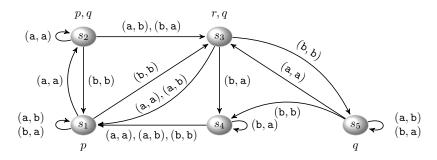
TD: Logical Aspects of Artificial Intelligence Logics for Multi-Agent Systems (05/10/2022)

Exercise 1. Consider the CGS below with two agents, two actions a, b and the propositional variables p, q, r.



Determine which statements below hold.

- 1. $\mathfrak{M}, s_1 \models p \land \langle \! \langle 1 \rangle \! \rangle \mathsf{X} q$
- 2. $\mathfrak{M}, s_2 \models \langle \! \langle 1 \rangle \! \rangle (p \lor r) \mathsf{U} \neg q$
- 3. $\mathfrak{M}, s_1 \models \langle \! \langle 1 \rangle \rangle \mathsf{F}_{\neg} \langle \! \langle 2 \rangle \rangle \mathsf{X}_{\neg} p$
- 4. $\mathfrak{M}, s_1 \models \langle \! \langle 1 \rangle \! \rangle \mathsf{G}p \land \langle \! \langle 2 \rangle \! \rangle \mathsf{G}p \land \langle \! \langle 1, 2 \rangle \! \rangle \mathsf{F} \neg p$
- 5. $\mathfrak{M}, s_2 \models \neg \langle \! \langle 1 \rangle \rangle \mathsf{X}(q \wedge r) \land \neg \langle \! \langle 2 \rangle \rangle \mathsf{X}p \land \neg \langle \! \langle 1, 2 \rangle \rangle \mathsf{X}(p \lor r)$
- 6. $\mathfrak{M}, s_3 \models \langle \! \langle 1 \rangle \rangle \mathsf{G} \langle \! \langle 1, 2 \rangle \! \rangle (\neg q \mathsf{U} p)$

Exercise 2. Let $\mathfrak{M} = (Agt, S, Act, \mathtt{act}, \delta, L)$ be a concurrent game structure (CGS) $A, A' \subseteq Agt$ be coalitions such that $A \cap A' = \emptyset$, $s \in S$ and φ , φ' be ATL formulae built over coalitions from Agt.

- 1. Show that if $\mathfrak{M}, s \models (\langle\!\langle A \rangle\!\rangle \mathbf{G}\varphi) \land (\langle\!\langle A' \rangle\!\rangle \mathbf{G}\varphi')$ then $\mathfrak{M}, s \models \langle\!\langle A \cup A' \rangle\!\rangle \mathbf{G}(\varphi \land \varphi')$.
- 2. Is it always the case that if $\mathfrak{M}, s \models (\langle\!\langle A \rangle\!\rangle \mathsf{F}\varphi) \land (\langle\!\langle A' \rangle\!\rangle \mathsf{F}\varphi')$ then $\mathfrak{M}, s \models \langle\!\langle A \cup A' \rangle\!\rangle \mathsf{F}(\varphi \land \varphi')$?

Exercise 3. (from exam 2021/2022) Given a concurrent game structure $\mathfrak{M} = (Agt, S, Act, \operatorname{act}, \delta, L)$, coalitions $A \subseteq A' \subseteq Agt$ and a state $s \in S$, show that

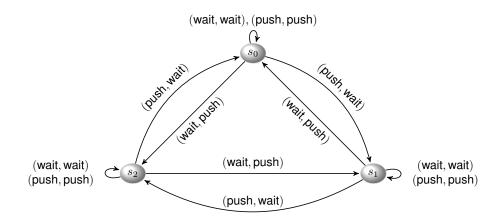
$$\mathfrak{M}, s \models (\langle\!\langle \emptyset \rangle\!\rangle \mathsf{X} p \land \langle\!\langle A \rangle\!\rangle \mathsf{X} q) \Rightarrow \langle\!\langle A' \rangle\!\rangle \mathsf{X} (p \land q).$$

Exercise 4. Show that $\langle\!\langle A \rangle\!\rangle \mathsf{X} \varphi \land \langle\!\langle A' \rangle\!\rangle \mathsf{X} \varphi' \Rightarrow \langle\!\langle A \cup A' \rangle\!\rangle \mathsf{X}(\varphi \land \varphi')$ is valid when $A \cap A' = \emptyset$.

Exercise 5. Let \mathfrak{M} be a CGS, φ, ψ be ATL formulae and $A \subseteq Agt$. Show the following characterisations.

1. $\llbracket \langle \langle A \rangle \rangle G \varphi \rrbracket^{\mathfrak{M}} = \nu Z.(\llbracket \varphi \rrbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, Z)).$ 2. $\llbracket \langle \langle A \rangle \rangle \varphi \mathsf{U} \psi \rrbracket^{\mathfrak{M}} = \mu Z.(\llbracket \psi \rrbracket^{\mathfrak{M}} \cup (\llbracket \varphi \rrbracket^{\mathfrak{M}} \cap \operatorname{pre}(\mathfrak{M}, A, Z))).$

Exercise 6. Consider the concurrent game structure below with state space S and set of agents {Robot₁, Robot₂}.



1. Let σ_{Robot_1} be the positional strategy for Robot_1 such that $\sigma_{\text{Robot}_1}(s_0) =$ wait, $\sigma_{\text{Robot}_1}(s_1) =$ push, $\sigma_{\text{Robot}_1}(s_2) =$ wait. Then, determine the following sets of maximal computations

 $\operatorname{Comp}(s_0, \sigma_{\operatorname{Robot}_1}), \quad \operatorname{Comp}(s_1, \sigma_{\operatorname{Robot}_1}), \quad \operatorname{Comp}(s_2, \sigma_{\operatorname{Robot}_1}).$

Use ω -regular expressions to define such sets of computations.

2. Let Robot₁ adopt the following memoryful strategy $\sigma_{\text{Robot}_1}^m$. Below, " $\sigma(E) =$ a" for a regular expression *E*, indicates that the value of σ for every element of *E* is a. So, a is the action choosen by Robot₁ (below, we do not use anymore the notation with the joint action f)

$$\sigma^m_{\mathsf{Robot}_1}(\{s_0, s_1\}^+) = \mathsf{wait} \ , \quad \sigma^m_{\mathsf{Robot}_1}(\{s_0, s_1\}^* s_2 S^*) = \mathsf{push} \ .$$

That is, the strategy prescribes waiting until the state s_2 is visited, if ever, and then pushing forever. Define a Büchi automaton \mathcal{B} over the alphabet $\Sigma = \{s_1, s_2, s_3\}$ such that the language of ω -words accepted by \mathcal{B} is the set of maximal computations $\text{Comp}(s_1, \sigma^m_{\text{Robot}_1})$ (omitting the joint actions between two successive states). For instance, \mathcal{B} should accept the word $s_1s_0s_2^{\omega}$.