counter machines by imposing syntactic re-
strictions but rather semantically (see Section 2.2.1). For example, in flat counter
machines, the syntactic restriction consists in requiring that the control graph of
the counter machine is flat, i.e., every control state belongs to at most one simple
cycle. Similarly, VASS are counter machines for which operations are restricted
to translations.

A major property of such systems is that reachability sets are computable
Presburger sets (Theorem 2.10). We present a proof of this result in the chapter
that is different from the proof in (Ibarra, 1978) and that relies on developments
from (Gurari and Ibarra, 1981). Apart from presenting this essential property,
the chapter investigates decidability/complexity issues summarized as follows.

1. The reversal-boundedness detection problem is undecidable for counter ma-
chines and is ExpSpacE-complete for vector addition systems with states.

2. The reachability problem for counter machines with a given bounded num-
ber of reversals is NExpTimE-complete. Note that decidability was already
a consequence of the fact that reachability sets of reversal-bounded counter
machines can be effectively represented by Presburger formulae.

3. The control state repeated reachability problem with bounded number of
reversals and the 3-Presburger infinitely often problem are shown decidable
(and NExpTIME-complete), see e.g. (Dang et al., 2001).

4. All above-mentioned decidability problems are obtained with counter ma-
chines in which a counter value can only be compared to a constant and
guards are closed under Boolean connectives. We also explain why the
reachability problem with bounded number of reversals becomes undecid-
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able if equalities and inequalities between counters are allowed in guards
(see Exercise 2.9 and Theorem 2.16).

5. We present an alternative notion of reversal-boundedness introduced in (Finkel
and Sangnier, 2008), called weak reversal-boundedness, that captures the one
from (Ibarra, 1978) and we show that all properties about semilinearity still

hold.

6. The universality problem for reversal-bounded one-counter machines equip-
ped with an alphabet is also shown undecidable, see Exercise 2.12.

So, in this chapter, we consider runs in which the number of reversals is
bounded and we show that the sets of reachable configurations with such restric-
tions are computable Presburger sets. Moreover, we are able to characterise the
complexity of the reachability problem when the number of reversals is bounded.
Several extensions are introduced in the chapter; equalities and inequalities in
guards lead to undecidability whereas weak reversal-boundedness preserves all
the nice properties about standard reversal-boundedness from (Ibarra, 1978). Last
but not least, infinite repetition of a semilinear property can be verified when
reversal-bounded runs are considered.

2.2 WHAT 1S REVERSAL-BOUNDEDNESS?

2.2.1 COUNTER MACHINES IN THIS CHAPTER

In the present chapter, we consider counter machines M = (Q, T, C) such that
e () is a finite set of control states,
e (' is a finite set of counters {X1,..., X4} for some d > 1,

e T'is a finite set of transitions from @) x ¥ x () where the operations in ¥
are defined as follows. Each operation in ¥ is defined as a pair (g, a) where
a € Z¢ is an update (as for VASS) and ¢ is a guard built over the following
grammar:
gu=T | L] x~k|gAg]|gVg| g

where x € C, ~€ {<,>,=}and k € \.

Note that we have omitted the (infinite) set of operations ¥ in the structure defin-
ing counter machines since it is implicit and does not lead to any confusion. Be-
low, we write C to denote this class of counter machines. Observe that C contains
Minsky machines and VASS, to cite a few classes. The developments in the present
chapter about reversal-boundedness are performed for this class of counter ma-
chines, unless otherwise stated. In some places (for instance in Section 2.3.4 and
in Exercise 2.11), we deal with an extended class of counter machines.
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2.2.2 FORMAL DEFINITION OF REVERSAL-BOUNDEDNESS

Let M = (@, T, C) be a counter machine in C. From a run

t
P = <CJ0,X0> = <Q1,X1>,---

of M, in order to describe the behavior of counters varying along p, we define a
sequence of mode vectors mdg, m0y, ... (of the same length as p) such that each
md; belongs to {INC, DEC}?. Intuitively, each value in a mode vector records
whether a counter is currently in an increasing phase or in an decreasing phase.
We are now ready to define the sequence mdg, m0y, . .. associated with p.

e By convention, mdy is the unique vector in {INC}.
e Forall j > 0 and forall i € [1,d], we have

1. md,41(7) = md,(i) when x;(i) = x;41(4),

def

2. m0,11(¢) = INC when x;41(¢) — x;(2) > 0,
3. ijH(i) = DEC when Xj_|_1(i) — Xj(i) < 0.
Now, let Rev; = {5 € [0, ]p| — 1] : md; (i) # mdj11(4)}.

Definition 2.1. Let M = (Q, T, C) be a counter machine with d > 1 counters,
i € [1,d] and r € N. We say that the run p in M is r-reversal-bounded with
respect to i & card(Rev;) < r. The run p is r-reversal-bounded & for every
i € [1,d], we have card(Rev;) < r. An initialized counter machine (M, (g, x)) is
r-reversal-bounded & every run from (g, x) is 7-reversal-bounded. An initialized
counter machine (M, (g, x)) is reversal-bounded & there is some r > 0 such
that every run from (¢, x) is r-reversal-bounded.

Figure 2.2 contains a counter machine M such that any initialized counter
machine of the form (M, (g1, x)) with x € N? is reversal-bounded.

Reversal-boundedness for counter machines is very appealing because reach-
ability sets are semilinear. Indeed, given an initialized counter machine (M, (g, x))
that is r-reversal-bounded for some > 0, for each state ¢/, {y € N¢: (¢, x) =
(¢’,y)} is a computable Presburger set, see Theorem 2.10. This means that one can
compute effectively a Presburger formula that characterizes precisely the reach-
able configurations whose state is ¢'.

A counter machine M is uniformly reversal-bounded iff there is » > 0 such
that for every initial configuration, the initialized counter machine is r-reversal-
bounded. The question of checking whether a counter machine M is uniformly
reversal-bounded can be reduced to reversal-boundedness. The proof for this
property is left as an exercise (see Exercise 2.1). One can check that the counter
machine in Figure 2.2 is not uniformly reversal-bounded. Indeed, any configura-
tion that reaches the control state ¢ leads to non-reversal-boundedness because
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Xo++

X1++
q3

Xo++ Xo=-= X1++

Figure 2.2: A counter machine that bounds the numbers of reversals

of the cycle between q1¢ and ¢;; that increments and decrements the first counter.
Similarly, any configuration with control state g5 and such that the second counter
is equal to zero leads to non-reversal-boundedness.

In the sequel, when we consider a uniformly reversal-bounded counter ma-
chine or a reversal-bounded initialized counter machine, it comes with an a priori
given maximal number of reversals 7 > 0. Remember that in full generality, we
show that the reversal-boundedness detection problem is undecidable (see Theo-
rem 2.17). Nevertheless, the situation is not that bad, since the problem restricted
to VASS is decidable and can be solved in ExpPSpPACE, see details in Section 2.4.
Hence, for VASS, in case of reversal-boundedness, the value r can be effectively
computed.

Alternatively, given an arbitrary counter machine and a bound » > 0, it is
possible to build a new counter machine such that each counter has at most r
reversals on each run, possibly at the cost of increasing exponentially the cardinal
of the set of control states (see the proof of Theorem 2.12). It is sufficient to take the
product between M and a finite-state automaton with number of control states
in O(r%) where d is the number of counters.

2.3 REeACHABILITY SETS ARE COMPUTABLE PRESBURGER SETS

In this section, we show that reachability sets in reversal-bounded (initialized)

counter machines are computable Presburger sets. Moreover, when uniform reversal-

boundedness is satisfied, one can show that the reachability relation is also com-
putable and semilinear. Effectiveness refers here to the possibility to construct
Presburger formulae defining exactly those sets or binary relations. The proof
below is conceptually simple and it does not involve other intermediate results,
apart from the fact that it uses a proof technique already used in Section 1.6.2.
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2.3.1 PRELIMINARIES

Let M = (Q,T,C) be a counter machine with d counters. Without any loss
of generality, we can assume that the guards in M are negation-free. Indeed,
—(x > k) is equivalent to x < k — 1 when k > 0 (otherwise if & = 0, then it
is equivalent to ). Similarly, =(x < k) is equivalent to x > k + 1. We write
AG to denote the set of atomic guards of the form x ~ k occurring in M and
K = {k1,...,kx} to denote the set of distinct constants k£ occurring in atomic
guards of the form x ~ k in AG, augmented by the value zero. We pose that
K = card(K). Below, we assume that 0 = k1 < k2 < - -+ < kg and we write Z
to denote the set of intervals below:

T = {[ky, kul, [y + 1,y — 1], [k, Kol [ + 1, ks — 1], ks, ks, .

[k[(, kK], [k[( +1, —|—OO)} N {@}

In the definition of the set Z, we possibly remove () since [k; + 1, k41 — 1] is
empty when k11 = k; + 1. So, T contains at most 2K intervals and at least
K + 1 intervals. Furthermore, we consider a natural linear ordering < on the
intervals in 7 so that

k1, k1] < [k1+ 1, ko — 1] < ko, ko] < [ka+ 1,ks — 1] < [ko, ko] < ... <

< [k’K,kK] < [k’K + 1,+OO)}.

The above relationships should be understood to hold only if the intervals are
non-empty. An interval map im is a map of the form im : C' — 7 understood as a
symbolic way to represent counter values. This abstracts a map C' — N by only
taking into account to which elements of 7 each counter value belongs to.

