The correction below for the exercises 1-5 is more detailed than what was expected in the copies. Moreover, the subject (exercises 1 to 4, bonus exercise 5) was a bit too long for a two-hour exam but this has been taken into account in the grading.

Solution for the exercise 1.

1. We have $\mathcal{T} \not\models A_0 \sqsubseteq \exists r.A_1$ iff there is some interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ such that $\mathcal{I} \models \mathcal{T}$ and there is $a \in \Delta^\mathcal{I}$ such that $a \in A_0^\mathcal{I}$ and $a \notin (\exists r.A_1)^\mathcal{I}$. Let $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ with $\Delta^\mathcal{I} = \{0\}$, $r^\mathcal{I} = \emptyset$ for all role names r, $A_0^\mathcal{I} \overset{\text{def}}{=} \{0\}$, $A_3^\mathcal{I} \overset{\text{def}}{=} \{0\}$, $A_5^\mathcal{I} \overset{\text{def}}{=} \{0\}$, and $B^\mathcal{I} = \emptyset$ for all other concept names B.

 - We have $0 \in A_0^\mathcal{I}$ and $0 \notin \exists r.A_1^\mathcal{I}$.
 - $\mathcal{I} \models A_0 \sqsubseteq \forall r.A_1$ because $A_0^\mathcal{I} = (\forall r.A_1)^\mathcal{I} = \{0\}$.
 - $\mathcal{I} \models A_1 \sqsubseteq \neg A_4$ because $A_1^\mathcal{I} = \emptyset$.
 - $\mathcal{I} \models A_0 \sqsubseteq A_2 \cup A_3$ because $A_0^\mathcal{I} = (A_2 \cup A_3)^\mathcal{I} = \{0\}$.
 - $\mathcal{I} \models A_2 \sqsubseteq \exists r.A_4$ because $A_2^\mathcal{I} = \emptyset$.
 - $\mathcal{I} \models \exists r.\neg A_1 \sqsubseteq A_5$ because $(\exists r.\neg A_1)^\mathcal{I} = \emptyset$ and $A_5^\mathcal{I} = \{0\}$.
 - $\mathcal{I} \models A_3 \sqsubseteq A_5$ because $A_3^\mathcal{I} = A_5^\mathcal{I} = \{0\}$.

 Consequently, $\mathcal{I} \models \mathcal{T}$ and therefore $\mathcal{T} \models A_0 \sqsubseteq \exists r.A_1$ does not hold.

2. *Ad absurdum*, suppose that \mathcal{K} is consistent. So, there is an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models A$ and in particular

 (a) $(a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I}$,
 (b) $a^\mathcal{I} \in A_0^\mathcal{I}$,
 (c) $b^\mathcal{I} \in A_4^\mathcal{I}$,
 (d) $\mathcal{I} \models \{A_0 \sqsubseteq \forall r.A_1, A_1 \sqsubseteq \neg A_4\}$.

As (a) and (b), $\mathcal{I} \models A_0 \sqsubseteq \forall r.A_1$ entails $b^\mathcal{I} \in A_1^\mathcal{I}$. As $\mathcal{I} \models A_1 \sqsubseteq \neg A_4$, we conclude $b^\mathcal{I} \notin A_4^\mathcal{I}$, which is in contradiction with (c). Consequently, \mathcal{K} is not consistent.
Solution for the exercise 2.

1. In order to use the tableaux calculus for ALC introduced in the course, the concepts in K need to be in NNF and, the GCI$s should be of the form $\top \sqsubseteq C$. The knowledge base K can be transformed into the logically equivalent $K' = (T', A')$ with

$$T' = \{ \top \sqsubseteq \neg A \sqcup \exists r. A \} \quad A' = \{ a: (A \sqcap (\exists r. B)) \sqcup \exists r. \neg B \}$$

In order to show that K is consistent, it is sufficient to derive from A' an ABox A'' (i.e. $A' \Rightarrow A''$) using the tableaux rule for ALC with the \sqsubseteq-rule parameterised by T' such that A'' is clash-free and complete when the blocking technique is used. We provide a derivation of A'' from the leftmost branch of the tableaux in Figure 1 such that A'' is made of all the concept assertions and role assertions from that leftmost branch. Note that A'' is clash-free and complete. Other branches leading to clashes are shown on the tableau but are not strictly speaking needed.

