## TD: Logical Aspects of Artificial Intelligence Introduction to ATL-like logics (II) (12/10/2022)

Exercise 1. Let us consider the CGS  $\mathfrak{M}$  below with two agents.



Show that  $\mathfrak{M}, s_2 \models \langle\!\langle 1 \rangle\!\rangle$  (GF  $p \land \mathsf{GF} q$ ) and  $\mathfrak{M}, s_2 \not\models \langle\!\langle 2 \rangle\!\rangle$  (GF  $p \land \mathsf{GF} q$ ).

**Exercise 2**. Let Agt be a fixed non-empty finite set of agents with at least two agents,  $A \subseteq Agt$  be a coalition and PROP = { $p_1, p_2, p_3, ...$ } be the countably infinite set of propositional variables on which are built ATL<sup>+</sup> formulae and ATL formulae. Let us define the family of ATL<sup>+</sup> formulae ( $\varphi_n$ )<sub>n>1</sub> such that

$$\varphi_n \stackrel{\text{\tiny def}}{=} \langle\!\!\langle A \rangle\!\!\rangle (\mathsf{F} p_1 \wedge \cdots \wedge \mathsf{F} p_n).$$

During the lectures, we have seen that the satisfaction of formulae  $\varphi_n$  with  $n \ge 2$  may require non-positional strategies for the coalition A, and the model-checking problem restricted to the formulae  $\varphi_n$ 's is PSPACE-hard. More generally, given a finite and non-empty set of propositional variables  $X \subseteq \text{PROP}$ , we write  $\varphi(X)$  to denote the formula  $\langle\!\langle A \rangle\!\rangle (\bigwedge_{p \in X} \mathsf{F}p)$ . Consequently,  $\varphi(\{p_1, \ldots, p_n\})$  is equal to  $\varphi_n$  (modulo associativity and commutativity of the conjunction). Though the model-checking problem for ATL is in PTIME and ATL semantics can be restricted to positional strategies without modifying the satisfaction relation, we would like to define a family of ATL formulae  $(\psi_n)_{n \ge 1}$  such that for all  $n \ge 1$ ,

- the only coalition in ψ<sub>n</sub> is A and the only propositional variable in ψ<sub>n</sub> are among {p<sub>1</sub>,..., p<sub>n</sub>},
- for all CGS  $\mathfrak{M}$  with set of agents Agt, for all states s in  $\mathfrak{M}$ ,

$$\mathfrak{M}, s \models \varphi_n \text{ iff } \mathfrak{M}, s \models \psi_n.$$

1. If  $A = \emptyset$ , then define a formula  $\psi_n$  and show that it satisfies the above properties.

In the rest of this exercise, we assume that  $A \neq \emptyset$ .

- 2. Define the formula  $\psi_1$ .
- 3. Determine whether  $\psi_2$  can take the value

$$\langle\!\langle A \rangle\!\rangle (\mathsf{F}(p_1 \land \langle\!\langle A \rangle\!\rangle \mathsf{F} p_2)) \lor \langle\!\langle A \rangle\!\rangle (\mathsf{F}(p_2 \land \langle\!\langle A \rangle\!\rangle \mathsf{F} p_1))$$

If not, propose an alternative definition. For your choice of  $\psi_2$ , show that for all CGS  $\mathfrak{M}$  with set of agents Agt, for all states s in  $\mathfrak{M}, \mathfrak{M}, s \models \varphi_2$  iff  $\mathfrak{M}, s \models \psi_2$ .

4. Propose a definition for the formulae in the family  $(\psi_n)_{n\geq 1}$  (no correctness proof is requested but explanations are welcome) and evaluate the size of  $\psi_n$  with respect to n.

**Exercise 3.** Show that  $\langle\!\langle \emptyset \rangle\!\rangle \mathbf{G}(\psi \Rightarrow (\varphi \land \langle\!\langle A \rangle\!\rangle \mathbf{X}\psi)) \Rightarrow \langle\!\langle \emptyset \rangle\!\rangle \mathbf{G}(\psi \Rightarrow \langle\!\langle A \rangle\!\rangle \mathbf{G}\varphi)$  is valid in ATL.

**Exercise 4.** Show that  $(\langle\!\langle A \rangle\!\rangle \mathbf{G} \varphi) \Rightarrow (\varphi \land \langle\!\langle A \rangle\!\rangle \mathbf{X} \langle\!\langle A \rangle\!\rangle \mathbf{G} \varphi)$  is valid for ATL.

**Exercise 5.** Let  $\mathfrak{M} = (Agt, S, Act, \operatorname{act}, \delta, L)$  be a concurrent game structure with a (finite) set of states  $S, s \in S$  and  $\varphi = \langle\!\langle A \rangle\!\rangle (\mathsf{F}p_1 \wedge \cdots \wedge \mathsf{F}p_n)$  (the  $p_i$ 's are propositional variables) be an  $\mathsf{ATL}^*$  (state) formula such that  $\mathfrak{M}, s \models \varphi$ .

Let σ be a strategy for the coalition A such that for all the computations λ ∈ Comp(s, σ), we have M, λ ⊨ Fp<sub>1</sub> ∧ · · · ∧ Fp<sub>n</sub>. The set of computations respecting σ can be organised as an infinite tree t<sub>σ</sub> such that the label of each infinite branch encodes a computation in Comp(s, σ) and for each computation λ in Comp(s, σ), there is an infinite branch with label encoding λ. The nodes of such a tree t<sub>σ</sub> have their respective labels in S×P({p<sub>1</sub>,...,p<sub>n</sub>}) as we are interested in the path formula Fp<sub>1</sub>∧···∧Fp<sub>n</sub>. Intuitively, a node labelled by (r, X) corresponds to a (finite) history respecting the strategy σ ending in the state r and for which it remains to meet a future state satisfying p for each p ∈ X.