Given a guard g € AG and an interval map im, we write im g with the
following inductive definition:

def

1.imFgi Vg & imb gy orimtb go.

def

imkE g1 ANge & imF gy andim k- go.
imkFx=4k & im(x) = [k, k]
imkFx>k & im(x) C [k, +00).

def

imk-x <k & im(x) C |0, k]

AN

Note that there is no clause for negated guards because without any loss of gen-
erality, we have seen that negation can be discarded.

The relation - is simply a symbolic satisfaction relation between interval maps
and guards. Since interval maps and guards are built over the same set of con-
stants, completeness is obtained as stated in the property below:
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(P1) im F g can be checked in polynomial time in the sum of the respective
sizes of im and g (for some reasonably succinct encoding in which natural
numbers can be encoded in binary).

(P2) im F giffforallf : C' — Nand forall x € C, we have f(x) € im(x) implies
f E g (in Presburger arithmetic).

The proofs for the properties (P1) and (P2) are left as an exercise.
A guarded mode gm0 is a pair (im, md) where im is an interval map and mo €

{INC,DEC}?. A transition t = g 92 q’ is compatible with the guarded mode
def

gmd = (im,md) &
1. imbF g,
2. forevery i € [1,d],

e md(:7) = INC implies a(i) > 0,
e md(:7) = DEC implies a(i) < 0.

Let us generalize some definitions and concepts from Section 1.6.2. A path 7
is a finite sequence of transitions from 7' of the form
(gr.a1) (gnan)
1 q1,---54n n
so that for every ¢ € [1,n], we have ¢ = ¢;y1. Let 7 = t;---t, be a path
such that each transition ¢; has the update a; € Z%. The effect of 7 is the update
ef(w) = Zj a; € z-.

A simple loop sl is a non-empty path that starts and ends by the same state and
these are the only states that are repeated in sl. We say that sl loops on its first
state (equal to its last state). The number of simple loops is therefore bounded by
card(T)®4(@) We assume an arbitrary total linear ordering < on simple loops.

We write sc(M) to denote the maximal absolute value among the updates a
in M. The value sc(M) is called the scale of M. Assuming that the size of M
is N, we have sc(M) < 2V (all the integers in M are encoded with a binary
representation).

Lemma 2.2. The effect ¢f(sl) of a simple loop sl is in
[—card(Q)sc(M), card(Q)sc(M)]

This means also that the number of effects from simple loops in M is bounded
by (1 + 2 x card(Q)sc(M))%.

An extended path P is an expression of the form below:
71'()5171'1 Saﬂ'a

where the S;’s are (finite) and non-empty sets of simple loops, the 7;’s are non-
empty paths and



48 Chapter 2. Reversal-Bounded Counter Machines

1. if S occurs just before a path 7, then all the simple loops in .S loop on the
first state of ,

2. similarly, if S occurs just after a path 7, then all the simple loops in S loop
on the last state of .

An extended path generalizes the notion of path in which simple loops in the sets
S;’s can be visited a non-zero number of times but respecting the arbitrary linear
ordering on simple loops. A guarded mode induces a restriction of a counter
machine by considering only a subset of transitions from M, namely those that
are compatible with the guarded mode. We say that a path [resp. loop, simple
loop, extended path] is compatible with the guarded mode gmd = (im, md) &
all its transitions are compatible with gmd.
Given an extended path P, we introduce a few notions.

o The skeleton of P is the path 7 - - -

e Given a set of simple loops S = {sl1,...,sly} with sl; < --- < s, we
write e(S) to denote the regular expression

(sly)" - (sly) T

So, each simple loop is taken at least once. Indeed, we want to make explicit
that each simple loop sl is used in S, otherwise it is always possible to
exclude s/ from S, leading to another legitimate extended path. We write
e(P) to denote the regular expression defined as follows:

7o - e(S1) - e(Sq) - ma

We write L(e) to denote the language generated by the regular expression e. One
can observe that L(e(P)) is a bounded and regular language for any extended path
P. For the sake of simplicity, we write L(P) instead of L(e(P)). A finite run p =

{qo,X0) NN (q1,%;) respects the extended path P & 71 =1t;---t; € L(P).

2.3.2 RUNS IN NORMAL FORM

. t
Given a non-empty r-reversal-bounded run p = (qo, xo) hoo b {(qi,x1), we

aim at showing that the path as a finite word belongs to a bounded regular lan-
guage. To do so, we divide the run p into several subruns such that the number
of reversals on each subrun is zero (i.e., a reversal can only occur when passing
from one subrun to a next one) and moreover, all the counter values of each sub-
run satisfy exactly the same atomic guards. That is why we have introduced the
notion of guarded mode since it contains an interval map and a mode for each
counter in C.

A global reversal phase is a finite sequence of transitions such that each tran-
sition in it is compatible with some guarded mode (im, md), for some mode md €
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{INC, DEC}. So, in a run respecting a global reversal phase, the number of re-
versals is zero for all the counters.

Lemma 2.3. Anyr-reversal-bounded run p = (qo, Xo) - - - (q1, X;) can be divided as
a sequence of subruns p = py - pa - - - pr, such that each p; respects a global reversal
phaseand L < (d x r) + 1.

The proof is by an easy verification. A local guard phase is a finite sequence of
transitions such that each transition in it is compatible with some guarded mode
(im, md). Hence, in a run respecting a local guard phase, not only the number of
reversals is zero for all the counters but also the counter values satisfy the same
atomic guards.

Lemma 2.4. Any r-reversal-bounded run p = (qo,Xo) - - - (q1,%;) can be divided
as a sequence of subruns p = p1 - pa - - - prs such that each p; respects a local guard

phaseand L' < ((d x r) + 1) x 2Kd.

Proof. By Lemma 2.3, we have seen that p can be divided in at most (d x ) + 1
subruns respecting a global reversal phase.
It remains to show that each such subrun can be divided in at most 2K d sub-
runs respecting a local guard phase. Actually, this is due to the following property.
Let a € Z%. We define the binary relation <, on the set of interval maps so
that im <, im’ & for every i € [1, d], we have

o im(x;) <im'(x;)ifa(i) >0,
o im'(x;) <im(x;)ifa(i) <0,
im(x;) ifa(z) = 0.

° im’(xi)

We write im <, im’ when im <, im’ and im # im’. Property (P3) below states
that sequences of strictly increasing interval maps have polynomially bounded
length, even though the number of interval maps is in O(K ).

(P3) Leta € Z% and im; <, imy <, - - <, img. Then, 8 < 2Kd.

The proof of (Ps) is left as an exercise. Indeed, in a subrun respecting a global
reversal phase, each counter is compared against at most K constants and all the
counters have a monotonous behaviour (in increasing mode or in decreasing).
Hence, each counter during the global reversal phase can visit at most 2K distinct
intervals in Z, whence the bound 2K d for the maximal number of local guard
phases. [l

Below, a sequence of extended paths is understood as being of the form P - - - Py,
with the proviso that each P; is an extended path compatible with some guarded
mode and the expression P; - - - P/ can be also viewed as an extended path by it-
self (possibly by concatenating paths), i.e. it is compatible with the control graph
of M.
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Lemma 2.5. Any r-reversal-bounded run p = {(qo,%o) - - (q;,X;) respects a se-
quence of extended paths Py ---Pr, with L' < ((d x r) + 1) x 2Kd.

A small mg S1 w1 -+ Ta—1 S Ta, With a > 1, is an extended path such that

1. mp and 7, have at most 2 X card((Q)) transitions,
2. 71, ..., To—1 have at most card(Q) transitions,

3. for each state ¢ € @, there is at most one set .S containing simple loops on
q.

So, the length of the skeleton is bounded by card(Q)(3 + card(Q)). Note that the
set of small extended paths is finite, even though its cardinal can be exponential in
the size of M. We also consider degenerated small extended paths made of paths
of length at most 3 x card((Q). Usually, this case is omitted in the proofs since it
can be easily obtained from the non-degenerated case (i.e. when o > 1).

Proposition 2.6. Let p = (qo, X0) - - - (q1, X;) be a run respecting an extended path
P compatible with some guarded mode gmd. Then, there is small extended path P’
compatible with gmd and a run p' = (qo,x0) - - - (q1, X;) (possibly different from p)
such that p’ respects P’.

Proof. Let p = {(qo,X0) b b {(qi,x;) be a run of M respecting an extended
path P compatible with some guarded mode gmd. So, m = t1---t; € L(P). We
shall build a small extended path P’ such that P’ is compatible with gmd and there
is a run p’ respecting P’ that starts and ends by the same configurations as p.

To do so, we define a sequence of extended paths Py, Pq, ..., Pg such that

o all the P;’s are extended paths compatible with gmd and there is a run p;
respecting P; that starts and ends by the same configurations,

e Pjisequaltot;---t; viewed as an extended path,
e Pgjis a small extended path,

e P, isobtained from P; by removing a simple loop on g and possibly adding
it to a set of simple loops S already in P; or by creating one if none exists.

So, at the end of this process, Pg is a small extended path and there is a run pg
respecting Pg that starts by (go, Xo) and ends by (g, x;).
It remains to explain how to build P;;; from P;. We assume that P; has the
form below
7T()517T1 Saﬂ'a

where

(@) a < card(Q),
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(b) each path in my, ..., mo—1 has length less than card(Q),

(c) each state has at most one S; containing simple loops on it.

Obviously, Py verifies these conditions since it is degenerated. P;; will satisty
the same condition except that we require that the length of the final path of P; 1
strictly decreases. Now, let us define P, ; from P;.

Case 1: P; is a small extended path. We are done and P; is the final extended path
of the sequence.

