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Abstract

We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) im-
plication live side-by-side. The propositional version of BI arises from an analysis of the proof-theoretic
relationship between conjunction and implication; it can be viewed as a merging of intuitionistic logic
and multiplicative intuitionistic linear logic. The naturality of BI can be seen categorically: models of
propositional BI’s proofs are given by bicartesian doubly closed categories, i.e., categories which freely
combine the semantics of propositional intuitionistic logic and propositional multiplicative intuitionistic
linear logic. The predicate version of BI includes, in addition to standard additive quantifiers, multi-
plicative (or intensional) quantifiers Vnew and Jnew which arise from observing restrictions on structural
rules on the level of terms as well as propositions. We discuss computational interpretations, based on
sharing, at both the propositional and predicate levels.

1 Introduction
1.1 On Restricting the Structural Rules

Perhaps the most lasting impression of linear logic, much more than the formal system itself, will be its
revealing of the computational significance of the structural rules of Weakening and Contraction [16]. Logi-
cally, their absence leads to the decomposition of conjunction into additive (&) and multiplicative (®) forms,
which can be given a sequential natural deduction presentation as follows:

Ty ThH Phoi&ps
Trokv Trg (=02 4B
Ty AFY Loyvhbx Aresy .
TAFp®¢ T.AF ®
If we have the rules of Weakening and Contraction
Trd Lpplby
T,ok4 T,ok4

then these rules for ® and & define the same connective, but without them the connectives are distinct.
This splitting of connectives has a long history [12], but the possibilities opened up by restricting struc-

tural rules were given a new perspective by vivid “resource interpretations” of linear logic. The leading

example is perhaps the number-of-uses reading in which a proof of a linear implication ¢—o 1) determines a



function that uses its argument exactly once. Like ®, the linear implication is “multiplicative”, which is to
say that it combines separate contexts in its elimination, i.e., binary, rule.
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However, an important message of linear logic is that, in order to obtain an expressive system, one
cannot stay in a pretty-but-weak system: it appears to be crucial to allow access to structurals in some
manner. This is done in linear logic in a very specific way, via the “!” modality, which admits a recovery
of conventional intuitionistic (or additive) implication ¢ — 9 as lp—o1. The number-of-uses reading of
implication is extended to this modality by reading !¢ as “as many s as required”.

But notice a curious asymmetry here. Removal of the structural rules enables conjunction to be split
straightaway into additive and multiplicative parts, while the treatment of additive implication uses an
additional notion, a modality. It seems natural to ask: could a direct decomposition of implication be given,
as was done for conjunction ?

The answer is yes. In particular, access to the structurals can be recovered in another, rather different
way, not involving a modality. The technical cost of this conceptual symmetry is that we must work with a
more richly structured notion of sequent, entailing a more delicate analysis of the proof-theoretic relationship
between implication and conjunction.

Our purpose in this paper is to explore this alternative route to combining multiplicative and additive
implication. We introduce a logic BI, the logic of bunched implications, by giving a proof theory, a semantics
of the proof theory, and a semantics of truth. We also consider “resource interpretations” which begin to
expose the computational consequences of some of the choices made.

In presenting this material, we will proceed at a high level: we concentrate on ideas rather than formal
results; indeed, there are no proofs at all given in this paper. We have two reasons for adopting this approach.
Firstly, that the material covered is too broad to be reasonably given, in full detail, in a short article such
as this. Secondly, we hope that this style of presentation will help to expose some of BI’s main features
and properties in a direct fashion; many of these features can, we feel, be appreciated without becoming
embroiled in too many formal details and proofs. Companion papers by each of us [31, 33, 34] explore
technical aspects of BI’s semantics, proof theory and applications in more detail.

1.2 A Proof-theoretic Introduction

Recall that implication is inextricably bound up with conjunction, or at least with antecedent-forming oper-
ations used to formulate sequents. This connection goes so far that it is sometimes said that an introduction
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can be regarded, proof-theoretically, as defining the meaning of —. However far we may wish to take this
point, it is clear that the character of the implication in a logic is married to, and in a sense determined by,
that of the comma or conjunction.
If, as is the case in BI, we have two forms of implication then we are faced with the question of which of
them to use in the introduction rule,
Lok
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That is, should the conclusion ¢ ? ¢ in this rule be a multiplicative or additive implication ?

