# Logical Aspects of AI: Knowledge Logics Correction of the exam – January 13th, 2021, 2pm-6pm, online

The correction below for the exercices 1-5 is more detailed than what was expected in the copies. Moreover, the subject (exercises 1 to 4, bonus exercise 5) was a bit too long for a two-hour exam but this has been taken into account in the grading.

### Solution for the exercise 1.

- 1. We have  $\mathcal{T} \not\models A_0 \sqsubseteq \exists r.A_1$  iff there is some interpretation  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ such that  $\mathcal{I} \models \mathcal{T}$  and there is  $\mathfrak{a} \in \Delta^{\mathcal{I}}$  such that  $\mathfrak{a} \in A_0^{\mathcal{I}}$  and  $\mathfrak{a} \notin (\exists r.A_1)^{\mathcal{I}}$ . Let  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$  with  $\Delta^{\mathcal{I}} = \{0\}, r^{\mathcal{I}} = \emptyset$  for all role names  $r, A_0^{\mathcal{I}} \stackrel{\text{def}}{=} \{0\}, A_3^{\mathcal{I}} \stackrel{\text{def}}{=} \{0\}, A_5^{\mathcal{I}} \stackrel{\text{def}}{=} \{0\}$ , and  $B^{\mathcal{I}} = \emptyset$  for all other concept names B.
  - We have  $0 \in A_0^{\mathcal{I}}$  and  $0 \notin \exists r. A_1^{\mathcal{I}}$ .
  - $\mathcal{I} \models A_0 \sqsubseteq \forall r.A_1 \text{ because } A_0^{\mathcal{I}} = (\forall r.A_1)^{\mathcal{I}} = \{0\}.$
  - $\mathcal{I} \models A_1 \sqsubseteq \neg A_4$  because  $A_1^{\mathcal{I}} = \emptyset$ .
  - $\mathcal{I} \models A_0 \sqsubseteq A_2 \sqcup A_3$  because  $A_0^{\mathcal{I}} = (A_2 \sqcup A_3)^{\mathcal{I}} = \{0\}.$
  - $\mathcal{I} \models A_2 \sqsubseteq \exists r.A_4 \text{ because } A_2^{\mathcal{I}} = \emptyset.$
  - $\mathcal{I} \models \exists r. \neg A_1 \sqsubseteq A_5$  because  $(\exists r. \neg A_1)^{\mathcal{I}} = \emptyset$  and  $A_5^{\mathcal{I}} = \{0\}$ .
  - $\mathcal{I} \models A_3 \sqsubseteq A_5$  because  $A_3^{\mathcal{I}} = A_5^{\mathcal{I}} = \{0\}$ .

Consequently,  $\mathcal{I} \models \mathcal{T}$  and therefore  $\mathcal{T} \models A_0 \sqsubseteq \exists r.A_1 \text{ does not hold.}$ 

- 2. *Ad absurdum*, suppose that  $\mathcal{K}$  is consistent. So, there is an interpretation  $\mathcal{I}$  such that  $\mathcal{I} \models \mathcal{T}$  and  $\mathcal{I} \models \mathcal{A}$  and in particular
  - (a)  $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$ ,
  - (b)  $a^{\mathcal{I}} \in A_0^{\mathcal{I}}$ ,
  - (c)  $b^{\mathcal{I}} \in A_4^{\mathcal{I}}$ ,
  - (d)  $\mathcal{I} \models \{A_0 \sqsubseteq \forall r.A_1, A_1 \sqsubseteq \neg A_4\}.$

As (a) and (b),  $\mathcal{I} \models A_0 \sqsubseteq \forall r.A_1$  entails  $b^{\mathcal{I}} \in A_1^{\mathcal{I}}$ . As  $\mathcal{I} \models A_1 \sqsubseteq \neg A_4$ , we conclude  $b^{\mathcal{I}} \notin A_4^{\mathcal{I}}$ , which is in contradiction with (c). Consequently,  $\mathcal{K}$  is not consistent.