Case 2: o = 7 - sl - m’ where sl is a simple loop on ¢, 77" # ¢ and S, already
contains simple loops on ¢ (Y < «). Then, P;4; is equal to the extended
path below:

T - Sfy_l Ty—1 (Sfy U {Sl}) <o Ta—1 Sa (7T7T/)

Case 3: o = 7 - sl - ™ where sl is a simple loop on ¢ and the first one occurring
in7-sl, 7w’ # €, and no S, already contains simple loops on g. Then, P;;4
is equal to the extended path below:

o -+ S m{sl}
In that case, we create a new set of simple loop(s).

It remains to show that there is a run p;;; respecting P;,; that starts by
{(qo,x0) and ends by (q;, x;). Satisfaction of the conditions (a)-(c) are by an easy
verification. In order to show the former property, we need to use the fact that
all the transitions in P; ; are compatible with gmd (by construction), the counter
values have a monotonous behaviour (increase or decrease) and the atomic guards
are convex.

We deal with the Case 2 below, Case 3 admits a similar analysis and it is left
as an exercise. Let p; be a run respecting P;, starting by the configuration (qg, %¢)
and ending by the configuration (q;, x;). The extended path P; is of the form

o Sy o+ Sa (w8l
and the extended path P, is of the form
T o Sy—1 Ty—1 (Sy U{sl}) -+ ma—1 S (77')

Suppose that S, = S% t S?V and for all sl’ € S% [resp. sl € S,QY] we have sl’ < sl
[resp. sl < sl']. Since P; is compatible with the guarded mode gmd = (im, md),
for every j € [1,d], we have:

e md(j) = INC implies that for all counter values x € N? occurring in the
run p;, we get that xo(j) < x(j) < x;(j),
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e md(j) = DEC implies that for all counter values x € N¢ occurring in the
run p;, we get that x;(j) < x(j7) < x¢(j).

Moreover, assuming that y € N is the penultimate vector of counter values in p,
we know for all counter values x € N occurring in the run p until that occurrence
of y, for every atomic guard X; ~ k in AG, we have im - x; ~ k iff x(j) ~ k iff
x0(j) ~ k iff y(j) ~ k (partly thanks to Property (P2)).

In order to build a run p;;; similar to p; that respects P; 1, that starts by
(qo, X0) and that ends by (g, x;), we need to decompose the run p; in the following
way in order to explain how to build p; 1.

The run p; can be divided as follows. Each subrun p] respects a factor of P;
(we are a bit liberal here with the notion of respect):

mo -+ Sy—1 Ty—1 S,ly S% Ty Ta—1 Sa T sl -
Ve /; ~\ 7 /; N /*\ /'/*\
pP= P1 : P2 " P37 P4

For each subrun pj, we write (qé,x@ [resp. (q},xz;)] to denote its first [resp.

last] configuration. For example, by definition we have x}v = x3. In order to

build pf, we introduce two sequences of configurations p%* and p;ef('sz) that will

happen to be runs. p3* is the sequence of configurations obtained from the initial
configuration (g3, x2) by firing the transitions of the simple loop sl. Similarly,
p;ef(sn is the sequence of configurations obtained from the last configuration of
p3”* by firing the sequence of transitions used for p3. Observe that p5 and p;ef(Sl)
have the same length and for any configuration (g, x) in p3, say at position h, the
configuration at position h in p;ef(Sl) is exactly (g, x + ef(sl)).

Let us consider the sequences of configurations p; 1 as defined below:

!

S,QY Ty Mo—1 Sa T
A ™

mo o Sy—1 M1 S g

—_——~ 7 S AN
+ef(sl
Pit1 = P Py P2 ey © Pl

Note that the sequence of configurations respects the updates on the transitions.
In order to check that p; 1 is arun, it remains to show that transitions in p3* and in

p;ef(‘sz) can be fired by respecting the guards. Suppose that md(j) = INC for some
j € [1,d] (the case md(j) = DEC admits a similar development). Every vector of
counter values y from a configuration in p3* satisfies the following inequalities:

x0(j) = x5(j) < x3(j) = x2(j) < y(j) < x4(j) < x}(j) = %))

By convexity of the atomic guards x; ~ kin AG, y(j) ~ kiff y'(j) ~ k where y’
is the corresponding vector of counter values in the run pj (at the same position).
So, p3* is indeed a run of M respecting sl. Similary, one can show that ,0; ) s

a run respecting S?YWV -+ Ta—1 Sa ™, which concludes the proof. [
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A small sequence of extended paths is a sequence of extended paths Py - - - Py,
such that L' < ((d x r) + 1) x 2Kd and not only each extended path of the
sequence compatible with a unique guarded mode but also the extended path is
itself small.

Theorem 2.7. For any r-reversal-bounded run p = (qo,%o) - - - {(q, X;), there is
an r-reversal-bounded run p' between the same configurations that respects a small
sequence of extended paths.

Let P be a small extended path compatible with the guarded mode gmd =
(im, md), say P is of the form below:

1 1 a
mo {sly,...,sl{ oo {sl,,...,sl0} ma
where ¢ is the first control state in 7y and gy is the last control state in 7,.

Lemma 2.8. There is a Presburger formula p(x1,...,X4, Y1, - - -,Yd) of exponential
sizein | M| such that[¢] = {(xo,y) : there is a run (o, Xo) — (qy,y) respecting P}.

Proof. Let m, = 7., - t, so that ¢ is the last transition of 7,. The formula ¢ states
the following properties:

1. the initial counter values belong to the right intervals induced by im,

2. the counter values for the penultimate configuration <q}, y’) belong to the
right intervals induced by im,

3. the values for y are obtained from X by considering the effects of the paths
m; plus a finite amount of times the effects of each simple loop occurring in
P.

Note that (1) and (2) are sufficient to guarantee that every other configuration x in
the run (go, Xo) = {(gy,y), possibly except y, belong to the right intervals induced
by im. Indeed, if md(i) = INC, then x¢(i) < x(i) < y/(i) and by convexity of
the guards in AG, we get that x(7) satisfies the same atomic guards. A similar
analysis can be made when md(i) = DEC.

So, the formula ¢ is of the form below:

1 ni 1 n
dzy, ..z, 2N

@ DA AT DA AL S A A > 1A

(A xe~E)AC N (ke ~E)A

imExc.~k not imkX.~k
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( \ (x5 €im(x)) A (y; € im(x;)))

J€[L,d]

( /\ (xc+ef(mo)(c)+- - -+ ef(ma—1)(c) +ef(m, —I—Zz ef slj ~ kA

imk-xe~k

(A ~letei(mo)(e)+ - +ef(mat)(c)+ef(r +ZZ ef(st]) (c) ~ k))

not imkx.~k

It remains to define what we mean by ‘z; € im(x;): z; € [I,!'] stands for [ <
z; Nz; <1 whereas z; € [kg + 1, +00) stands for ki + 1 < z;. O

The formula ¢ in Lemma 2.8 has size polynomial in | M| and in the size of P.
The size of P is itself exponential in | M|. This is the best we can hope for since
the number of simple loops can be obviously exponential in the size of the control

graph of M.

Lemma 2.9. Let Py --- P/ be a sequence of small extended paths. There is a Pres-
burger formula (X, y) such that

[¢] = {(x,y) : thereisa run (gy,x) = (qf,y) respecting Py - - - P/}

Proof. The proof is by an easy verification by using the formulae from Lemma 2.8
(L' times) and to take advantage of existential first-order quantifications for (L' —
1) intermediary configurations. Indeed, for each small extended path P;, let ¢; (X, y)
be the formula constructed in the proof of Lemma 2.8. The formula ¢ is then de-
fined as follows:

d70,...,71 (X =20) A (Y = z1/)A\
01(20,21) Np2(z1,22) N+ pr—1(zp—2,zp7—1) N (zp—1,zry). O

The formula ¢ in Lemma 2.9 is of exponential size in log(r) + |M]|. Since
the number of small sequences of extended paths is finite and actually double
exponential in log(r) , we get the following theorem.

Theorem 2.10. Let (M, (q, X)) be an initialized counter machine that is r-reversal-

bounded for somer > 0. For each state ¢’ € Q, the set {y € N*: (¢,x) = (¢/,y)}
is a computable Presburger set.

Theorem 2.10 is clearly a consequence of Theorem 2.7 and of its corollaries.

Proof. Let us consider the formula ¢ (y) below:

3% \ x(i) =x) A \V o (%,Y)

i€[1,d] small seq. o=P1---P,
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where (X, y) is the Presburger formula for the small sequence of extended paths
o = Py ---Pys obtained from Lemma 2.9. Moreover, in the disjunction, we as-
sume that Py - - - Py, starts by the state ¢ and ends by the state ¢’. Moreover, if
¢’ = ¢, we add the disjunct (A\;c;; 5 x(i) = yi)-

Finally, note that the generalized disjunction is finite since the number of small
sequences of extended paths is finite and bounded by 2P(09("):IMD) for some poly-
nomial p(-, -). Indeed, a small sequence has length at most ((d x r) + 1) x 2Kd
and the number of small extended paths is exponential in the size of M. [

Theorem 2.11. Let M be a counter machine that is uniformly r-reversal-bounded
for some r > 0. For all states q, ¢, one can compute a Presburger formula ¢(X,y)

such that [p] = {(x,y) € N*: (¢,x) 5 (¢, y)}.

Indeed, it is sufficient to consider the formula \/ ., seq. 0=P1-P,, 05 (X, Y)
from the proof of Theorem 2.10.