2. (T, A) and (T', A') have exactly the same interpretations because transforming a concept into an equivalent concept in NNF preserves the semantics and similarly $C \sqsubseteq C'$ and $\top \sqsubseteq \neg C \cup C'$ are satisfied by exactly the same interpretations.

According to the soundness proof with blocking, an interpretation I such that $I \models (T', A')$ can be built from A'' such that

- Δ^I is the set of individual names occurring in A'' except the blocked ones,
- $(A^*)^I$ is equal to the set of individual names a in Δ^I such that $a : A^* \in A''$,
- For all individual names $a, b \in \Delta^I$, $(a, b) \in r^I$ iff either $(a, b) : r \in A''$ or there is a blocked individual names b'' in A'' such that $(a, b'') : r \in A''$ and b'' is blocked by b.

Consequently, an interpretation I satisfying (T', A') (and therefore satisfying also (T, A)) is defined as follows.

- $\Delta^I \equiv \{ a, b_1, b_2 \}$.

2
Figure 1: A “tableaux” for deriving the complete and clash-free A
• $A^I \overset{\text{def}}{=} \{ a \}$, $B^I \overset{\text{def}}{=} \{ b_2 \}$, and the interpretation of the other concept names is arbitrary.

• $r^I \overset{\text{def}}{=} \{(a, b_1), (a, b_2), (b_1, b_1)\}$ and the interpretation of the other role names is arbitrary.

The soundness proof guarantees that $\mathcal{I} \models \mathcal{K}$ but this could be also checked directly.

Solution for the exercise 3. Let us show that $\langle A \rangle^\mathcal{G} \varphi \Rightarrow (\varphi \land \langle A \rangle^\mathcal{X} \langle A \rangle^\mathcal{G} \varphi)$ is valid for ATL, that is for all CGS \mathcal{M} and states s, we have $\mathcal{M}, s \models \langle A \rangle^\mathcal{G} \varphi$ implies $\mathcal{M}, s \models \varphi \land \langle A \rangle^\mathcal{X} \langle A \rangle^\mathcal{G} \varphi$.

Let \mathcal{M} and s be such that $\mathcal{M}, s \models \langle A \rangle^\mathcal{G} \varphi$. Below, we shall show that $\mathcal{M}, s \models \varphi \land \langle A \rangle^\mathcal{X} \langle A \rangle^\mathcal{G} \varphi$. By definition of the semantics for ATL, there is a strategy F for the coalition A such that for all computations $\lambda \in \text{Comp}(s, F)$, for all positions $i \in \mathbb{N}$, we have $\mathcal{M}, \lambda(i) \models \varphi$. As $\text{Comp}(s, F)$ is non-empty (the action manager always returns a non-empty set of actions for each pair (a, s)), there is a computation $\lambda \in \text{Comp}(s, F)$ and therefore $\mathcal{M}, \lambda(0) \models \varphi$. But $\lambda(0)$ is precisely s, whence $\mathcal{M}, s \models \varphi$. It remains to show that $\mathcal{M}, s \models \langle A \rangle^\mathcal{X} \langle A \rangle^\mathcal{G} \varphi$.

Let $f = F(s)$ be the joint action for the coalition A and we know that $\text{out}(s, f) \subseteq [\varphi]^\mathcal{M}$ since $\mathcal{M}, s \models \langle A \rangle^\mathcal{G} \varphi$. Suppose that $\text{out}(s, f) = \{ s_1^*, \ldots , s_n^* \}$ for some $\alpha \geq 1$.

For each $i \in [1, \alpha]$, let F_i^* be a strategy such that for each history $s_0' \cdots s_n'$ with $s_0' = s_i^*$, we have $F_i^*(s_0' \cdots s_n') \overset{\text{def}}{=} F(s_0' \cdots s_n')$. Consequently, for all $\lambda \in \text{Comp}(s_i^*, F_i^*)$, $s \cdots \lambda \in \text{Comp}(s, F)$ (here we use the fact that $f = F(s)$ and $s_i^* \in \text{out}(s, f)$). Hence, for all positions $j \in \mathbb{N}$, we have $\mathcal{M}, \lambda(j) \models \varphi$ and therefore $\mathcal{M}, s_i^* \models \langle A \rangle^\mathcal{G} \varphi$. This means that $\text{out}(s, f) \subseteq [\langle A \rangle^\mathcal{G} \varphi]^\mathcal{M}$. However, $\mathcal{M}, s \models \langle A \rangle^\mathcal{X} \langle A \rangle^\mathcal{G} \varphi$ precisely when there is joint action f' such that $\text{out}(s, f') \subseteq [\langle A \rangle^\mathcal{G} \varphi]^\mathcal{M}$. Hence, $\mathcal{M}, s \models \langle A \rangle^\mathcal{X} \langle A \rangle^\mathcal{G} \varphi$.