#### Solution for the exercise 2.

1. In order to use the tableaux calculus for  $\mathcal{ALC}$  introduced in the course, the concepts in  $\mathcal{K}$  need to be in NNF and, the GCIs should be of the form  $\top \sqsubseteq C$ . The knowledge base  $\mathcal{K}$  can be transformed into the logically equivalent  $\mathcal{K}' = (\mathcal{T}', \mathcal{A}')$  with

$$\mathcal{T}' = \{ \top \sqsubseteq \neg A \sqcup \exists r.A \} \quad \mathcal{A}' = \{ a : (A \sqcap (\exists r.B)) \sqcap \exists r. \neg B \}$$

In order to show that  $\mathcal{K}$  is consistent, it is sufficient to derive from  $\mathcal{A}'$  an ABox  $\mathcal{A}''$  (i.e.  $\mathcal{A}' \xrightarrow{*} \mathcal{A}''$ ) using the tableaux rule for  $\mathcal{ALC}$  with the  $\sqsubseteq$ -rule parameterised by  $\mathcal{T}'$  such that  $\mathcal{A}''$  is clash-free and complete when the blocking technique is used. We provide a derivation of  $\mathcal{A}''$  from the leftmost branch of the tableaux in Figure 1 such that  $\mathcal{A}''$  is made of all the concept assertions and role assertions from that leftmost branch. Note that  $\mathcal{A}''$  is clash-free and complete. Other branches leading to clashes are shown on the tableau but are not strictly speaking needed.

2.  $(\mathcal{T}, \mathcal{A})$  and  $(\mathcal{T}', \mathcal{A}')$  have exactly the same interpretations because transforming a concept into an equivalent concept in NNF preserves the semantics and similarly  $C \sqsubseteq C'$  and  $\top \sqsubseteq \neg C \sqcup C'$  are satisfied by exactly the same interpretations.

According to the soundness proof with blocking, an interpretation  $\mathcal{I}$  such that  $\mathcal{I} \models (\mathcal{T}', \mathcal{A}')$  can be built from  $\mathcal{A}''$  such that

- Δ<sup>*I*</sup> is the set of individual names occurring in *A*" except the blocked ones,
- $(A^*)^{\mathcal{I}}$  is equal to the set of individual names a in  $\Delta^{\mathcal{I}}$  such that  $a: A^* \in \mathcal{A}''$ ,
- For all individual names  $a, b \in \Delta^{\mathcal{I}}$ ,  $(a, b) \in r^{\mathcal{I}}$  iff either  $(a, b) : r \in \mathcal{A}''$  or there is a blocked individual names b'' in  $\mathcal{A}''$  such that  $(a, b'') : r \in \mathcal{A}''$  and b'' is blocked by b.

Consequently, an interpretation  $\mathcal{I}$  satisfying  $(\mathcal{T}', \mathcal{A}')$  (and therefore satisfying also  $(\mathcal{T}, \mathcal{A})$ ) is defined as follows.

•  $\Delta^{\mathcal{I}} \stackrel{\text{\tiny def}}{=} \{a, b_1, b_2\}.$ 



Figure 1: A "tableaux" for deriving the complete and clash-free A"

- *A*<sup>*I*</sup> <sup>def</sup> = {*a*}, *B*<sup>*I*</sup> <sup>def</sup> = {*b*<sub>2</sub>}, and the interpretation of the other concept names is arbitrary.
- *r*<sup>⊥</sup> <sup>def</sup> = {(a, b<sub>1</sub>), (a, b<sub>2</sub>), (b<sub>1</sub>, b<sub>1</sub>)} and the interpretation of the other role names is arbitrary.

The soundness proof guarantees that  $\mathcal{I} \models \mathcal{K}$  but this could be also checked directly.

**Solution for the exercise 3**. Let us show that  $\langle\!\langle A \rangle\!\rangle G\varphi \Rightarrow (\varphi \land \langle\!\langle A \rangle\!\rangle X \langle\!\langle A \rangle\!\rangle G\varphi)$  is valid for ATL, that is for all CGS  $\mathfrak{M}$  and states *s*, we have  $\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle G\varphi$  implies  $\mathfrak{M}, s \models \varphi \land \langle\!\langle A \rangle\!\rangle X \langle\!\langle A \rangle\!\rangle G\varphi$ .