2.3.3 REACHABILITY PROBLEM WITH BOUNDED NUMBER OF REVERSALS

Let us consider the following problem.
REACHABILITY PROBLEM WITH BOUNDED NUMBER OF REVERSALS:

Input: a counter machine M, a bound r € N, an initial configuration (go, x¢) and
a final configuration (qf, xy),

Question: Is there a finite run of M with initial configuration (qo, Xo) and final
configuration (gs, xs) such that each counter has at most r reversals?

Observe that when (M, (qo, Xo)) is r’-reversal-bounded for some r’ < r, we
get an instance of the reachability problem with initial configuration (gg, Xo).

Note that Theorem 2.12 below is also a consequence of Theorem 2.7. Never-
thelesss, the alternative proof we propose below is interesting for its own sake: it
shows how to transform a counter machine into a r-reversal-bounded counter ma-
chine whose runs are exactly the r-reversal-bounded runs of the original counter
machine.

Theorem 2.12. The reachability problem with bounded number of reversals is de-
cidable.

Proof. Here is the decidability proof that uses Theorem 2.10. Let M = (Q, T, C),
r € N, (qo,%0) and (gs,xy) be an instance of the reachability problem with
bounded number of reversals. First, we build a counter machine M’ = (@', T", C)
with Q' = Q x {DEC,INC}? x [0, r]%.

By construction of M’, we guarantee that (M, ((qo,INC, 0), xq)) is r-reversal-
bounded. Indeed, for each counter, we count the number of reversals and by
construction of M’ we enforce that it is bounded by 7 on each run. The set of

def

transitions 7" is defined as follows: (g, md, falt) 92 (¢, md falt’) € TV &
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q 92} ¢ € T and for every i € [1,d], the relation described by the following
table is verified. The values of two first columns induce values for the two last
columns (when it is possible, see e.g. the condition falt(i) < r).

| a | md(i) | m0/(4) | falt’ () |
a(i) <0| DEC | DEC falt(i)
a(i) <0 | INC | DEC |falt(i)+ 1and falt(i) <r
a(i)>0| INC | INC falt(i)
a(i) >0 | DEC INC | falt(i) + 1 and falt(i) < r
a(i)=0| DEC | DEC falt(i)
a(i)=0] INC | INC falt(i)

By construction, M’ is uniformly r-reversal-bounded and the properties below
are equivalent:

1. there is a run of M with initial configuration (qo, Xo) and final configura-
tion (qf, x¢) such that each counter has at most r reversals,

2. ((gs, md, falt), xy) is reachable from ((go,INC, 0),X%¢) in M’ for some md,
falt.

The number of distinct pairs (md, falt) is bounded by 2¢ x (r + 1) and therefore
(1.) is equivalent to the existence of (md, falt) among a finite set such that

3. ((gs, md,falt), x;) is reachable from ((go, INC, 0), x¢) in M.

By Theorem 2.10, the set
X (mo tat) = {x' € N¢: ((go,INC, 0), x) = ((qf, md, falt), x')}

is a computable Presburger set. This means that one can construct a Presburger
formula ¢y gary such that [¢ma gary] = Ximo garyy and checking whether x €
X (mo ity amounts to verify the satisfiability of the formula

(/\ xi = X(1)) A @ (ma gate)

Since the satisfiability problem for Presburger arithmetic is decidable (see Chap-
ter 1), we get an algorithm to solve the reachability problem with a bounded num-
ber of reversals. Indeed, it amounts to checking satisfiability of some Presburger
formula made a disjunction with at most 2¢(r + 1) disjuncts. 0

Theorem 2.12 is interesting but does not help much to understand the com-
putational complexity of the reachability problem with bounded number of re-
versals. However, the complexity can be nailed down thanks to the following
developments. First, let us make use of Lemma 2.9.
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Lemma 2.13. If there is a run from (qo, Xo) to (qf,Xs) such that each counter has
at most r reversals, then there is an r-reversal-bounded run between these configu-
rations respecting a small sequence of extended paths such that each simple loop is
visited at most a doubly-exponential number of times in log(r) + |xo| + x| + | M.

We recall that the size of x € N¢ is defined so that [x| € O(d x log(m))
where m is the maximal value among the components of x. Similarly, the size of
a counter machine M uses a reasonably succinct encoding with integers encoded
in binary.

Proof. Let p be an r-reversal-bounded run from (go,Xo) to (q¢,xy). By Theo-
rem 2.7, there is an r-reversal-bounded run p’ between the same configurations
that respects a small sequence of extended paths Py - - - Py,.

Let (X, y) be the Presburger formula for that sequence. The formula ¢(x, y)
is equivalent to an existential formula (in prenex normal form, only the existential
quantifier occurs) and it is of size exponential in log(r) + |M|. Note that most
of the existentially quantified variables are related to the number of times simple
loops are visited. So, the formula

(N (x5 =x%00) Ay; =x(4) A (X, )
Jj€(l,d]

is satisfiable, which is equivalent to the satisfiability of a quantifier-free formula
¢’ by removing the quantifications.

By Theorem 1.9, that formula ¢’ is satisfiable with values at most exponen-
tial in the size of ¢'. Consequently, each simple loop is visited at most a double
exponential amount of times. []

Since in a small sequence of extended paths, there are at most ((d x ) + 1) x
2K d extended paths, and each extended path has at most card(7")®4(®) simple
loops and at most card(Q)(3 + card(Q)) transitions, that do not occur in simple
loops, if there is an r-reversal-bounded run from (qo, Xo) to (gs,xy), then there
is such a run of length at most double exponential in log(r) + |M| + |[xo| + |x¢|.
This means that a nondeterministic exponential space algorithm can guess such
a run and therefore the reachability problem with bounded number of reversals
is in ExpSPACE by Savitch’s Theorem. This can be improved: the runs are much
more structured which will allow us to show NExpTiME-completeness.

Theorem 2.14. The reachability problem with bounded number of reversals is in
NExPTIME assuming that all natural numbers are encoded in binary.

Proof. Let M, , (qo, X0) and (g, X ) be an instance of size N for the reachability
problem with bounded number of reversals. We have N € O(|M| + log(r) +
|xo| + |x¢|). We have seen that there is an r-reversal-bounded run from (g, xo)
to (qr,xy) iff there is an r-reversal-bounded run p between these configurations
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that respects a small sequence of extended paths, that is of length at most double
exponential in NV and each simple loop on that sequence is taken at most a double
exponential number of times.

Such a sequence has at most ((d x ) + 1) x 2K d small extended paths. Each
extended path is compatible with a guarded mode and it has at most card(7")*4(Q)
simple loops and at most 1 + card(Q) paths of length at most 3 X card(Q). Note
that these are rough bounds that also take into account the degenerated small
extended paths.

The NExpPTIME algorithm below guesses on-the-fly the small sequence of ex-
tended paths and computes the effect of taking a path of length at most 3 x card(Q)
or a simple loop compatible with a guarded mode a double exponential number
of times. Computing the effect of taking such an amount of times a simple loop
can be computed in exponential-time because the natural numbers are encoded in
binary. We do not compute the full run but only the intermediate configurations
after firing a path or a simple loop.

The number of paths of length at most 3 x card(() or the number of simple
loops visited along the small sequence of extended paths is bounded by:

G=((dxr)+1)x 2Kd x (card(T)*®@) + card(Q) + 1)
Here is the algorithm:

L <QCur7Xcur> = <q0,X0>; Guess o < G; ﬁ — 1;
2. While 5 < ado

(@) Guess either a path 7 of length at most 3 x card(Q)) or, a simple loop
sl and a guarded mode gmd = (im, md) and y of double exponential
value in /V such that s/ is compatible with gmd;

(b) If a simple loop is guessed in (a), then check that Xy, and Xcyr + (7 —
1)ef(sl) + s\ are in the right intervals: for every i € [1, d], Xeu(7)
and (Xcur + (7 — 1)ef(s1) +ef(s1\2)) (7) belong to im(x;) where s\t
equals s/ minus its last transition.

(c) Ifapath 7 is guessedin (a), then check that the sequence of transitions

in 7 can be fired from (Geur, Xcur) and set (qeur, Xcur) := {Geur, Xcur) +
ef (7). The effect of a path is the sum of the updates of its transitions;
d) f:=05+1L

3. Return ({Geur, Xcur) = (CIfaXf))-

Checking that the algorithm runs in nondeterministic exponential-time is then by
an easy verification. What is missing above, is a means to check that the number
of reversals is indeed bounded by r and this can be done similarly to what is
presented in the proof of Theorem 2.12. So strictly speaking, the above algorithm
should be completed and additional variables should be introduced to count the
number of reversals per counter. [
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Lemma 2.15. The reachability problem with bounded number of reversals is NEx-
PTIME-complete.

Proof. It remains to establish the NExpTimE lower bound. NExpTimE-hardness is
shown by simulating a nondeterministic Turing machine running in exponential
time. This is actually easy by using the simulation of Turing machines with Min-
sky machines equipped with three counters. Each step in the Turing machine is
simulated by an exponential amount of steps in the counter machines. ]

2.3.4 A SIMPLE UNDECIDABLE EXTENSION

In this section, we consider the class of counter machines CT that extends the
class C so that the atomic guards of the form x ~ k£ (x € C and k € N) are
extended to atomic guards ot the form ) . a;x; ~ k where the a;’s and k are in
Z. For example, in counter machines in C, equalities x; = x; and inequalities
X; 7 X; can occur as guards.

Theorem 2.16. The reachability problem with bounded number of reversals for the
class C" is undecidable.

Proof. (sketch) Undecidability can be shown even if r is restricted to zero (no
reversal) and the only guards in transitions are equalities or inequalities.

