
Logical Aspects of AI: Knowledge Logics
Correction of the exam – January 13th, 2021, 2pm-6pm, online

The correction below for the exercices 1-5 is more detailed than what was ex-
pected in the copies. Moreover, the subject (exercises 1 to 4, bonus exercise 5) was
a bit too long for a two-hour exam but this has been taken into account in the
grading.

Solution for the exercise 1.

1. We have T 6|= A0 v ∃r.A1 iff there is some interpretation I = (∆I , ·I)
such that I |= T and there is a ∈ ∆I such that a ∈ AI0 and a 6∈
(∃r.A1)

I . Let I = (∆I , ·I) with ∆I = {0}, rI = ∅ for all role names
r, AI0

def
= {0}, AI3

def
= {0}, AI5

def
= {0}, and BI = ∅ for all other concept

names B.

• We have 0 ∈ AI0 and 0 6∈ ∃r.AI1 .

• I |= A0 v ∀r.A1 because AI0 = (∀r.A1)
I = {0}.

• I |= A1 v ¬A4 because AI1 = ∅.
• I |= A0 v A2 t A3 because AI0 = (A2 t A3)

I = {0}.
• I |= A2 v ∃r.A4 because AI2 = ∅.
• I |= ∃r.¬A1 v A5 because (∃r.¬A1)

I = ∅ and AI5 = {0}.
• I |= A3 v A5 because AI3 = AI5 = {0}.

Consequently, I |= T and therefore T |= A0 v ∃r.A1 does not hold.

2. Ad absurdum, suppose that K is consistent. So, there is an interpreta-
tion I such that I |= T and I |= A and in particular

(a) (aI , bI) ∈ rI ,
(b) aI ∈ AI0 ,

(c) bI ∈ AI4 ,

(d) I |= {A0 v ∀r.A1, A1 v ¬A4}.

As (a) and (b), I |= A0 v ∀r.A1 entails bI ∈ AI1 . As I |= A1 v ¬A4, we
conclude bI 6∈ AI4 , which is in contradiction with (c). Consequently,
K is not consistent.
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Solution for the exercise 2.

1. In order to use the tableaux calculus forALC introduced in the course,
the concepts in K need to be in NNF and, the GCIs should be of the
form > v C. The knowledge base K can be transformed into the
logically equivalent K′ = (T ′,A′) with

T ′ = {> v ¬A t ∃r.A} A′ = {a : (A u (∃r.B)) u ∃r.¬B}

In order to show that K is consistent, it is sufficient to derive from
A′ an ABox A′′ (i.e. A′ ∗−→ A′′) using the tableaux rule for ALC with
the v-rule parameterised by T ′ such that A′′ is clash-free and com-
plete when the blocking technique is used. We provide a deriva-
tion of A′′ from the leftmost branch of the tableaux in Figure 1 such
thatA′′ is made of all the concept assertions and role assertions from
that leftmost branch. Note that A′′ is clash-free and complete. Other
branches leading to clashes are shown on the tableau but are not
strictly speaking needed.

2. (T ,A) and (T ′,A′) have exactly the same interpretations because
transforming a concept into an equivalent concept in NNF preserves
the semantics and similarly C v C ′ and > v ¬C tC ′ are satisfied by
exactly the same interpretations.

According to the soundness proof with blocking, an interpretation I
such that I |= (T ′,A′) can be built from A′′ such that

• ∆I is the set of individual names occurring in A′′ except the
blocked ones,

• (A∗)I is equal to the set of individual names a in ∆I such that
a : A∗ ∈ A′′,
• For all individual names a, b ∈ ∆I , (a, b) ∈ rI iff either (a, b) :
r ∈ A′′ or there is a blocked individual names b′′ inA′′ such that
(a, b′′) : r ∈ A′′ and b′′ is blocked by b.

Consequently, an interpretation I satisfying (T ′,A′) (and therefore
satisfying also (T ,A)) is defined as follows.

• ∆I
def
= {a, b1, b2}.
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Figure 1: A “tableaux” for deriving the complete and clash-free A′′
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• AI def
= {a}, BI def

= {b2}, and the interpretation of the other concept
names is arbitrary.

• rI def
= {(a, b1), (a, b2), (b1, b1)} and the interpretation of the other

role names is arbitrary.