Let  $\mathfrak{M}$  and s be such that  $\mathfrak{M}, s \models \langle \langle A \rangle \rangle \mathbf{G} \varphi$ . Below, we shall show that  $\mathfrak{M}, s \models \varphi \land \langle \langle A \rangle \rangle \mathbf{X} \langle \langle A \rangle \rangle \mathbf{G} \varphi$ . By definition of the semantics for ATL, there is a strategy F for the coalition A such that for all computations  $\lambda \in \text{Comp}(s, F)$ , for all positions  $i \in \mathbb{N}$ , we have  $\mathfrak{M}, \lambda(i) \models \varphi$ . As Comp(s, F) is non-empty (the action manager always returns a non-empty set of actions for each pair (a, s)), there is a computation  $\lambda \in \text{Comp}(s, F)$  and therefore  $\mathfrak{M}, \lambda(0) \models \varphi$ . But  $\lambda(0)$  is precisely s, whence  $\mathfrak{M}, s \models \varphi$ . It remains to show that  $\mathfrak{M}, s \models \langle \langle A \rangle \rangle \mathbf{X} \langle \langle A \rangle \rangle \mathbf{G} \varphi$ .

Let  $\mathfrak{f} = F(s)$  be the joint action for the coalition A and we know that  $\operatorname{out}(s,\mathfrak{f}) \subseteq \llbracket \varphi \rrbracket^{\mathfrak{M}}$  since  $\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle \mathsf{G}\varphi$ . Suppose that  $\operatorname{out}(s,\mathfrak{f}) = \{s_1^*, \ldots, s_{\alpha}^*\}$  for some  $\alpha \ge 1$ .

For each  $i \in [1, \alpha]$ , let  $F_i^*$  be a strategy such that for each history  $s'_0 \cdots s'_n$ with  $s'_0 = s_i^*$ , we have  $F_i^*(s'_0 \cdots s'_n) \stackrel{\text{def}}{=} F(ss'_0 \cdots s'_n)$ . Consequently, for all  $\lambda \in \text{Comp}(s_i^*, F_i^*)$ ,  $s \cdot \lambda \in \text{Comp}(s, F)$  (here we use the fact that  $\mathfrak{f} = F(s)$ and  $s_i^* \in \text{out}(s, \mathfrak{f})$ ). Hence, for all positions  $j \in \mathbb{N}$ , we have  $\mathfrak{M}, \lambda(j) \models \varphi$ and therefore  $\mathfrak{M}, s_i^* \models \langle\!\langle A \rangle\!\rangle \mathsf{G}\varphi$ . This means that  $\text{out}(s, \mathfrak{f}) \subseteq [\![\langle\!\langle A \rangle\!\rangle \mathsf{G}\varphi]\!]^{\mathfrak{M}}$ . However,  $\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle \mathsf{G}\varphi]^{\mathfrak{M}}$ . Hence,  $\mathfrak{M}, s \models \langle\!\langle A \rangle\!\rangle \mathsf{G}\varphi$ .

## Solution for the exercise 4.

1. Here is the derivation of  $A_1 \sqsubseteq A_2$ .

$$\frac{A_1 \sqsubseteq B_2}{A_1 \sqsubseteq B_2} \in \frac{A_1 \sqsubseteq \exists r.A_1}{B_1 \sqcap B_2 \sqsubseteq A_2} \in \frac{A_1 \sqsubseteq \exists r.A_1}{A_1 \sqsubseteq B} \stackrel{\neg}{=} \frac{A_1 \sqsubseteq B}{A_1 \sqsubseteq B} \stackrel{\neg}{=} \frac{A_1 \sqsubseteq B}{A_1 \sqsubseteq B_1} \stackrel{\neg}{=} \frac{A_1 \sqsubseteq B_1}{A_1 \sqsubseteq B_1} \stackrel{\neg}{=} \frac{A_1 \sqsubseteq B_1}{A_1 \sqsubseteq A_2}$$

2. First, suppose that  $S(\mathcal{T}) \subseteq \{A_1^*, \ldots, A_{\alpha}^*\} \cup \{r_1, \ldots, r_{\beta}\}$  for some  $\alpha, \beta \geq 1$  where each  $A_i^*$  is a concept name and each  $r_i$  is a role name. As  $\mathcal{T}$  is finite,  $\alpha$  and  $\beta$  always exist. Let us define  $\mathcal{T}^c$  as  $\{C \sqsubseteq D \mid \mathcal{T} \vdash C \sqsubseteq D\}$ . Thanks to the  $\in$ -rule,  $\mathcal{T} \subseteq \mathcal{T}^c$  and  $\mathcal{T}^c$  is simple and complete. The fact that  $\mathcal{T}^c$  is simple is only due to the property that all the conclusions in inference rules are authorised GCIs in simple TBoxes. Note that completeness is a consequence of the property:  $\mathcal{T}^c \vdash C \sqsubseteq D$  implies  $\mathcal{T} \vdash C \sqsubseteq D$ . Furthermore, observe that the set of GCIs of the form