To prove this result, we present a reduction from the halting problem for Min-
sky machines. Indeed, assuming that guards of the form x; = x;; and x; # x;/ are
allowed, each counter x; from the Minsky machine provides two increasing coun-
ters X%”C and X?ec, that counts the number of increments on X; and the number
of decrements, respectively. Zero-test for counter X; is then simulated by a test
xine = xdecSimilarly, before incrementing x°° (simulating a decrement in M),

Z .
we test whether xi"¢ = x%¢¢, See Exercise 2.9. O]

2.4 THE REVERSAL-BOUNDEDNESS DETECTION PROBLEM

Since reversal-boundedness is not defined from counter machines by a syntactic
criterion, the following problem makes sense and indeed it happens to be unde-
cidable.

REVERSAL-BOUNDEDNESS DETECTION PROBLEM
Input: Initialized counter machine (M, (g, x)) of dimension d and ¢ € [1,d].
Question: Is (M, (q, x)) reversal-bounded with respect to the counter x;?

Theorem 2.17. Reversal-boundedness detection problem is undecidable.
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Proof. Let M be a Minsky machine M = (Q, T, C') with counters C' = {x1, X2},
initial state ¢y € @ and halting state g € @ such that gy # qg. No transition
starts at g since it is the halting state. Moreover, the transitions in 7" have one
of the forms below:

o 1 % o withi € [1,2],

;=0 i—- . . . . .
e g1 °= gy and ¢ =5 g3 withi € [1,2], that is, either counter x; is
decremented or a zero-test is performed on it.

Note that the Minsky machine M is deterministic and therefore either the Minsky
machine has a unique infinite run (and never visits the halting state) or it has a
unique finite run (and halts at qg).

Let us define M’ = (Q,T',C U {x3}) and (g, x{):

e T’ contains all the transitions of 7', but with no update on the new counter
X3.

e 7' contains two additionnal transitions that break reversal-boundedness of
the counter x3, namely ¢y AR qm and qp P qr- The control state g
is not anymore halting.

e g = qo and x}, is equal to xq on the 2 first counters and x}(3) = 0.

The only reason for (M’, (q(,, x{)) not being reversal-bounded with respect to
the counter X3 is to reach the control state qp. It is easy to show that the Minsky
machine M halts iff M’ is reversal-bounded with respect to the counter x3 from
the initial configuration (g, 0). O

By contrast, the reversal-boundedness detection problem for VASS is decid-
able.

Theorem 2.18. The reversal-boundedness detection problem restricted to vector ad-
dition systems with states is EXPSPACE-complete.

Proof. ExpSPACE-hardness is obtained by reducing the control state reachability
problem for VASS. Let M = (Q, T, C') be a VASS with d counters, (go, Xo) be a
configuration and ¢ be a control state. We builda VASS M’ = (Q',T",C' U {X441})

with one more counter X4, and a configuration (g}, x}) such that (go, xo) —
(qf,xs) for some x; € N7 iff (M’, (g}, x{,)) is not reversal-bounded with re-
spect to the new counter X41. Since the control state reachability problem for
VASS is ExpSpAcE-hard and coExpSPACE= ExPSPACE, we get that the reversal-
boundedness detection problem restricted to VASS is ExpSpacEe-hard. Let us de-
fine M’ = (Q,T",C U {x441}) and (g, x{):

e T’ contains all the transitions of 7', but with no update on the new counter
Xd+1-
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e 7" contains two additionnal trans{:[ions that break reversal-boundedness of
X X -V
the counter X441, namely gy AR gr and gy d+1 0.

e qh = qo and x}, is equal to xg on the d first counters and x},(d + 1) = 0.

The only reason for (M, (q(,, x;,)) not being reversal-bounded with respect to the
counter X441 is to reach the control state ¢;.

In order to show that the reversal-boundedness detection problem is in Ex-
PSPACE, it is sufficient to provide a logarithmic-space reduction to the place-
boundedness problem for VASS that is known to be in ExpSpACE. Indeed, given a
VASS M = (Q, T, C) and an initial configuration (g, X(), one can build a VASS
M =(Q,T',C U{xg4s1}) with Q" = Q x {DEC,INC} such that (M, (qo, x0))
is reversal-bounded with respect to the counter x; iff (M’, (¢, x()) is bounded
with respect to the counter X471 where ¢}, = (qo, INC), x{, restricted to the d first
counters is x¢ and x,(d + 1) = 0. In M’, the number of reversals for the counter
X; is recorded in the value of the counter x4 1. ]

2.5 DECIDABLE REPEATED REACHABILITY PROBLEMS

In this section, we show how to reduce the control state repeated reachability
problem to the reachability problem when reversal-bounded counter machines
are involved. Let us consider the following problem.

CONTROL STATE REPEATED REACHABILITY PROBLEM WITH BOUNDED NUMBER OF
REVERSALS:

Input: a counter machine M, abound r € N, an initial configuration (g, x¢) and
an accepting control state gy,

Question: Is there an infinite run of M with initial configuration (gg, xo) such that
each counter has at most r reversals and ¢ is repeated infinitely often?

Before solving the above problem, let us introduce a simple variant for which
we already have decidability.
CONTROL STATE REACHABILITY PROBLEM WITH BOUNDED NUMBER OF REVERSALS:

Input: a counter machine M, a bound r € N, an initial configuration (g, x¢) and
an accepting control state gy,

Question: Is there a finite run of M with initial configuration (go, xo) such that
each counter has at most r reversals and the final control state is g?

As a consequence of Theorem 2.10, we get the following result.

Lemma 2.19. Control state reachability problem with bounded number of reversals

is decidable.
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Indeed, reachability sets are computable Presburger sets. Let us take advan-
tage of this to establish Lemma 2.20.

Lemma 2.20. Control state repeated reachability problem with bounded number of
reversals is decidable.

Proof. Let (M, (qo,Xp)) be an initialized counter machine, » > 0, with M =
(Q,T,C)and qf € Q.

We propose an algorithm to answer the following question: is there an infi-
nite r-reversal-bounded run starting at (go, Xo) such that the control state ¢ is re-
peated infinitely often? We reduce it to an instance of the control state reachabil-
ity problem with bounded number of reversals, which is decidable by Lemma 2.19.
Let kpqz € N denote the maximal constant k occurring in an atomic guard of the
form x ~ k in M.

Let (%) be the desired property:

(%) There is an r-reversal-bounded infinite run from (qo, xo) such that gy is re-
peated infinitely often.

Let (%) be the property below:

. : t
(*x) There exist an r-reversal-bounded finite run p = (qo, xo) N (qr,%x1) -+ >

{(qi,x;), 1" €]0,1 — 1] and C= C C such that

@ a =aq =gy,

(b) forallx; € C—and j € [I' +1,1], x,_1(7) = x,(i),

(c) forallx; € (C~C=)andj e [lI'+1,1], x;-1(i) < x;(0),
(d) for all x; € (C' ~\ C2), we have kjqr < xp/(7),

(e) forall x; € C_, have x;/ (i) < kinaz-

Below, we show that (x) and (x%) are equivalent, which allows us to reduce
control state repeated reachability to control state reachability. Indeed, checking
(*xx) amounts to introduce card(P([1, d])) copies of M (one for each subset of C).

First, let us show that (x) and (xx) are equivalent. Suppose (x). There exists an

infinite r-reversal-bounded run p = (g, xo) N (q1,x1) N (g2,x2) + - - such that
qr is repeated infinitely often. Let C’2 be the subset of C' that contains exactly the
counters whose values are less or equal to k44, apart from a finite prefix. Since p
is r-reversal-bounded, there exists I > 0 such that for some n > I, no counters in
C \ C? is decremented and their values are strictly greater than k,,,,, and all the
counters in C2 have a constant value less or equal to ky,q;. Since g is repeated
infinitely often, there are I <!’ < [ such that ¢; = gy = ¢y and (b)-(e) hold.
Now suppose that there exist an r-reversal-bounded finite run

t t
p = {qo,%0) = {q1,%x1) -+ = {q1,%1),
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! € 0,1 — 1] and C= C C witnessing the satisfaction of (). It is then easy to
show that the w-sequence of transitions ¢1 - - - ¢y (ty 41 - - - ;) allows us to define
an infinite r-reversal-bounded run p’ that extends p. It is clear that in p’ the
control state g is repeated infinitely often. Guards on transitions are satisfied by
the counter values because of conditions (c),(d) and (e) and values for counters in
(C' . C2) are non-negative thanks to (c) and (d).

We construct a reversal-bounded counter machine M’ = (Q', T, C) such
that () iff there is a finite r-reversal-bounded run from (g, xo) that reaches the
control state ¢,¢.. It remains to define the counter machine M. It is made of the
original version of M (called below the original copy) augmented with 2% copies
of M; each copy corresponds to a possible set C— C C' in (x*). By the C—-copy,
we mean the restriction of M such that:

e no transition in the C'—=-copy modifies a counter from C—_,
e no transition in the C—-copy decrements a counter in (C' . C-).

For each C— C (), by definition, the control states of the C'--copy are pairs
in @ x {C-}. The second component simply indicates to which copy belongs the
control state.

In order to simulate the subrun (g, x;/) - - - {q;, x;) for the satisfaction of (xx)
in M, we nondeterministically move from the original copy to some C--copy
in M’ (and therefore we choose which counters remain constant below k.
forever). To do so, for every set C— C C, we consider in M’ a transition from qr
to (¢f, C—) whose task is to check that

1. all counters in C— have values less or equal to k44,

2. all counters in (C' ~ C-) have values strictly greater than k., (and the
transition has no effect). Of course, the guard of such a transition is the
following one:

(A %2 e+ D) AN X < ko)

xe(C\C=) xeC=
Such a transition has also no effect on the number of reversals.

