TD: Logical Aspects of Artificial Intelligence Tableaux for DLs (28/09/2022)

****** Exercises related to previous sessions ******

Exercise 1. Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be an interpretation (for \mathcal{ALC}), $\mathfrak{a} \in \Delta^{\mathcal{I}}$, and $(\mathfrak{a}, 1), (\mathfrak{a}, 2) \notin \Delta^{\mathcal{I}}$ (fresh individuals).

1. Given $X \subseteq \Delta^{\mathcal{I}}$, we write [X] to denote the set below

 $(X \setminus \{\mathfrak{a}\}) \cup \{(\mathfrak{a}, i) \mid i \in \{1, 2\}, \ \mathfrak{a} \in X\}$

- ([X] is obtained from X by replacing \mathfrak{a} by $(\mathfrak{a}, 1), (\mathfrak{a}, 2)$)
 - a. Show that *X* is non-empty iff [X] is non-empty.
 - b. Show that $X \subseteq Y$ implies $[X] \subseteq [Y]$.
- 2. Let $\mathcal{J} = (\Delta^{\mathcal{J}}, \cdot^{\mathcal{J}})$ be the interpretation defined from \mathcal{I} as follows:
 - $\Delta^{\mathcal{J}} \stackrel{\text{def}}{=} [\Delta^{\mathcal{I}}].$
 - $A^{\mathcal{J}} \stackrel{\text{def}}{=} [A^{\mathcal{I}}]$, for all concept names *A*.
 - For all $\mathfrak{b} \in \Delta^{\mathcal{J}} \cap \Delta^{\mathcal{I}}$, $r^{\mathcal{J}}(\mathfrak{b}) \stackrel{\text{def}}{=} [r^{\mathcal{I}}(\mathfrak{b})]$, for all role names r.
 - For all $(\mathfrak{a}, i) \in \Delta^{\mathcal{J}}$ $(i \in \{1, 2\}), r^{\mathcal{J}}((\mathfrak{a}, i)) \stackrel{\text{def}}{=} [r^{\mathcal{I}}(\mathfrak{a})]$, for all role names r.
 - *I* and *J* agree on the interpretation of the individual names when the value is in Δ^{*I*} \ {*a*}.

Show that for all concepts C, we have $C^{\mathcal{I}} = [C^{\mathcal{I}}]$.

3. Prove that if $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is consistent, then there is an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and for all distinct individual names a and b occurring in \mathcal{A} , we have $a^{\mathcal{I}} \neq b^{\mathcal{I}}$.

Exercise 2. \mathcal{EL} is a fragment of \mathcal{ALC} in which the \mathcal{EL} concept are defined from $C ::= \top | A | C \sqcap D | \exists r.C. \mathcal{EL}$ knowledge bases are defined as for \mathcal{ALC} except that only \mathcal{EL} concepts are allowed. Show that every \mathcal{EL} knowledge base is consistent.

Exercise 3. (from exam 2020/2021) An ALC TBox T is said to be **simple** if it contains GCIs of the form

$$A \sqsubseteq B \quad A_1 \sqcap A_2 \sqsubseteq B \quad A \sqsubseteq \exists r.B \quad \exists r.A \sqsubseteq B$$

where A, the A_i 's and B are arbitrary concept names or \top and r is an arbitrary role name. In the sequel, by convention, we consider that \top is a special concept name (instead of a truth constant) whose interpretation is always the full interpretation domain $\Delta^{\mathcal{I}}$ (assuming that the interpretation is $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$). Given a simple TBox \mathcal{T} , we write $\mathcal{S}(\mathcal{T})$ to denote the set of concept and role names occurring in \mathcal{T} with the addition of \top (when \top is not already in \mathcal{T}). Below, let us consider a fixed simple TBox \mathcal{T} .