The soundness proof guarantees that I |= K but this could be also
checked directly.

Solution for the exercise 3. Let us show that 〈〈A〉〉Gϕ⇒ (ϕ∧〈〈A〉〉X〈〈A〉〉Gϕ)
is valid for ATL, that is for all CGS M and states s, we have M, s |= 〈〈A〉〉Gϕ
implies M, s |= ϕ ∧ 〈〈A〉〉X〈〈A〉〉Gϕ.

Let M and s be such that M, s |= 〈〈A〉〉Gϕ. Below, we shall show that
M, s |= ϕ∧ 〈〈A〉〉X〈〈A〉〉Gϕ. By definition of the semantics for ATL, there is a
strategy F for the coalitionA such that for all computations λ ∈ Comp(s, F ),
for all positions i ∈ N, we have M, λ(i) |= ϕ. As Comp(s, F ) is non-empty
(the action manager always returns a non-empty set of actions for each
pair (a, s)), there is a computation λ ∈ Comp(s, F ) and therefore M, λ(0) |=
ϕ. But λ(0) is precisely s, whence M, s |= ϕ. It remains to show that
M, s |= 〈〈A〉〉X〈〈A〉〉Gϕ.

Let f = F (s) be the joint action for the coalition A and we know that
out(s, f) ⊆ JϕKM since M, s |= 〈〈A〉〉Gϕ. Suppose that out(s, f) = {s?1, . . . , s?α}
for some α ≥ 1.

For each i ∈ [1, α], let F ?
i be a strategy such that for each history s′0 · · · s′n

with s′0 = s?i , we have F ?
i (s′0 · · · s′n)

def
= F (ss′0 · · · s′n). Consequently, for all

λ ∈ Comp(s?i , F
?
i ), s · λ ∈ Comp(s, F ) (here we use the fact that f = F (s)

and s?i ∈ out(s, f)). Hence, for all positions j ∈ N, we have M, λ(j) |= ϕ
and therefore M, s?i |= 〈〈A〉〉Gϕ. This means that out(s, f) ⊆ J〈〈A〉〉GϕKM.
However, M, s |= 〈〈A〉〉X〈〈A〉〉Gϕ precisely when there is joint action f′ such
that out(s, f′) ⊆ J〈〈A〉〉GϕKM. Hence, M, s |= 〈〈A〉〉X〈〈A〉〉Gϕ.

Solution for the exercise 4.

1. Here is the derivation of A1 v A2.

A1 v B2
∈

B1 uB2 v A2
∈

A1 v ∃r.A1
∈ A1 v >

>
> v B

∈

A1 v B
trans

A1 v ∃r.B
∃
∃r.B v B1

∈

A1 v B1
trans

A1 v A2
u
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2. First, suppose that S(T ) ⊆ {A∗1, . . . , A∗α}∪{r1, . . . , rβ} for some α, β ≥
1 where each A∗i is a concept name and each ri is a role name. As
T is finite, α and β always exist. Let us define T c as {C v D |
T ` C v D}. Thanks to the ∈-rule, T ⊆ T c and T c is simple and
complete. The fact that T c is simple is only due to the property that
all the conclusions in inference rules are authorised GCIs in simple
TBoxes. Note that completeness is a consequence of the property:
T c ` C v D implies T ` C v D. Furthermore, observe that the set
of GCIs of the form

A v B A1 u A2 v B A v ∃r.B ∃r.A v B

built from S(T ) is finite and actually cubic in α + β. Consequently,
T c is finite. Hence, T c is a simple and complete TBox with T ⊆ T c.
In order to establish that T c is the smallest such a set, ad absurdum,
suppose that T ⊆ T ′ ⊂ T c, and T ′ is simple and complete. So, there
is C v D such that T ` C v D and C v D 6∈ T ′. As T ⊆ T ′, we
can also conclude that T ′ ` C v D. However, we have just seen that
C v D 6∈ T ′, which is in contradiction with the completeness of T ′.
In order to compute T c, we proceed as follows (saturation algorithm).
Given a simple TBox T , we write C(T ) to denote the set of GCIs ob-
tained from T by applying one inference rule from premisses in T .
As each rule involves at most three premisses, and each rule infer-
ence can be checked in linear time in the size of its premisses, com-
puting C(T ) requires cubic time in the size of T . Here is the satura-
tion algorithm.