The connection between introduction rules and implications suggests a way out of this impasse: If an
antecedent-forming operation determines the behaviour of an implication, and we have two implications,
then we should have two antecedent-forming operations. So, we postulate an additional context-forming
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operation “”, and stipulate that Contraction and Weakening are possible for “;” but not for “”. The
introduction rules then become
L,obd I
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In this scheme, the antecedents are no longer sequences, but are trees with propositions as leaves and internal
nodes labelled by “” or “”, or in short, bunches [15, 6, 37].

(Aside: We have chosen to use a different symbol, —, for the multiplicative implication, in order to avoid
confusion with —o. Although many of the formal properties in the multiplicative connectives are the same,
the way that they mesh with additive connectives gives rise to different behaviour. In particular, some of
the common readings of —o, such as the number-of-uses reading, do not directly carry over to —.)

It is all very well to postulate proof rules in this way, but what meaning or significance, if any, does the
resulting logic have 7 We argue herein that BI possesses two very natural semantics. The first, a semantics
of the proof theory, arises from doubly closed categories (DCCs), in which a single category admits two closed
structures or function spaces. It shows clearly the difference between BI and linear logic, where two closed
categories are usually used. We shall return to this point in § 3.2 and 8.

The second semantics is a Kripke-style semantics of formula, which combines Kripke’s semantics of intu-
itionistic logic and Urquhart’s semantics of multiplicative, intuitionistic linear logic. This second semantics
gives BI more of a genuine status as a logic. That is, it gives us a way to read the formula as propositions
that are true or false, relative to a given world.

The resource interpretations of BI are stated in terms of a notion of sharing. We explain this in two areas:
imperative programming, where the “resource” is a portion of the computer’s store; and logic programming,
where the “resource” refers to variables occurring in answer substitutions, and their locations on the paths
followed during proof-search.

We also consider the vexed question of multiplicative quantifiers. In BI, the quantifiers come in two

varieties:
Additive quantifiers v 3

Multiplicative quantifiers Vinew Jnew

The additive ones are exactly the quantifiers found in classical, intuitionistic and linear logic. The multi-
plicative ones are new, being intensional quantifiers of the kind long-sought in relevant logic.

Throughout the course of the paper we concentrate, for the most part, on propositional BI; quantifiers
are considered briefly in §§ 6 and 7. The general point, however, is that structural restrictions make just
as much sense on level of terms in predicate logic as they do on the level of propositions. The quantifiers
reflect this, giving rise to a form of “resource sensitivity” over individuals or term denotations in a predicate
logic. In fact, predicate BI is a rich, subtle and, we claim, elegant logic which makes many more distinctions
between connectives than propositional BI. However, this theory is beyond the scope of this introductory
article; the details of predicate BI can be found in [34].

1.3 The Significance of BI

We must emphasize that the tools used to define and analyze BI have been available for some time. For
one, bunches have been used in sequent calculi for relevant logics [15]; the mere fact of existence of a logic
like BI would come as no surprise to relevantists. For another, many of the categorical fundamentals of BI
had, with the benefit of hindsight, already been laid down even earlier, in a classic paper of Day [10]. One of
our main aims here is to stress the semantic link-up, as providing a theoretical justification for the informal
derivation of bunched structure from proof-theoretic considerations, as sketched in this section.

The logical significance of BI can be seen to reside in the clarity of its semantics. DCCs directly combine
cartesian closed categories and symmetric monoidal closed categories, i.e., of models of intuitionistic logic
and multiplicative intuitionistic linear logic [25, 24, 43], structures which exist independently of logic, in
mathematics. Indeed, DCCs also arise naturally; see §§3 and 3.1. Similarly, BI’s Kripke semantics is a
direct combination of Kripke’s semantics for intuitionistic logic and Urquhart’s semantics for multiplicative
intuitionistic linear logic. This latter semantics provides a link to BI’s computational significance. An
elementary examination of the nature of resources, at both the propositional and predicate levels, leads one
to consider a semantics of this type. This point of view is discussed in [33, 34, 35].

We say more on the connection to relevant logic at the end of the paper in § 8 where we also give a
detailed comparison to linear logic, and discuss BI’s place in the general context of logics that limit use of
the structural rules.



2 Propositional BI

In this section, we give a presentation of BI in sequential natural deduction form, i.e., a sequent presentation
based on introduction and elimination rules.