As soon as in the C—-copy, we reach again a control state whose first com-
ponent is ¢, we may jump to the final control state g,c.,. Note that in M it is
sufficient to look for a r-reversal-bounded run. [

Theorem 2.21. The control state repeated reachability problem with bounded num-
ber of reversals is NExpTIME-complete.

Proof. NExpTIME-hardness follows from the NExpTimE-hardness of the reacha-
bility problem with bounded number of reversals (Theorem 2.15). In order to ob-
tain the NExpTIME upper bound, it is sufficient to consider the proof of Lemma 2.20.
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From M, {qo, Xo), qr and 7 > 0 (instance of size IV), we construct a counter
machine M’ = (Q’, T’, C) such that the control state gy¢,, can be reached from
{(qo, x0) for some r-reversal-bounded run iff there is an infinite r-reversal-bounded
run from (go, Xo) such that gy is repeated infinitely often. Since M’ essentially
restricts the behaviours of M (by guessing at some stage a set of counters C— C
[1,d]), gnew can be reached from (go, x¢) with an r-reversal-bounded run sharing
the structural properties of small runs from the proof of Theorem 2.15, whence
the NExpT1IME upper bound. [

Lemma 2.20 can be extended so that, instead of repeating infinitely often con-
trol states, properties on counters definable in Presburger arithmetic are repeated
infinitely often. Let us introduce the following problem.

J-PRESBURGER INFINITELY OFTEN PROBLEM

Input: Initialized counter machine (M, (g, x)) with d counters, r > 0 and a Pres-
burger formula on counters @(x1, ..., Xq)-

Question: Is there an infinite r-reversal-bounded run from (g, x) such that in-
finitely often ¢(x1, ..., x4) holds?

The complement of the above problem is defined as follows. The V-PRESBURGER-
ALMOST-ALWAYS PROBLEM is defined analogously:

Input: Initialized counter machine (M, (g, x)) with d counters, 7 > 0 and a Pres-
burger formula on counters p(x1, ..., Xq)-

Question: Is it the case that every infinite r-reversal-bounded run from (g, x) sat-
isfies that after some position, all the future positions satisfy p(xi, ..., x4)?

Theorem 2.22. The 3-Presburger infinitely often problem and the ¥-Presburger-
almost-always problem are decidable.

The proof is indeed a generalization of the proof of Lemma 2.20. Exercise 2.6
is dedicated to the proof of Theorem 2.22.

2.6 WEAK REVERSAL-BOUNDEDNESS

An interesting refinement of reversal-boundedness consists in counting the num-
ber of reversals when they occur for a counter value above a given bound B
(see Figure 2.3). For instance, finiteness of the reachability set implies reversal-
boundedness in that sense, which we shall call weak reversal-boundedness. Let
M = (Q,T,C) be a counter machine and a bound B € N. As in Section 2.2.2,

from a run p = {(qo,x0) N (q1,X%1), ..., we define a sequence of mode vectors
mdg, mdy, . .. such that each md; belongs to {INC, DEC}%. Now, let Rev? = {j €

[07 |P| - 1] 1 mo; (Z) # maj-‘-l(i)’ {Xj (7')7 Xj+1(7:)} Z [07 B]}
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Figure 2.3: A 4-reversal-B-bounded run

Given B > 0 and r > 0, the initialized counter machine (M, (g, x)) is r-
reversal-B-bounded & for every finite run p starting at (g, x), card(Rev?) < r
for every i € [1,d]. Initialized counter machine (M, (q, x)) is weakly reversal-
bounded & there are r, B > 0 such that (M, (g,x)) is r-reversal-B-bounded.
Observe that whenever r-reversal-boundedness coincides with r-reversal-0-boun-
dedness. Figure 2.3 illustrates weak reversal-boundedness.

Weak reversal-boundedness for counter machines is very appealing because
reachability sets are still semilinear as stated below.

Theorem 2.23. Let (M, (q,x)) be an initialized counter machine that is weakly
r-reversal-B-bounded for some given r, B > 0. For each control state ¢', the set
{yeN?: (q,x) 5 (¢,y)} is a computable Presburger set.

Proof. We show that reachability sets for weak reversal-bounded counter ma-
chines can be expressed as reachability sets of reversal-bounded counter ma-
chines. Let M = (Q,T,C) be a weak reversal-bounded counter machines
with bounds 7, B > 0. Without any loss of generality, we can assume that B
is greater or equal to any constant £ occurring in an atomic guard X ~ k and to
any absolute value of any a(i) with i € [1,d] and a is an update in M. Indeed,
r-reversal- B-boundedness implies r-reversal-B’-boundedness for any B’ > B.

Let us define the counter machine M’ = (@', T’,C) such that Q' = Q X
[0, B]%. In the counter machine M’, we encode in the control states the fact
that a counter value is below B. For instance, in a configuration (g, v, x) with
v(i) = o < B, we have x(i) = 0 and the intended counter value from M is
precisely a. In that way, updating the counters below B does not create any
reversal since the counter value in M’ remains equal to zero. By contrast, in a
configuration (g, v, x) with v(i) = B, x(i) can take any value and the intended
counter value from M is precisely B+x(7). It remains to implement that principle
for transitions in 7", at the level of updates of course but also at the level of guards.

Given a guard g from M and v € [0, B]¢, we write [g], to denote the corre-
sponding guard in M’ inductively defined as follows:

o [x; ~ K]y = v(i) ~E,
e [-]y is homomorphic for Boolean connectives.

It is easy to check that [g]y is equivalent either to T or to L. Moreover, it is simple
to determine whether [g]y is equivalent to T.
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Let us define a map § : (Q x N%) — ((Q x [0, B]%) x N9) (between con-
figurations of the two machines M and M’) such that f({¢,x)) = ((¢,v),x’)
with

1. ¢=¢,

2. for every i € [1,d], if x(i) < B then v(i) = x(i) and x'(i) = 0, otherwise
x'(i) = x(i) — Band v(i) = B.

The partial map § ! is defined in such a way that § 7 ({(¢’, v), X)) is defined when
there is (g, x) € @ x N? such that f({(g,x)) = ((¢/,v),x'). In other words, § ! is
defined whenever (x'(7) > 0 implies v(i) = B).

It is worth noting that for all ({(¢/,v),x’) such that §f({(¢,x)) = ((¢,v),x')
and for all guards g in M, we have x [ ¢ iff [g]y is equivalent to T. This is the
place where we use the assumption that B is greater or equal to any constant k
occurring in an atomic guard X ~ k.

)

For each transition ¢ @i> ¢ in T, we consider all the transitions
(9"’
<Q7 V> 4 <q/7 V/>

with ¢’ = [g]v (possibly augmented by atomic guards, see below) and verifying
the following conditions for all ¢ € [1, d]:

e v(i) < Bandv(i)+a(i) < Bimpliesv/(i) = v(i)+a(i) anda’(:) = 0. This
is the case when a counter is incremented/decremented in M but below the
bound B. The value for counter X; remains equal to zero in M.

e v(i) < Bandv(i)+a(i) > Bimpliesv'(i) = Banda'(i) = v(i)+a(i)— B.
This is the case when a counter is incremented in M from a value below
the bound B to a value above the bound B. The value for counter X; is

incremented but not as much as a(i) because there is an implicit shift of B
when v/(i) = B.

e v(i) = Banda(:z) > 0 implies v/(i) = B and a’(i) = a(4). This is the case
when a counter is incremented in M from a value above the bound B. The
value for counter X; is incremented by a(7) too in M.

e v(i) = Banda(i) < 0 and the value for counter X; (say « € [0, —a(7) — 1))
is strictly less than a(i) imply v/(i) = B + a + a(i) and a’(i) = —a. We
add x; = « to the guard ¢’. This is the case when a counter is decremented
in M from a value above the bound B to a value below the bound B. This
is the place where we use the assumption —a(i) < B.

e v(i) = B and a(i) < 0 and the value for counter X; is not strictly less than
—a(i) imply v/(i) = B and a’(i) = a(i). This is the case when a counter
is decremented in M from a value above the bound B to a value above the
bound B. Note that there is no need to add x; > —a(i) to the guard ¢'.
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First, observe that for every ' > 0, we have (M, (¢, x)) is weakly reversal-
bounded with respect to 7’ and B iff (M, §((q,x))) is r’-reversal-bounded. So,
(M’ §({q,x))) is r-reversal-bounded Moreover, for every ¢ € (), we have that
{yeN?: (¢,x) 5 (¢,y)} is equal to the finite union below

U {1 v),x) 5@ %) = (¢, v),x)}

ve[o,B]d

where 72 is the projection on the second component. The proof is by an easy
induction on the run lengths. Since (M’,§({q,x))) is r-reversal-bounded, each
set occurring in the union is computable and semilinear, and Presburger arith-
metic has finite disjunction, whence {y € N? : (¢,x) = (¢’,y)} is a com-
putable Presburger set (see Theorem 2.10). Indeed, for every v, there is a formula
©v(Y1,---,Yq) such that

[ov] = {y € N*: §((g.x)) = ({d,v),y)}-

Consequently, the set {y € N : (¢,x) = (¢, y)} is characterised by the formula
©(z1,...,2q) defined below:

V 3y va (evlyn, - ya) A
v

/\ (v(i)=B=1zi=y;+ B) A (v(i) < B=z; =v(i)))).
1€[1,d]

]

Theorem 2.18 can be adapted to weak reversal-boundedness; reference to the
proof can be found in the Bibliographic Notes.