Solution for the exercise 4.

1. Here is the derivation of $A_1 \subseteq A_2$.

$$
\frac{
A_1 \subseteq B_2
\quad B_1 \cap B_2 \subseteq A_2
}{
A_1 \subseteq A_2
} \quad \frac{
A_1 \subseteq \exists r.A_1
\quad A_1 \subseteq B
}{
A_1 \subseteq \exists r.B
} \quad \frac{
\exists r.A_1 \subseteq \exists r.B
\quad A_1 \subseteq B
}{
\exists r.B \subseteq B_1
} \quad \frac{
\exists r.B \subseteq B_1
\quad A_1 \subseteq B_1
}{
A_1 \subseteq A_2
}
$$
2. First, suppose that $S(T) \subseteq \{A_1^*, \ldots, A_n^*\} \cup \{r_1, \ldots, r_\beta\}$ for some $\alpha, \beta \geq 1$ where each A_i^* is a concept name and each r_i is a role name. As T is finite, α and β always exist. Let us define T^c as $\{C \sqsubseteq D \mid T \vdash C \sqsubseteq D\}$. Thanks to the ϵ-rule, $T \subseteq T^c$ and T^c is simple and complete. The fact that T^c is simple is only due to the property that all the conclusions in inference rules are authorised GCIs in simple TBoxes. Note that completeness is a consequence of the property: $T^c \vdash C \sqsubseteq D$ implies $T \vdash C \sqsubseteq D$. Furthermore, observe that the set of GCIs of the form

$$A \sqsubseteq B \quad A \sqcap A_2 \sqsubseteq B \quad A \sqsubseteq \exists r.B \quad \exists r.A \sqsubseteq B$$

built from $S(T)$ is finite and actually cubic in $\alpha + \beta$. Consequently, T^c is finite. Hence, T^c is a simple and complete TBox with $T \subseteq T^c$. In order to establish that T^c is the smallest such a set, ad absurdum, suppose that $T \subseteq T' \subset T^c$, and T' is simple and complete. So, there is $C \sqsubseteq D$ such that $T \vdash C \sqsubseteq D$ and $C \sqsubseteq D \notin T'$. As $T \subseteq T'$, we can also conclude that $T' \vdash C \sqsubseteq D$. However, we have just seen that $C \sqsubseteq D \notin T'$, which is in contradiction with the completeness of T'. In order to compute T^c, we proceed as follows (saturation algorithm). Given a simple TBox T, we write $C(T)$ to denote the set of GCIs obtained from T by applying one inference rule from premisses in T. As each rule involves at most three premisses, and each rule inference can be checked in linear time in the size of its premisses, computing $C(T)$ requires cubic time in the size of T. Here is the saturation algorithm.

- $X = T$;
- While $C(X) \neq X$ do $X := C(X)$;
- return X.

The while loop is visited a number of times at most cubic in $\alpha + \beta$ and the size of X is also at most cubic in $\alpha + \beta$. Hence, the returned value X is computed in cubic time in T and is equal to T^c.

3. The proof is on the length of the derivation to establish $T \vdash C \sqsubseteq D$. In order to provide a complete formal treatment, let us introduce the notion T-derivation. A T-derivation is a sequence $C_1 \sqsubseteq
$D_1, \ldots, C_K \subseteq D_K$ ($K \geq 1$) such that for all $i \in [1, K]$, at least one of the conditions below holds.

(a) $C_i \subseteq D_i \in \mathcal{T}$ (use of the \in-rule).
(b) $C_i \subseteq D_i$ is of the form $A \subseteq A$ for some concept name A in $S(T)$ (use of the id-rule).
(c) $C_i \subseteq D_i$ is of the form $A \subseteq \top$ for some concept name A in $S(T)$ (use of the \top-rule).
(d) there are $i_1, i_2 < i$ such that $C_{i_1} = C_i$, $D_{i_1} = C_{i_2}$, $D_{i_2} = D_i$ (use of the trans-rule).
(e) Similarly (and we omit the very details herein), there are GCIs that occur strictly before $C_i \subseteq D_i$ in the sequence that can be used as premisses for either the \exists-rule or the \sqcap-rule leading exactly to the conclusion $C_i \subseteq D_i$.