$$A \sqsubseteq B \quad A_1 \sqcap A_2 \sqsubseteq B \quad A \sqsubseteq \exists r.B \quad \exists r.A \sqsubseteq B$$

built from  $S(\mathcal{T})$  is finite and actually cubic in  $\alpha + \beta$ . Consequently,  $\mathcal{T}^c$  is finite. Hence,  $\mathcal{T}^c$  is a simple and complete TBox with  $\mathcal{T} \subseteq \mathcal{T}^c$ . In order to establish that  $\mathcal{T}^c$  is the smallest such a set, *ad absurdum*, suppose that  $\mathcal{T} \subseteq \mathcal{T}' \subset \mathcal{T}^c$ , and  $\mathcal{T}'$  is simple and complete. So, there is  $C \sqsubseteq D$  such that  $\mathcal{T} \vdash C \sqsubseteq D$  and  $C \sqsubseteq D \notin \mathcal{T}'$ . As  $\mathcal{T} \subseteq \mathcal{T}'$ , we can also conclude that  $\mathcal{T}' \vdash C \sqsubseteq D$ . However, we have just seen that  $C \sqsubseteq D \notin \mathcal{T}'$ , which is in contradiction with the completeness of  $\mathcal{T}'$ .

In order to compute  $\mathcal{T}^c$ , we proceed as follows (saturation algorithm). Given a simple TBox  $\mathcal{T}$ , we write  $C(\mathcal{T})$  to denote the set of GCIs obtained from  $\mathcal{T}$  by applying one inference rule from premisses in  $\mathcal{T}$ . As each rule involves at most three premisses, and each rule inference can be checked in linear time in the size of its premisses, computing  $C(\mathcal{T})$  requires cubic time in the size of  $\mathcal{T}$ . Here is the saturation algorithm.

- $X = \mathcal{T};$
- While  $C(X) \neq X$  do X := C(X);
- return X.

The while loop is visited a number of times at most cubic in  $\alpha + \beta$ and the size of *X* is also at most cubic in  $\alpha + \beta$ . Hence, the returned value *X* is computed in cubic time in  $\mathcal{T}$  and is equal to  $\mathcal{T}^c$ .

3. The proof is on the length of the derivation to establish  $\mathcal{T} \vdash C \sqsubseteq D$ . In order to provide a complete formal treatment, let us introduce the notion  $\mathcal{T}$ -derivation. A  $\mathcal{T}$ -derivation is a sequence ( $C_1 \sqsubseteq$ 

 $D_1, \ldots, C_K \sqsubseteq D_K$  ( $K \ge 1$ ) such that for all  $i \in [1, K]$ , at least one of the conditions below holds.

- (a)  $C_i \sqsubseteq D_i \in \mathcal{T}$  (use of the  $\in$ -rule).
- (b)  $C_i \sqsubseteq D_i$  is of the form  $A \sqsubseteq A$  for some concept name A in  $\mathcal{S}(\mathcal{T})$  (use of the id-rule).
- (c)  $C_i \sqsubseteq D_i$  is of the form  $A \sqsubseteq \top$  for some concept name A in  $\mathcal{S}(\mathcal{T})$  (use of the  $\top$ -rule).
- (d) there are  $i_1, i_2 < i$  such that  $C_{i_1} = C_i, D_{i_1} = C_{i_2}, D_{i_2} = D_i$  (use of the trans-rule).
- (e) Similarly (and we omit the very details herein), there are GCIs that occur strictly before  $C_i \sqsubseteq D_i$  in the sequence that can be used as premisses for either the  $\exists$ -rule or the  $\sqcap$ -rule leading exactly to the conclusion  $C_i \sqsubseteq D_i$ .