Theorem 2.24. The weak reversal-boundedness detection problem restricted to vec-
tor addition systems with states is EXPSPACE-complete.

EXERCISES

Exercise 2.1. Show that the question of checking whether a counter machine M is uni-
formly reversal-bounded can be reduced to reversal-boundedness of an initialized counter
machine.

Exercise 2.2. A set X C N% is downward closed & for all X,y € N¢, (x € X and y<x
imply y € X).

1. Givena VASS M = (Q, T, C) and q € Q, show that the set {x € N¢ : (M, (¢, x))
is reversal-bounded} is downward closed.
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2. Show that the set {x € N? : (M, (q,x)) is reversal-bounded} is semilinear.

Exercise 2.3. Let us consider the reversal-bounded counter machine in Figure 2.2.

—_

. Is (M, {q1,0)) reversal-bounded?
2. For which g, every (M, (g, x)) is reversal-bounded?

3. Let x € N2 and ¢ be the Presburger formula
=1 >22Ax2>14+x(2) A (x2a —x(2)) +1>x1)V

(xa >2Ax3 > 14+x(1)A(x1 —x(1)) +1 > x9)
Show that [¢] is equal to {y € N2 : (g1, x) = (go,y)}.
4. Find a Presburger formula ¢’ such that [¢'] = {y € N> : (q1,0) = (g6, y)}.

5. Show that for every ¢, {x € N? : (M, (g, x)) is reversal-bounded} is semilinear.

Exercise 2.4.
1. Show the properties (P;) and (P2) in Section 2.3.1.

2. Show the property (P3) in the proof of Lemma 2.4.

Exercise 2.5. Show that the problem below can be solved in NExpTIME:

Input: a counter machine M, a bound » € N, an initial configuration (go,xo), ¢r € @
and a linear set X C N? defined by a basis b and the periods p1, ..., px (possibly
none). All integers are encoded in binary.

Question: Is there a finite run of M with initial configuration (qg, X¢) and final configu-
ration (g, xy) such that each counter has at most r reversals and x; € X?

Exercise 2.6. Let M = (Q, T, C') be a counter machine and (g, Xo) be an initial config-
uration. The goal of this exercise is to show that deciding whether there is an r-reversal-
bounded infinite run from (qo, X¢) such that counter values belong to a given semilinear
set infinitely often can be decided in NExpTIME.

1. Let X C N9 be a linear set characterised by the basis b and the periods p, ..., pn
(possibly there are no periods). Let x;, X2, . .. be an infinite sequence of elements
in X. Show that there are I’ < [ and a, ¢ € NV such that

@O xr = xi,
MM xy=b+ > a(k)prandx;=b+ > c(k)pranda=<c.
k€E[1,N] k€E[1,N]

2. Design a uniformly O-reversal-bounded counter machine with d counters such that
for some state gg, gy € @, forall x € N¢, we have x € X iff there is a run from

(90, %) to (g, 0).



Exercises 69

3. Design a uniformly 1-reversal-bounded counter machine with 2d counters such
that for some state qo,q; € Q, for all x € N?¢ such that the restriction to x to
the d last counters equal to 0, we have, the restriction of x to the d first counters
belongs to X iff there is a run from (go, x) to (g¢, x).

4. Design a uniformly 1-reversal-bounded counter machine with 4d counters such
that for some state qo, ¢y € @, forall x € N4? such that the restriction to x to the

2d last counters equal to 0, we have, (there are \1,..., Ay € N such that for all
i€ [l,d],x(d+1i) —x(i) = \p1(i) + - - - Anpn (2)) iff there is a run from (qo, x)
to (qf,x).

5. Let r > 0. Show that the conditions below are equivalent:

(x) there is an infinite r-reversal-bounded run from (qg, X ) such that counter val-
ues belong to X infinitely often

(*x) There exist a finite r-reversal-bounded run p = (g, Xo) GN (q1,%1) -~ LN

(qi,x1), 1" € [0,1 — 1] and C— C C such that

@ @ =aq,

(b) xy,x € X,

(c) (I) and (IT) above,

(d) forallx; € C—andj € [I'+ 1,1], x;(i) —x,;_1() =0,
(e) forallx; € (C~C=)andj e [lI' +1,1], x;-1(¢) < x;(i),
(f) forall x; € (C'\ C=), we have kyqr < xp7(1).

(g) forall x;, € C—, have xy/ (i) < kmaz-

kmaz denotes the maximal constant k£ occurring in an atomic guard of the
form x ~ k in M.

6. Design a reduction from (xx) to an instance of the reachability problem with bounded
number of reversals.

7. Show that checking whether an initialized counter machine has an infinite r-
reversal-bounded run visiting infinitely often a semilinear set (encoded with bases
and periods in binary representation) can be decided in NExpTIME.

8. Conclude that the 3-Presburger infinitely often problem is decidable (see Theo-
rem 2.22).

Exercise 2.7. We have seen in Section 1.6 that for any finite-state automaton A over
the alphabet ¥, equipped with a linear ordering of the letters, say with k letters, one
can compute a formula ¢ 4(x1, . .., x;) in FO(N) such that II(L(.A)) = [¢.4]. Moreover,
it is possible to build a quantifier-free formula ¢ 4 in polynomial time in the size of A
(see e.g. (Seidl et al., 2004)). By using this standard property and developments from the
current chapter, prove that the reachability problem with bounded number of reversals
and 7 encoded in unary is in NP.

Exercise 2.8. Show that the weak reversal-boundedness detection problem restricted to
VASS is ExpSpacE-hard.
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Exercise 2.9. We consider an extended class of counter machines in which equalities and
inequalities between counters are allowed (diagonal constraints). Guards on transitions
are therefore on the form below:

gu=x~k | ghg| g |x=x"|x#X

Show that the reachability problem with bounded number of reversals for this class of
counter machines is undecidable even if the number of reversals is zero (Theorem 2.16).

Exercise 2.10. Complete the proof of Proposition 2.6 (Case 3).

Exercise 2.11. A parameterized counter machine M is defined as a counter machine from
C except that atomic guards are either T, L, X ~ k (as for counter machinesinC)or x ~ z
where z is a parameter from a set PAR. Strictly speaking a parameterized counter machine
is not a counter machine unless the parameters take a concrete value. A concretization
map C for M is amap C : PAR — N. Given a parameterized counter machine M and
a concretization map C, we can easily define a counter machine in C by interpreting the
parameters via the map C'. The reachability problem with bounded number of reversals
for the class of parameterized counter machines is defined as follows:

Input: a parameterized counter machine M, a bound r € N, an initial configuration
(90, X0) and a final configuration (gs,x¢),

Question: Are there a concretization C' : PAR — N and a finite run of M with initial
configuration (go, Xo) and final configuration (gs, xs) such that each counter has
at most r reversals and the parameters in M are interpreted by C?

1. By adapting the developments from Section 2.3, show that the reachability problem
with bounded number of reversals for the class of parameterized counter machines
is decidable.

2. What is the complexity of the problem ?

Exercise 2.12. A counter machine M in the class C can be viewed as a language acceptor
by labelling each transition by a letter a from a finite alphabet 3, and by defining a set of
initial states and a set of final states. An initial configuration contains an initial state and
all its counters equal to zero. A final configuration contains a final state. The language of
finite words in ¥* accepted by such augmented counter machines M is written L(M).
Given r > 0, we write L" (M) to denote the subset of L(M) such that the accepted words
in L" (M) are obtained from r-reversal-bounded runs. The universality problem consists
in checking whether the language L" (M) defined by a counter machine is ¥*. It is known
that the problem is PSpAcE-complete for finite-state automata (i.e. for counter machines
without counters).

Let M be a Minsky machine M = (Q, T, C) with C = {x1,X2}, qo # qu € @ and
no transition starts at gy, i.e. ¢y is the halting state and ¢ is the initial state. Moreover,
the transitions in 7" have one of the forms below:

o q1 “% go withi € [1,2],

=0 i-- ) . . . .
o ¢1 ~= g and 1 =5 g3 withi € [1, 2], that is, either counter X; is decremented
or a zero-test is performed on it.
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Note that the Minsky machine M is deterministic. Finite runs of M are encoded by finite
words over the alphabet ¥ = Q W {a, #} so that a counter value n is encoded by the word
a™ of length n. More precisely, let p be the run below:

<q05n07m0>7 s <q’y7n’y7m’y> € (Q X Nz)
The word u, in 3* is the word below:
qo.ano.ﬁ.am() ..... qv.an"/.ﬁ.am’Y

Below, let us define necessary conditions on words u € ¥* for being the encoding of
an halting run.

(REG) The word u belongs to the language of the regular expression below:
Q-4 (Q a"-f-a)" qu-a*-§-a"
(INC; ) For every transition of the form ¢; EIAY q2, if u contains a factor of the form
qlua/i-ﬁ-alj.q/-ali/-ﬁ-alj/
thenq = q2,79 =i+ 1and j' = j.
(INC3) For every transition of the form ¢; ARy q2, if u contains a factor of the form
G-a-t-al-q-d t-al
thenq¢ = ¢o,7 =iand j' = j + 1.

ey =0 -
(DEC;) For all transitions of the form ¢; n= g2 and ¢1 PN q3 (zero-test on counter
X1), if u contains a factor of the form

¢t-al g a t-al
then ¢’ = ¢qo,7’ = 0 and j' = j.