So, $\mathcal{T} \vdash C \subseteq D$ iff there is a \mathcal{T}-derivation $(C_1 \subseteq D_1, \ldots, C_K \subseteq D_K)$ such that $C_K \subseteq D_K$ is equal to $C \subseteq D$. It remains to show that for all the \mathcal{T}-derivations $(C_1 \subseteq D_1, \ldots, C_K \subseteq D_K)$, we have $\mathcal{T} \vdash C_K \subseteq D_K$ (which guarantees that for all interpretations \mathcal{I}, we have $\mathcal{I} \vdash \mathcal{T}$ iff $\mathcal{I} \vdash \mathcal{T} \cup \{C_K \subseteq D_K\}$).

The proof is by induction on i. For the base case, $C_1 \subseteq D_1$ satisfies one condition among (a), (b), (c). As $A \subseteq A$ and $A \subseteq \top$ hold in all interpretations, the cases for (b) and (c) are immediate. Similarly, obviously $\mathcal{T} \vdash C_1 \subseteq D_1$. Indeed, $\mathcal{I} \vdash \mathcal{T}$ implies for all $C \subseteq D \in \mathcal{T}$, we have $\mathcal{I} \vdash C \subseteq D$. In particular, this leads to $\mathcal{I} \vdash C_1 \subseteq D_1$ as $C_1 \subseteq D_1 \in \mathcal{T}$ in the case (a).

For the induction step, we only treat the cases with the trans-rule and the \exists-rule, the case with the \forall-rule is omitted but very similar.

Suppose that

$$
\frac{\mathcal{T} \vdash C_i \subseteq D_{i_1}, \mathcal{T} \vdash D_{i_2} \subseteq D_i}{\mathcal{T} \vdash C_i \subseteq D_i}
$$

with $i_1, i_2 < i$ and $C_{i_1} = C_i$, $D_{i_1} = C_{i_2}$, $D_{i_2} = D_i$. By (IH), $\mathcal{T} \vdash C_i \subseteq D_{i_1}$ and $\mathcal{T} \vdash D_{i_2} \subseteq D_i$. Let \mathcal{I} be an interpretation such that $\mathcal{I} \vdash \mathcal{T}$. So $\mathcal{I} \vdash \{C_i \subseteq D_{i_1}, D_{i_1} \subseteq D_i\}$, which leads to $C_i^\mathcal{I} \subseteq D_i^\mathcal{I}$ by transitivity of
set-inclusion and therefore $I \models C_i \subseteq D_i$. Consequently $T \models C_i \subseteq D_i$ as I above were arbitrary.

Consider now the case of the \exists-rule.

\[
\frac{T \vdash A \subseteq \exists r.A_1, T \vdash A_1 \subseteq B_1}{T \vdash A \subseteq \exists r.B_1} \quad \text{\exists-rule}
\]

Let I be an interpretation such that $I \models T$. By (IH), $I \models \{A \subseteq \exists r.A_1, A_1 \subseteq B_1\}$. In particular, this entails that $I \models \exists r.A_1 \subseteq \exists r.B_1$ as $I \models A_1 \subseteq B_1$. Indeed, $(a, b) \in r^I$ and $b \in A_1^I$ imply $(a, b) \in r^I$ and $b \in B_1^I$ as $A_1^I \subseteq B_1^I$. Now $I \models \{A \subseteq \exists r.A_1, \exists r.A_1 \subseteq \exists r.B_1\}$ implies $I \models A \subseteq \exists r.B_1$ by transitivity of set-inclusion. Consequently $T \models C_i \subseteq D_i$ as I above were arbitrary.

To conclude, suppose that $C \subseteq D \in T^c$. By definition of T^c, we have $T \vdash C \subseteq D$. According to the developments above, we get $T \models C \subseteq D$.

4. First, let us check that $T^I = \Delta^I$. By definition, T^I is equal to $\{A \in \Delta^I \mid A \subseteq T \in T^c\}$. Since T^c is complete, by application of the \top-rule, for all concept names in $S(T)$, we have $A \subseteq T \in T^c$. Hence T^I is equal to the set of all concept names in $S(T)$ (including \top), which is precisely Δ^I by definition.

Let us show that $I \models T^c$. We make a case analysis and we use the fact that T^c is complete.