1. We introduce rules to deduce new GCIs from \mathcal{T} . In the rules below, A, the A_i 's and B are concept names in $\mathcal{S}(\mathcal{T})$, the C_i 's use only concept names and role names from $\mathcal{S}(\mathcal{T})$ too. We write $\mathcal{T} \vdash C \sqsubseteq D$ when $C \sqsubseteq D$ can be derived from \mathcal{T} by applying the rules below.

$$\frac{C \sqsubseteq D \in \mathcal{T}}{\mathcal{T} \vdash C \sqsubseteq D} \in -\text{rule} \qquad \overline{\mathcal{T} \vdash A \sqsubseteq A} \quad \text{id-rule} \qquad \overline{\mathcal{T} \vdash A \sqsubseteq T} \quad \top -\text{rule}$$

$$\frac{\mathcal{T} \vdash A \sqsubseteq A_1, \quad \mathcal{T} \vdash A \sqsubseteq A_2, \quad \mathcal{T} \vdash A_1 \sqcap A_2 \sqsubseteq B}{\mathcal{T} \vdash A \sqsubseteq B} \sqcap -\text{rule}$$

$$\frac{\mathcal{T} \vdash A \sqsubseteq \exists r.A_1, \quad \mathcal{T} \vdash A_1 \sqsubseteq B}{\mathcal{T} \vdash A \sqsubseteq \exists r.B} \exists -\text{rule}$$

$$\frac{\mathcal{T} \vdash C_1 \sqsubseteq C_2, \quad \mathcal{T} \vdash C_2 \sqsubseteq C_3}{\mathcal{T} \vdash C_1 \sqsubseteq C_3} \text{ trans-rule}$$
under the condition: $\{C_1 \sqsubseteq C_3\}$ is simple.

Show that

$$\{\exists r.B \sqsubseteq B_1, A_1 \sqsubseteq B_2, B_1 \sqcap B_2 \sqsubseteq A_2, A_1 \sqsubseteq \exists r.A_1, \top \sqsubseteq B\} \vdash A_1 \sqsubseteq A_2.$$

2. A simple TBox \mathcal{T}^c is **complete** $\Leftrightarrow^{\text{def}}$ for all $C \sqsubseteq D$, $\mathcal{T}^c \vdash C \sqsubseteq D$ implies $C \sqsubseteq D \in \mathcal{T}^c$. Given a simple TBox \mathcal{T} , show that there is a smallest complete and simple \mathcal{T}^c such that $\mathcal{T} \subseteq \mathcal{T}^c$ ('smallest' refers to set-inclusion). Moreover, evaluate the time required to compute \mathcal{T}^c from \mathcal{T} .

- 3. Prove that if $\mathcal{T} \vdash C \sqsubseteq D$, then \mathcal{T} and $\mathcal{T} \cup \{C \sqsubseteq D\}$ are satisfied by exactly the same interpretations. Conclude $C \sqsubseteq D \in \mathcal{T}^c$ (with \mathcal{T}^c from Question 2.) implies $\mathcal{T} \models C \sqsubseteq D$.
- 4. Let \mathcal{I} be the interpretation defined as follows (depending on \mathcal{T} via \mathcal{T}^c).
 - $\Delta^{\mathcal{I}}$ is the set of concept names from $\mathcal{S}(\mathcal{T})$ (including \top).
 - $A^{\mathcal{I}} \stackrel{\text{\tiny def}}{=} \{ B \in \Delta^{\mathcal{I}} \mid B \sqsubseteq A \in \mathcal{T}^c \} \text{ for all concept names } A \text{ in } \mathcal{S}(\mathcal{T}).$
 - $r^{\mathcal{I}} \stackrel{\text{def}}{=} \{(A, B) \mid A \sqsubseteq \exists r. B \in \mathcal{T}^c\} \text{ for all role names } r \text{ in } \mathcal{S}(\mathcal{T}).$

Verify that $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$. Show that $\mathcal{I} \models \mathcal{T}^c$.

- 5. Conclude that for all $A, B \in \mathcal{S}(\mathcal{T})$, we have $A \sqsubseteq B \notin \mathcal{T}^c$ implies $\mathcal{T} \not\models A \sqsubseteq B$.
- 6. Show that given an arbitrary simple TBox \mathcal{T} and $A, B \in \mathcal{S}(\mathcal{T})$, checking whether $\mathcal{T} \models A \sqsubseteq B$ can be done in polynomial time in the size of \mathcal{T} .