Let  $t_{\sigma}$  be the smallest labelled tree ('smallest' with respect to set inclusion) defined as follows (the finite alphabet  $\Sigma$  is  $S \times \mathcal{P}(\{p_1, \ldots, p_n\})$  to define the labelling  $\mathfrak{h}$ ).

•  $\varepsilon \in \mathbf{t}_{\sigma}$  and  $\mathfrak{h}(\varepsilon) = (s_0, X_0)$  with

 $s_0 \stackrel{\text{def}}{=} s \text{ and } X_0 \stackrel{\text{def}}{=} \{p_1, \dots, p_n\} \setminus L(s).$ 

• Assuming that  $\operatorname{out}(s, \sigma(s)) = \{r_1, \ldots, r_\alpha\}$  for some  $\alpha \ge 1$ , we have  $0, \ldots, \alpha - 1 \in \mathbf{t}_\sigma$  and for all  $i \in \{0, \ldots, \alpha - 1\}$ ,

$$\mathfrak{h}(i) \stackrel{\text{\tiny def}}{=} (r_{i+1}, X_0 \setminus L(r_{i+1})).$$

 $0, \ldots, \alpha - 1$  are therefore the only children of  $\varepsilon$ .

• For the general case, assume that  $u \in \mathbf{t}_{\sigma}$  with  $u = i_1 \cdots i_k$  for some  $k \ge 1$ , and the label of the finite branch leading to u is  $(s_0, X_0) \cdots (s_k, X_k)$ . If  $\operatorname{out}(s_k, \sigma(s_0 \cdots s_k)) = \{r_1, \ldots, r_{\alpha}\}$  for some  $\alpha \ge 1$ , then  $u \cdot 0, \ldots, u \cdot (\alpha - 1) \in \mathbf{t}_{\sigma}$  and for all  $i \in \{0, \ldots, \alpha - 1\}$ ,

$$\mathfrak{h}(u \cdot i) \stackrel{\text{\tiny def}}{=} (r_{i+1}, X_k \setminus L(r_{i+1})).$$

 $u \cdot 0, \ldots, u \cdot (\alpha - 1)$  are also the only children of u.

Let  $i_1 i_2 \cdots$  be an infinite branch of  $\mathbf{t}_{\sigma}$  with label  $(s_0, X_0) \cdot (s_1, X_1) \cdot (s_2, X_2) \cdots$ . Show the following properties.

- For all  $j \leq j'$ ,  $X_j \supseteq X_{j'}$ .
- There is  $j \ge 0$  such that  $\emptyset = X_j = X_{j+1} = X_{j+2} = X_{j+3} \cdots$ .
- $\{X_0, X_1, X_2, ...\}$  has at most (n + 1) elements.

2. Let  $\mathbf{t}_{\sigma}^{\star}$  be the subset of  $\mathbf{t}_{\sigma}$  such that

$$\mathbf{t}_{\sigma}^{\star} = \{\varepsilon\} \cup \{u \cdot i \in \mathbf{t}_{\sigma} \mid \mathfrak{h}(u) \text{ not of the form } (r, \emptyset)\}.$$

Show that  $t_{\sigma}^{\star}$  is a finite tree.

- 3. Given a computation  $\lambda$ , we say that  $\lambda$  witnesses the satisfaction of  $\mathsf{F}p_1 \wedge \cdots \wedge \mathsf{F}p_n$  before position  $K \in \mathbb{N} \Leftrightarrow^{\text{def}}$  for all  $i \in [1, n]$ , there is  $pos_i \leq K$  such that  $p_i \in L(\lambda(pos_i))$ . Show that there is a strategy  $\sigma$  for the coalition A such that for all computations  $\lambda \in \text{Comp}(s, \sigma)$ ,
  - (a)  $\mathfrak{M}, \lambda \models \mathsf{F}p_1 \land \cdots \land \mathsf{F}p_n$  and,
  - (b)  $\lambda$  witnesses the satisfaction of  $\mathsf{F}p_1 \wedge \cdots \wedge \mathsf{F}p_n$  before position  $(n + 1) \times \mathsf{card}(S)$ .
- 4. Let us consider the CGS  $\mathfrak{M}^*$  below (with two agents in  $\{1, 2\}$ )



- (a) Show that  $\mathfrak{M}^*, s_1 \models \langle\!\langle \{1\} \rangle\!\rangle (\mathsf{G}p_1 \lor \mathsf{F}p_2).$
- (b) Show that there is no strategy  $\sigma$  for the agent 1 such that there is  $B \ge 1$  for which for all computations  $\lambda \in \text{Comp}(s_1, \sigma)$ ,
  - i.  $\mathfrak{M}^{\star}, \lambda \models \mathsf{G}p_1 \lor \mathsf{F}p_2$  and,
  - ii. if  $\mathfrak{M}^*, \lambda \models \mathsf{F}p_2$  then  $\lambda$  witnesses the satisfaction of  $\mathsf{F}p_2$  before position *B*.

**Exercise 6.** Let  $\models_{pos}$  be the satisfaction relation for ATL formulae when only positional strategies are permitted to witness the satisfaction of formulae whose outermost connective is a strategy modality. Show that  $\models_{pos}$  is equal to  $\models$  for ATL.