$A \subseteq B \in T^c$. Suppose that $A' \in A^I$. By definition, $A' \subseteq A \in T^c$. As T^c is complete, by application of the trans-rule, we get $A' \subseteq B \in T^c$. By definition of I, $A' \in B^I$. In conclusion, $I \models A \subseteq B$.

$A \subseteq \exists r.B \in T^c$. Suppose that $A' \in A^I$. By definition, $A' \subseteq A \in T^c$. As T^c is complete, by application of the trans-rule, we get $A' \subseteq \exists r.B \in T^c$. By definition of r^I, we have $(A', B) \in r^I$. Moreover, $B \in B^I$ as $B \subseteq B \in T^c$ by completeness of T^c and thanks to the id-rule. Hence, $A' \in (\exists r.B)^I$. In conclusion, $I \models A \subseteq \exists r.B$.

$\exists r.A \subseteq B \in T^c$. Suppose that $A' \in (\exists r.A)^I$. So, there is A'' such that $(A', A'') \in r^I$ and $A'' \in A^I$. By definition of r^I, $A' \subseteq \exists r'.A'' \in T^c$. Hence, $A'' \subseteq B \in T^c$ by completeness of T^c. Consequently, $I \models A' \subseteq B$.
By definition of A^2, $A'' \subseteq A \in T^c$. By completeness of T^c and the \exists-rule, we have $A' \subseteq \exists r.A \in T^c$. By completeness of T^c and the trans-rule, $A' \subseteq B \in T^c$. By definition of B^\perp, we get $A' \in B^\perp$.

In conclusion, $I \models A \subseteq B$.

5. Suppose that $A \subseteq B \not\in T^c$. By definition of B^\perp, $A \not\in B^\perp$. Moreover, $A \in A^2$ as $A \subseteq A \in T^c$ thanks to the id-rule. Consequently, $I \models T$ (since $I \models T^c$ and $T \subseteq T^c$), and $I \not\models A \subseteq B$. So, $T \not\models A \subseteq B$.

6. By combining the answers for the questions 3. and 5., we get that $A \subseteq B \in T^c$ iff $T \models A \subseteq B$. By the question 2., T^c can be computed in polynomial time in the size of T. Here is the simple polynomial-time algorithm to check whether for all interpretations I, $(I \models T$ implies $I \models A \subseteq B)$.

(a) compute T^c from T;
(b) check whether $A \subseteq B$ belongs to T^c.

Solution for the exercise 5.

1. Figure contains a graphical representation of the CGS $M_{T,n}$ with $T = \{t_0, t_1\}$ and $n = 3$. Note that for any T and n, for all infinite computations λ starting from $(0, 0, t_0)$, for all $i, j \in [0, n - 1]$, there is a unique position I such that $\lambda(I)$ is of the form (i, j, t).

2. The path formula $\text{Error}^H(i, j)$ is defined as

$$\bigvee_{t \in T} \left(\left(F((i, j) \mapsto t) \land \bigvee_{t', (t', t) \in H} F((i - 1, j) \mapsto t') \right) \right)$$

3. The path formula $\text{Error}^V(i, j)$ is defined as

$$\bigvee_{t \in T} \left(\left(F((i, j) \mapsto t) \land \bigvee_{t', (t', t) \not\in V} F((i, j - 1) \mapsto t') \right) \right)$$
Figure 2: CGS $\mathcal{M}_{T,n}$ with $T = \{t_0, t_1\}$ and $n = 3$
4. The formula $\varphi_{T,n}$ is defined as follows, taking advantage of the property (that would need to be proved) that strategies for Player 2 in the $(n \times n)$-tiling game problem correspond to strategies for agent 2 in $\mathcal{M}_{T,n}$ as far as the infinite computations from $(0, 0, t_0)$ are concerned.

\[
\begin{align*}
\langle\langle 2 \rangle\rangle \left(\bigwedge_{i \in [1,n-1]} \neg \text{Error}^H(i,0) \right) & \land \\
\left(\bigwedge_{j \in [1,n-1]} \left(\bigvee_{i \in [1,n-1]} (\text{Error}^H(i,j) \lor \text{Error}^V(i,j)) \Rightarrow \bigvee_{j' \in [1,j]} \text{Error}^V(0,j') \right) \right)
\end{align*}
\]

As $\mathcal{M}_{T,n}$ is of polynomial size in the size of T and n, and $\varphi_{T,n}$ is of polynomial size in the size of T and n, the above developments correspond to key steps to establish that the model-checking problem for ATL is PSPACE-hard.