So,  $\mathcal{T} \vdash C \sqsubseteq D$  iff there is a  $\mathcal{T}$ -derivation  $(C_1 \sqsubseteq D_1, \ldots, C_K \sqsubseteq D_K)$ such that  $C_K \sqsubseteq D_K$  is equal to  $C \sqsubseteq D$ . It remains to show that for all the  $\mathcal{T}$ -derivations  $(C_1 \sqsubseteq D_1, \ldots, C_K \sqsubseteq D_K)$ , we have  $\mathcal{T} \models C_K \sqsubseteq D_K$ (which guarantees that for all interpretations  $\mathcal{I}$ , we have  $\mathcal{I} \models \mathcal{T}$  iff  $\mathcal{I} \models \mathcal{T} \cup \{C_K \sqsubseteq D_K\}$ ).

The proof is by induction on *i*. For the base case,  $C_1 \sqsubseteq D_1$  satisfies one condition among (a), (b), (c). As  $A \sqsubseteq A$  and  $A \sqsubseteq \top$  hold in all interpretations, the cases for (b) and (c) are immediate. Similarly, obviously  $\mathcal{T} \models C_1 \sqsubseteq D_1$ . Indeed,  $\mathcal{I} \models \mathcal{T}$  implies for all  $C \sqsubseteq D \in \mathcal{T}$ , we have  $\mathcal{I} \models C \sqsubseteq D$ . In particular, this leads to  $\mathcal{I} \models C_1 \sqsubseteq D_1$  as  $C_1 \sqsubseteq D_1 \in \mathcal{T}$  in the case (a).

For the induction step, we only treat the cases with the trans-rule and the  $\exists$ -rule, the case with the  $\sqcap$ -rule is omitted but very similar.

Suppose that

$$\frac{\mathcal{T} \vdash C_i \sqsubseteq D_{i_1}, \ \mathcal{T} \vdash D_{i_1} \sqsubseteq D_i}{\mathcal{T} \vdash C_i \sqsubseteq D_i}$$

with  $i_1, i_2 < i$  and  $C_{i_1} = C_i, D_{i_1} = C_{i_2}, D_{i_2} = D_i$ . By (IH),  $\mathcal{T} \models C_i \sqsubseteq D_{i_1}$  and  $\mathcal{T} \models D_{i_1} \sqsubseteq D_i$ . Let  $\mathcal{I}$  be an interpretation such that  $\mathcal{I} \models \mathcal{T}$ . So  $\mathcal{I} \models \{C_i \sqsubseteq D_{i_1}, D_{i_1} \sqsubseteq D_i\}$ , which leads to  $C_i^{\mathcal{I}} \subseteq D_i^{\mathcal{I}}$  by transitivity of

set-inclusion and therefore  $\mathcal{I} \models C_i \sqsubseteq D_i$ . Consequently  $\mathcal{T} \models C_i \sqsubseteq D_i$  as  $\mathcal{I}$  above were arbitrary.

Consider now the case of the  $\exists$ -rule.

$$\frac{\mathcal{T} \vdash \overbrace{A \sqsubseteq \exists r.A_1}^{= C_{i_1} \sqsubseteq D_{i_1}}, \quad \mathcal{T} \vdash \overbrace{A_1 \sqsubseteq B_1}^{= C_{i_2} \sqsubseteq D_{i_2}}}{\mathcal{T} \vdash \underbrace{A \sqsubseteq \exists r.B_1}_{= C_i \sqsubseteq D_i}} \exists \text{-rule}$$

Let  $\mathcal{I}$  be an interpretation such that  $\mathcal{I} \models \mathcal{T}$ . By (IH),  $\mathcal{I} \models \{A \sqsubseteq \exists r.A_1, A_1 \sqsubseteq B_1\}$ . In particular, this entails that  $\mathcal{I} \models \exists r.A_1 \sqsubseteq \exists r.B_1$ as  $\mathcal{I} \models A_1 \sqsubseteq B_1$ . Indeed,  $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$  and  $\mathfrak{b} \in A_1^{\mathcal{I}}$  imply  $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and  $\mathfrak{b} \in B_1^{\mathcal{I}}$  as  $A_1^{\mathcal{I}} \subseteq B_1^{\mathcal{I}}$ . Now  $\mathcal{I} \models \{A \sqsubseteq \exists r.A_1, \exists r.A_1 \sqsubseteq \exists r.B_1\}$ implies  $\mathcal{I} \models A \sqsubseteq \exists r.B_1$  by transitivity of set-inclusion. Consequently  $\mathcal{T} \models C_i \sqsubseteq D_i$  as  $\mathcal{I}$  above were arbitrary.