• X = T ;

• While C(X) 6= X do X := C(X);

• return X .

The while loop is visited a number of times at most cubic in α + β
and the size of X is also at most cubic in α + β. Hence, the returned
value X is computed in cubic time in T and is equal to T c.

3. The proof is on the length of the derivation to establish T ` C v
D. In order to provide a complete formal treatment, let us intro-
duce the notion T -derivation. A T -derivation is a sequence (C1 v
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D1, . . . , CK v DK) (K ≥ 1) such that for all i ∈ [1, K], at least one of
the conditions below holds.

(a) Ci v Di ∈ T (use of the ∈-rule).

(b) Ci v Di is of the form A v A for some concept name A in S(T )
(use of the id-rule).

(c) Ci v Di is of the form A v > for some concept name A in S(T )
(use of the >-rule).

(d) there are i1, i2 < i such that Ci1 = Ci, Di1 = Ci2 , Di2 = Di (use of
the trans-rule).

(e) Similarly (and we omit the very details herein), there are GCIs
that occur strictly before Ci v Di in the sequence that can be
used as premisses for either the ∃-rule or the u-rule leading ex-
actly to the conclusion Ci v Di.

So, T ` C v D iff there is a T -derivation (C1 v D1, . . . , CK v DK)
such that CK v DK is equal to C v D. It remains to show that for all
the T -derivations (C1 v D1, . . . , CK v DK), we have T |= CK v DK

(which guarantees that for all interpretations I, we have I |= T iff
I |= T ∪ {CK v DK}).
The proof is by induction on i. For the base case, C1 v D1 satisfies
one condition among (a), (b), (c). As A v A and A v > hold in
all interpretations, the cases for (b) and (c) are immediate. Similarly,
obviously T |= C1 v D1. Indeed, I |= T implies for all C v D ∈ T ,
we have I |= C v D. In particular, this leads to I |= C1 v D1 as
C1 v D1 ∈ T in the case (a).

For the induction step, we only treat the cases with the trans-rule and
the ∃-rule, the case with the u-rule is omitted but very similar.

Suppose that

T ` Ci v Di1 , T ` Di1 v Di

T ` Ci v Di

with i1, i2 < i and Ci1 = Ci, Di1 = Ci2 , Di2 = Di. By (IH), T |= Ci v
Di1 and T |= Di1 v Di. Let I be an interpretation such that I |= T . So
I |= {Ci v Di1 , Di1 v Di}, which leads to CIi ⊆ DIi by transitivity of
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set-inclusion and therefore I |= Ci v Di. Consequently T |= Ci v Di

as I above were arbitrary.

Consider now the case of the ∃-rule.

T `
= Ci1

vDi1︷ ︸︸ ︷
A v ∃r.A1, T `

= Ci2
vDi2︷ ︸︸ ︷

A1 v B1

T ` A v ∃r.B1︸ ︷︷ ︸
= CivDi

∃-rule

Let I be an interpretation such that I |= T . By (IH), I |= {A v
∃r.A1, A1 v B1}. In particular, this entails that I |= ∃r.A1 v ∃r.B1

as I |= A1 v B1. Indeed, (a, b) ∈ rI and b ∈ AI1 imply (a, b) ∈ rI

and b ∈ BI1 as AI1 ⊆ BI1 . Now I |= {A v ∃r.A1,∃r.A1 v ∃r.B1}
implies I |= A v ∃r.B1 by transitivity of set-inclusion. Consequently
T |= Ci v Di as I above were arbitrary.

To conclude, suppose that C v D ∈ T c. By definition of T c, we
have T ` C v D. According to the developments above, we get
T |= C v D.

4. First, let us check that >I = ∆I . By definition, >I is equal to {A ∈
∆I | A v > ∈ T c}. Since T c is complete, by application of the>-rule,
for all concept names in S(T ), we have A v > ∈ T c. Hence >I is
equal to the set of all concept names in S(T ) (including >), which is
precisely ∆I by definition.

Let us show that I |= T c. We make a case analysis and we use the
fact that T c is complete.