(DEC}) For all transitions of the form ¢; it g2 and ¢1 =5 g5 (zero-test on counter
X1), if u contains a factor of the form

ql-a-ai-ﬁ-aj-q/-ai/-ﬁ-aj/
then ¢’ = ¢3,7 =iand j' = j.

1. Define conditions (DEC3) and (DEC}) analogously to the conditions (DECy ), (DECY)
so that for all words u € ¥*, we have u satisfies the conditions (REG), (INC),
(INCs), (DECy), (DEC)), (DEC3), (DECY)) iff u is the encoding of an halting run for
M.

2. For each condition (C) among (REG), (INC;), (INCy), (DEC;), (DEC)), (DEC,),
(DECY), build a one-counter machine M with alphabet that is uniformly 1-reversal-
bounded and, distinguished states ¢S and q? such that for all words u € X*, we
have u does not satisfy the condition (C) iff there is a run from (¢, 0) to some final
configuration <q%, n) that accepts u.

3. Build a uniformly 1-reversal-bounded one-counter machine M’ with alphabet 3
such that L(M’) = X* iff the Minsky machine M has no halting run.

4. Conclude that the universality problem with » = 1 and restricted to one-counter
machines (with alphabet) is undecidable.
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BiBLioGraPHIC NOTES

REVERSAL-BOUNDED COUNTER MACHINES. The class of reversal-bounded counter machines
has been introduced and studied in (Ibarra, 1978), partly inspired by similar restrictions
on multistack machines (Baker and Book, 1974). Theorem 2.10 that states that every
reachability set of an initialized reversal-bounded counter machine is a Presburger set,
is shown in (Ibarra, 1978). Reversal-bounded multipushdown machines that extend re-
versal-bounded counter machines with stacks instead of counters have been also stud-
ied in (Baker and Book, 1974; Ibarra, 1978). For instance, developments about multihead
pushdown machines recognizing bounded languages (Ibarra, 1974) can lead to semilinear-
ity of reachability sets for initialized reversal-bounded counter machines. Other classes
of counter machines with reachability sets that are computable Presburger sets can be
found in (Finkel and Sutre, 2000; Leroux and Sutre, 2005; Bozga et al., 2009).

The proof of Theorem 2.10 presented in the chapter relies on developments from (Gu-
rari and Ibarra, 1981) and it uses a proof a la Rackoff (Rackoff, 1978) (see Theorem 2.15).
Even though the main intentions in (Gurari and Ibarra, 1981) are related to optimal com-
plexity upper bounds, semilinearity of reachability sets can be derived too. It is worth
noting that the class of counter machines considered in the chapter is a bit larger than
the class considered in (Ibarra, 1978). Indeed, we allow comparisons between a counter
value and any constant as well as any Boolean combination and the updates are those
from VASS instead of being restricted to updates in {—1,0, +1}.

The notion of reversal-boundedness from (Ibarra, 1978) has been also relaxed, for
example by allowing a free counter (Howell and Rosier, 1987) (i.e., one counter has no
constraints on the number of reversals) or by counting the reversals only above a given
bound (Finkel and Sangnier, 2008; Sangnier, 2008). In both cases, semilinearity of the
reachability sets is still preserved (see e.g., Section 2.6 about weak reversal-boundedness).
The case with one free counter is not treated in the chapter, see e.g. (Ibarra, 1978; How-
ell and Rosier, 1987) for formal developments. Note that results in (Gurari and Ibarra,
1981) are extended to the case with a single free counter in (Howell and Rosier, 1987).
Reversal-bounded counter machines have been also studied as computational devices, see
e.g. (Chan, 1981). Moreover, decidable reachability problems for parameterized reversal-
bounded initialized counter machines can be found in (Ibarra et al., 2002, Section 4) (see
also Exercise 2.11).

IBARRA’S PROOF IN A NUTSHELL. The first part of the proof in (Ibarra, 1978) amounts to
showing that we can restrict ourselves to 1-reversal-bounded counter machines at the
cost of introducing additional counters; this restriction is indeed based on (Baker and
Book, 1974) for reversal-bounded multistack machines. Then, the second part shows that
reachability sets for 1-reversal-bounded counter machines are computable Presburger
sets, essentially based on Parikh’s Theorem (Parikh, 1966) restricted to regular languages.
Section 1.6 provides the main ingredient of the proof establishing that the commutative
image of any regular language is computable and semilinear. Semilinearity is obtained
by expressing Birkhoff’s equations about control states augmented by connectivity con-
straints. This analysis allows us to conclude that when a counter machine is uniformly
reversal-bounded, then the reachability relation is computable and semilinear.

The problem of deciding whether a counter machine is reversal-bounded has been
shown undecidable in (Ibarra, 1978) (see Theorem 2.17).
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COMPLEXITY OF THE REACHABILITY PROBLEM WITH BOUNDED NUMBER OF REVERSALS. Even
though the reachability problem with bounded number of reversals is not explicitly con-
sidered in (Gurari and Ibarra, 1981; Howell and Rosier, 1987), the proof for the lower
bound in Theorem 2.15 is due to (Howell and Rosier, 1987) whereas the proof for the up-
per bound in Theorem 2.15 is due to (Gurari and Ibarra, 1981) (and it uses small solutions
of inequation systems as in (Rackoff, 1978)). The lower bound is obtained by encoding
computations of a Turing machine running in non-deterministic exponential time by a
counter machine, by using ideas similar to (Minsky, 1967). The reachability problem with
bounded number of reversals is in NP when the number of reversals r is encoded in
unary (Gurari and Ibarra, 1981).

WEAK REVERSAL-BOUNDEDNESS. The proof in (Ibarra, 1978) extends to weak reversal-

boundedness and Theorem 2.23 is shown in (Finkel and Sangnier, 2008; Sangnier, 2008);

whenever a counter value is below B, this information is encoded in the control state

which provides a reduction to (standard) reversal-boundedness. Moreover, a breakthrough
has been done in (Finkel and Sangnier, 2008) by establishing that checking whether a vec-

tor addition systems with states is weakly reversal-bounded is decidable. The decidability

proofin (Finkel and Sangnier, 2008) provides a decision procedure that requires nonprimi-

tive recursive time in the worst-case since Karp and Miller tree needs to be built (Karp and

Miller, 1969; Valk and Vidal-Naquet, 1981). A complexity analysis can be found in (Demri,

2013).

REVERSAL-BOUNDEDNESS DETECTION PROBLEM. Even though reversal-boundedness detec-
tion problem is undecidable in full generality (Ibarra, 1978) (see Theorem 2.17), it is shown
in (Finkel and Sangnier, 2008) that the problem is decidable for counter automata without
zero-tests, and more generally for vector addition systems with states (by adapting in the
obvious way the concept of reversal-boundedness to VASS). More recently, it has been
shown that the reversal-boundedness detection problem restricted to VASS is EXPSPACE-
complete (Demri, 2013).

BEYOND REACHABILITY. Reversal-bounded counter machines admit decidable problems
that go beyong simple reachability. For instance, control state repeated reachability
problem with bounded number of reversals and 3-Presburger infinitely often problem
have been shown decidable (and NExpTimE-complete). Indeed, In (Dang et al., 2001), it
is shown that 3-Presburger-infinitely often problem for reversal-bounded counter ma-
chines (with guards made of Boolean combinations of the form x; ~ k) is decidable.
Moreover, 3-Presburger-always problem for reversal-bounded counter automata is un-
decidable (Dang et al., 2001).

The NExPTIME upper bound established for the reachability problem with bounded
number of reversals can be extended to richer classes of counter systems and to richer
specification languages such as LTL with arithmetical constraints (Bersani and Demri,
2011; Hague and Lin, 2011). Note that decidability with both extensions is possible thanks
to the introduction a new concept for reversal-boundedness that makes explicit the role of
arithmetical terms (Bersani and Demri, 2011) and it captures previous notions on reversal-
boundedness. In (Hague and Lin, 2011), operational models extending pushdown sys-
tems with counters and clocks are considered; a version of reversal-bounded LTL model-
checking is shown to be co-NExPTIME (Hague and Lin, 2011, Theorem 2). A prototypical
implementation and experimental results are also presented in (Hague and Lin, 2011).
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The proof of (Hague and Lin, 2011, Theorem 1) share common features with our proof of
Theorem 2.15, at least in the use of counter modes. In both cases Presburger formulae are
built: the proof of Theorem 2.15 is based on a run analysis whereas the proof in (Hague
and Lin, 2011, Theorem 1) builds directly the formula.

Finally, in (Kopczynski and To, 2010, Theorem 22), ExpTIME upper bound for LTL
model-checking over reversal-bounded counter automata is shown but the logical lan-
guage has no arithmetical constraint and the number of reversals r is encoded in unary
(see also (To, 2010)).

ExTENsIONS. Theorem 2.16, stating that the reachability problem with bounded number
of reversals becomes undecidable as soon as the guards are linear constraints, is estab-
lished in (Ibarra et al., 2002), which seems to destroy any hope to obtain semilinearity for
reversal-bounded counter machines with guards comparing counter values. However, a
new notion of reversal-boundedness is also introduced in (Bersani and Demri, 2011) so
that reversal-boundedness is related to terms occurring in guards and semilinearity and
NExPTIME-completeness of the reachability problem with bounded number of reversals
can be proved.

UNIVERSALITY PROBLEM. The undecidability of the universality problem for 1-reversal-
bounded one-counter machines with alphabet is shown in (Ibarra, 1979), see also (Greibach,
1969; Baker and Book, 1974). Exercise 2.12 provides a proof by reduction from the halting
problem for Minsky machines (instead of from Turing machines as done in (Ibarra, 1979)).