 $\star\star$ Exercises related to today session $\star\star$

Exercise 4. By using the tableaux calculus for ALC and its properties, show that the concept below is not satisfiable.

$$(\forall r.((\neg A) \sqcup B)) \sqcap (\forall r.A) \sqcap \exists r. \neg B$$

(use the property that A is consistent iff there is a complete and clash-free ABox A' derivable from A with the tableaux rules)

Exercise 5. Show that

$$\{(a,b): s, (a,c): r\} \cup \{a: A_1 \sqcap \exists s. A_5, a: \forall s. \neg A_5 \sqcup \neg A_2, b: A_2, c: A_3 \sqcap \exists s. A_4\}$$

is a consistent ABox.

Exercise 6. Using the tableaux calculus for ALC with blocking, show that the knowledge base (T, A) below is consistent.

$$\mathcal{T} = \{ \top \sqsubseteq (\neg A) \sqcup \exists r.B \} \quad \mathcal{A} = \{ a : A \sqcap B, a : \forall r.\forall r.C \}$$

Exercise 7. Complete the case for the \forall -rule in the soundness proof of the tableau proof system for ALC without TBoxes.

Exercise 8. Complete the case for the \forall -rule to show that \mathcal{A}'' is complete in the soundness proof for the tableau proof system for \mathcal{ALC} with TBoxes (and with blocking technique).

Exercise 9. Complete in the soundness proof for ALC with TBoxes the property: for all $a : C \in A''$, we have $a^{\mathcal{I}} \in C^{\mathcal{I}}$.

Exercise 10. Let us consider the extension of \mathcal{ALC} TBoxes by allowing role axioms of the form Disj(r, s) such that $\mathcal{I} \models \text{Disj}(r, s)$ iff $r^{\mathcal{I}} \cap s^{\mathcal{I}} = \emptyset$. Extend the tableau-style proof system for \mathcal{ALC} knowledge base consistency and prove termination, soundness and completeness.

Exercise 11. (Tableaux with RIAs) Let us consider the extension of ALC TBoxes by allowing role inclusion axioms $r \sqsubseteq s$. Extend the tableau-style proof system for ALC knowledge base consistency and prove termination, soundness and completeness.

Exercise 12. Let us propose an alternative definition for blocking that does not rely on the ancestor-relation but rather on the notion of age. Whenever the \exists -rule is applied, the **age** of the fresh individual name *c* is equal to the number of previous applications of the \exists -rule plus one. The age of the root individuals is equal to zero. An individual name *b* in some ABox \mathcal{A}' derived from \mathcal{A} is **blocked by** *a* if

- the age of *a* is strictly less that the age of *b*,
- $\operatorname{con}_{\mathcal{A}'}(b) \subseteq \operatorname{con}_{\mathcal{A}'}(a)$,
- *a* is not blocked.

Show that the tableau-style proof system for ALC knowledge base consistency with this notion of blocking provides also a decision procedure.

Exercise 13. Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be an \mathcal{ALC} knowledge base with

 $\mathcal{T} = \{ A \sqsubseteq \neg \forall r. \neg A \} \quad \mathcal{A} = \{ a : (A \sqcap (\exists r.B)) \sqcap (\neg \forall r.B) \}$

- 1. Using the tableaux calculus for ALC, show that K is consistent.
- 2. Based on the derivation from Question 1., define an interpretation satisfying \mathcal{K} .

Exercise 14. Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a knowledge base for \mathcal{ALC} with role axioms, with $\mathcal{T} = \mathcal{T}_{GCI} \cup \{r \circ s \equiv s \circ r\}$. \mathcal{T}_{GCI} is made of GCIs. Show that \mathcal{K} is consistent iff $\mathcal{K}' = (\mathcal{T}_{GCI} \cup \mathcal{T}'_{RA}, \mathcal{A})$ is consistent with \mathcal{T}'_{RA} equal to $\{r \circ s \sqsubseteq q, q \sqsubseteq r \circ s, s \circ r \sqsubseteq q, q \sqsubseteq s \circ r\}$ for some new role name q.