To conclude, suppose that  $C \sqsubseteq D \in \mathcal{T}^c$ . By definition of  $\mathcal{T}^c$ , we have  $\mathcal{T} \vdash C \sqsubseteq D$ . According to the developments above, we get  $\mathcal{T} \models C \sqsubseteq D$ .

4. First, let us check that  $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ . By definition,  $\top^{\mathcal{I}}$  is equal to  $\{A \in \Delta^{\mathcal{I}} \mid A \sqsubseteq \top \in \mathcal{T}^c\}$ . Since  $\mathcal{T}^c$  is complete, by application of the  $\top$ -rule, for all concept names in  $\mathcal{S}(\mathcal{T})$ , we have  $A \sqsubseteq \top \in \mathcal{T}^c$ . Hence  $\top^{\mathcal{I}}$  is equal to the set of all concept names in  $\mathcal{S}(\mathcal{T})$  (including  $\top$ ), which is precisely  $\Delta^{\mathcal{I}}$  by definition.

Let us show that  $\mathcal{I} \models \mathcal{T}^c$ . We make a case analysis and we use the fact that  $\mathcal{T}^c$  is complete.

- $A \sqsubseteq B \in \mathcal{T}^c$ . Suppose that  $A' \in A^{\mathcal{I}}$ . By definition,  $A' \sqsubseteq A \in \mathcal{T}^c$ . As  $\mathcal{T}^c$  is complete, by application of the trans-rule, we get  $A' \sqsubseteq B \in \mathcal{T}^c$ . By definition of  $\mathcal{I}, A' \in B^{\mathcal{I}}$ . In conclusion,  $\mathcal{I} \models A \sqsubseteq B$ .
- $A \sqsubseteq \exists r.B \in \mathcal{T}^c$ . Suppose that  $A' \in A^{\mathcal{I}}$ . By definition,  $A' \sqsubseteq A \in \mathcal{T}^c$ . As  $\mathcal{T}^c$  is complete, by application of the trans-rule, we get  $A' \sqsubseteq \exists r.B \in \mathcal{T}^c$ . By definition of  $r^{\mathcal{I}}$ , we have  $(A', B) \in r^{\mathcal{I}}$ . Moreover,  $B \in B^{\mathcal{I}}$  as  $B \sqsubseteq B \in \mathcal{T}^c$  by completeness of  $\mathcal{T}^c$  and thanks to the id-rule. Hence,  $A' \in (\exists r.B)^{\mathcal{I}}$ . In conclusion,  $\mathcal{I} \models A \sqsubseteq \exists r.B$ .
- $\exists r.A \sqsubseteq B \in \mathcal{T}^c$ . Suppose that  $A' \in (\exists r.A)^{\mathcal{I}}$ . So, there is A'' such that  $(A', A'') \in r^{\mathcal{I}}$  and  $A'' \in A^{\mathcal{I}}$ . By definition of  $r^{\mathcal{I}}, A' \sqsubseteq \exists r'.A'' \in \mathcal{T}^c$ .

By definition of  $A^{\mathcal{I}}$ ,  $A'' \sqsubseteq A \in \mathcal{T}^c$ . By completeness of  $\mathcal{T}^c$  and the  $\exists$ -rule, we have  $A' \sqsubseteq \exists r.A \in \mathcal{T}^c$ . By completeness of  $\mathcal{T}^c$  and the trans-rule,  $A' \sqsubseteq B \in \mathcal{T}^c$ . By definition of  $B^{\mathcal{I}}$ , we get  $A' \in B^{\mathcal{I}}$ . In conclusion,  $\mathcal{I} \models \exists r.A \sqsubseteq B$ .