A v B ∈ T c. Suppose that A′ ∈ AI . By definition, A′ v A ∈ T c. As
T c is complete, by application of the trans-rule, we getA′ v B ∈
T c. By definition of I, A′ ∈ BI . In conclusion, I |= A v B.

A v ∃r.B ∈ T c. Suppose that A′ ∈ AI . By definition, A′ v A ∈ T c.
As T c is complete, by application of the trans-rule, we get A′ v
∃r.B ∈ T c. By definition of rI , we have (A′, B) ∈ rI . Moreover,
B ∈ BI as B v B ∈ T c by completeness of T c and thanks to the
id-rule. Hence, A′ ∈ (∃r.B)I . In conclusion, I |= A v ∃r.B.

∃r.A v B ∈ T c. Suppose that A′ ∈ (∃r.A)I . So, there is A′′ such that
(A′, A′′) ∈ rI and A′′ ∈ AI . By definition of rI , A′ v ∃r′.A′′ ∈ T c.
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By definition of AI , A′′ v A ∈ T c. By completeness of T c and
the ∃-rule, we have A′ v ∃r.A ∈ T c. By completeness of T c and
the trans-rule,A′ v B ∈ T c. By definition ofBI , we getA′ ∈ BI .
In conclusion, I |= ∃r.A v B.

A1 u A2 v B ∈ T c. Suppose that A′ ∈ (A1 u A2)
I . So A′ ∈ AI1 and

A′ ∈ AI2 and by definition, A′ v A1 ∈ T c and A′ v A2 ∈ T c As
T c is complete, by application of theu-rule, we getA′ v B ∈ T c.
By definition of I, A′ ∈ BI . In conclusion, I |= A v B.

5. Suppose that A v B 6∈ T c. By definition of BI , A 6∈ BI . Moreover,
A ∈ AI as A v A ∈ T c thanks to the id-rule. Consequently, I |= T
(since I |= T c and T ⊆ T c), and I 6|= A v B. So, T 6|= A v B.

6. By combining the answers for the questions 3. and 5., we get that
A v B ∈ T c iff T |= A v B. By the question 2., T c can be computed
in polynomial time in the size of T . Here is the simple polynomial-
time algorithm to check whether for all interpretations I, (I |= T
implies I |= A v B).

(a) compute T c from T ;

(b) check whether A v B belongs to T c.

? ? ? ? ?

Solution for the exercise 5.

1. Figure 2 contains a graphical representation of the CGS MT,n with
T = {t0, t1} and n = 3. Note that for any T and n, for all infinite
computations λ starting from (0, 0, t0), for all i, j ∈ [0, n− 1], there is
a unique position I such that λ(I) is of the form (i, j, t).

2. The path formula ErrorH(i, j) is defined as∨
t∈T

(
(F((i, j) 7→ t) ∧

∨
t′,(t′,t)6∈H

F((i− 1, j) 7→ t′)
)

3. The path formula ErrorV (i, j) is defined as∨
t∈T

(
(F((i, j) 7→ t) ∧

∨
t′,(t′,t) 6∈V

F((i, j − 1) 7→ t′)
)
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Figure 2: CGS MT,n with T = {t0, t1} and n = 3
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4. The formula ϕT,n is defined as follows, taking advantage of the prop-
erty (that would need to be proved) that strategies for Player 2 in the
(n × n)-tiling game problem correspond to strategies for agent 2 in
MT,n as far as the infinite computations from (0, 0, t0) are concerned.

〈〈2〉〉
( Player 2 does not lose immediately on row 0︷ ︸︸ ︷∧

i∈[1,n−1]

¬ErrorH(i, 0) ∧

∧
j∈[1,n−1]

( if P layer 2 loses immediately on row j︷ ︸︸ ︷∨
i∈[1,n−1]

(ErrorH(i, j) ∨ ErrorV (i, j))⇒
∨

j′∈[1,j]

ErrorV (0, j′)︸ ︷︷ ︸
then P layer 1 loses immediately before

))

As MT,n is of polynomial size in the size of T and n, and ϕT,n is of polyno-
mial size in the size of T and n, the above developments correspond to key
steps to establish that the model-checking problem for ATL† is PSPACE-
hard.
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