- $A_1 \sqcap A_2 \sqsubseteq B \in \mathcal{T}^c$ . Suppose that  $A' \in (A_1 \sqcap A_2)^{\mathcal{I}}$ . So  $A' \in A_1^{\mathcal{I}}$  and  $A' \in A_2^{\mathcal{I}}$  and by definition,  $A' \sqsubseteq A_1 \in \mathcal{T}^c$  and  $A' \sqsubseteq A_2 \in \mathcal{T}^c$  As  $\mathcal{T}^c$  is complete, by application of the  $\sqcap$ -rule, we get  $A' \sqsubseteq B \in \mathcal{T}^c$ . By definition of  $\mathcal{I}, A' \in B^{\mathcal{I}}$ . In conclusion,  $\mathcal{I} \models A \sqsubseteq B$ .
- 5. Suppose that  $A \sqsubseteq B \notin \mathcal{T}^c$ . By definition of  $B^{\mathcal{I}}$ ,  $A \notin B^{\mathcal{I}}$ . Moreover,  $A \in A^{\mathcal{I}}$  as  $A \sqsubseteq A \in \mathcal{T}^c$  thanks to the id-rule. Consequently,  $\mathcal{I} \models \mathcal{T}$  (since  $\mathcal{I} \models \mathcal{T}^c$  and  $\mathcal{T} \subseteq \mathcal{T}^c$ ), and  $\mathcal{I} \not\models A \sqsubseteq B$ . So,  $\mathcal{T} \not\models A \sqsubseteq B$ .
- 6. By combining the answers for the questions 3. and 5., we get that A ⊆ B ∈ T<sup>c</sup> iff T ⊨ A ⊆ B. By the question 2., T<sup>c</sup> can be computed in polynomial time in the size of T. Here is the simple polynomial-time algorithm to check whether for all interpretations I, (I ⊨ T implies I ⊨ A ⊆ B).
  - (a) compute  $\mathcal{T}^c$  from  $\mathcal{T}$ ;
  - (b) check whether  $A \sqsubseteq B$  belongs to  $\mathcal{T}^c$ .

\*\*\*\*\*

#### Solution for the exercise 5.

- 1. Figure 2 contains a graphical representation of the CGS  $\mathfrak{M}_{T,n}$  with  $T = \{t_0, t_1\}$  and n = 3. Note that for any T and n, for all infinite computations  $\lambda$  starting from  $(0, 0, t_0)$ , for all  $i, j \in [0, n 1]$ , there is a unique position I such that  $\lambda(I)$  is of the form (i, j, t).
- 2. The path formula  $Error^{H}(i, j)$  is defined as

$$\bigvee_{t \in T} \left( (\mathsf{F}((i,j) \mapsto t) \land \bigvee_{t',(t',t) \notin H} \mathsf{F}((i-1,j) \mapsto t') \right)$$

3. The path formula  $Error^{V}(i, j)$  is defined as

$$\bigvee_{t \in T} \left( (\mathsf{F}((i,j) \mapsto t) \land \bigvee_{t',(t',t) \not\in V} \mathsf{F}((i,j-1) \mapsto t') \right)$$

$$\begin{array}{c} 0, 0, t_{0} \\ (\epsilon_{1}, \epsilon_{0}) \\ (\epsilon_{1}, \epsilon_{0}) \\ 0, 1, t_{0} \\ (\epsilon_{1}, \epsilon_{0}) \\ 0, 1, t_{0} \\ (\epsilon_{1}, \epsilon_{0}) \\ (\epsilon_{1}, \epsilon_{0}) \\ (\epsilon_{1}, \epsilon_{0}) \\ (\epsilon_{1}, \epsilon_{1}) \\ (\epsilon_{1},$$

Figure 2: CGS  $\mathfrak{M}_{T,n}$  with  $T = \{t_0, t_1\}$  and n = 3

4. The formula  $\varphi_{T,n}$  is defined as follows, taking advantage of the property (that would need to be proved) that strategies for Player 2 in the  $(n \times n)$ -tiling game problem correspond to strategies for agent 2 in  $\mathfrak{M}_{T,n}$  as far as the infinite computations from  $(0,0,t_0)$  are concerned.

$$\langle\!\langle 2 \rangle\!\rangle \left( \underbrace{\bigwedge_{i \in [1, n-1]}^{Player 2 \text{ does not lose immediately on row 0}}_{i \in [1, n-1]} \wedge \right.$$

$$\bigwedge_{j \in [1,n-1]} \left( \underbrace{\bigvee_{i \in [1,n-1]} (Error^{H}(i,j) \lor Error^{V}(i,j))}_{i \in [1,n-1]} \Rightarrow \underbrace{\bigvee_{j' \in [1,j]} Error^{V}(0,j')}_{then \ Player \ 1 \ loses \ immediately \ before} \right) \right)$$

As  $\mathfrak{M}_{T,n}$  is of polynomial size in the size of T and n, and  $\varphi_{T,n}$  is of polynomial size in the size of T and n, the above developments correspond to key steps to establish that the model-checking problem for ATL<sup>†</sup> is PSPACE-hard.