CONNECTIVES
Additive connectives 1N = LV
* ok

Multiplicative connectives I

The additive connectives correspond to those of intuitionistic logic, IL, whereas the multiplicative connectives
correspond to those of multiplicative, intuitionistic linear logic, or MILL (we refer to [44] for background
information on the two systems).

BUNCHES
r == © propositional assumption
| {Im multiplicative unit
| I,T multiplicative combination
| {}a additive unit
| I;T additive combination

We write I'(A) to indicate a bunch in which A appears as a subtree. We write I'(A’) for the similar tree
where A’ replaces A. (So I'(—) is a kind of positional notation indicating an incomplete tree that can be
completed by placing various trees in its hole.) We don’t present a more compact representation of bunches
using, say, nested multisets or sequences instead of binary operators; the real point of bunches is to let us
get the implications right. We use an equivalence on trees instead of worrying about representation.

COHERENT EQUIVALENCE: T' = I". = is the least equivalence relation on bunches satisfying
1 Commutative monoid equations for {}, and ;
2 Commutative monoid equations for {},, and ,
3 Congruence: if A = A’ then T'(A) = T'(A').

Note that “;” and “,” do not distribute over one another.

JUDGEMENTS. Logical consequences are of the form

Tk

where I' is a bunch and ¢ a formula. The rules for deriving judgements now follow.

IDENTITY AND STRUCTURE
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ADDITIVES
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We do not include a multiplicative disjunction (such as fission, or par) in BI, not because it is straightforward,
but because it is not. Such a disjunction would come along naturally with a calculus which has bunched
multiple conclusions.

Notice that the introduction and elimination rules for additive and multiplicative implications, con-
junctions and their units are identical in form. The difference between them is the antecedent-combining
operations they use. Because “;” admits Weakening and Contraction, rules where additive maintenance is
explicit are admissible:

F'Fp—=yY Tl 'y TH9y
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The question of whether these rules can replace the more explicit ones above is delicate [31, 33].

Lemma 1 The Cut rule is admissible:

Tp)Fy Abyp
NGV

Cut

Notice that this formulation of cut covers both the and “” cases in the construction of bunches. A
presentation of BI as a sequent calculus, in which elimination rules are replaced by left-rules, can be found
in [33, 34], in which are detailed the connection to the sequential natural deduction formulation, including its
presentation as the aA-calculus, cut-elimination and normalization. For now, the following essential result
suffices:

@,
)

Proposition 2 BlI’s natural deduction system is, with respect to the evident reductions and commuting
conversions, strongly normalizing. It has also the subject reduction property.

BI contains MILL and IL as sublanguages; the precise connection to them can be stated as follows:

Proposition 3 1. BI is conservative over IL. That is, @1;...;9n = @ is provable in BLiff p1,..., 00 F @
is provable in IL, where each p; and ¢ is a formula built up using additive connectives only.

2. BI is conservative over MILL. That is, @1,...,pn b @ is provable in BL iff ©3, ..., ¢} F ¢* is provable
in MILL, where each @; and ¢ is a formula built up using multiplicative connectives only and (-)*
replaces * by ® and = by —o.

An important point is that conservativity does not extend to MAILL , which is MILL extended with
additive conjunction and disjunction. The reason is that BI admits distribution of additive conjunction over
disjunction, by which we mean ¢ A (¥ V x) F (¢ A9) V (¢ A x) and its converse. To prove distribution in
BI one can simply use the usual intuitionistic proof, which refers to “;” but not “,”. MAILL, on the other
hand, does not admit distribution. We will return to this point in § 8.

That the conservativity properties in the proposition hold can be seen straightforwardly from a semantics
of BI’s proof theory.



3 Doubly Closed Categories

In order to explain the structure of a proof theory, it is usually useful to give a categorical description
of it, in which the connectives enjoy universal properties and satisfy naturality conditions. To do this for
BI, note that the semantics of proofs for IL is given using cartesian closed categories and that for MILL
using symmetric monoidal closed categories [25, 24, 43]. In each case, the introduction rule for implication
corresponds to an adjunction where the internal hom is a right adjoint: to a cartesian product, for IL, and
a tensor product, for MILL.

To model BI we simply ask for a category that has all the structure necessary to model both MILL and
IL.

A doubly closed category, or DCC for short, is a category equipped with two monoidal closed
structures. A DCC is called cartesian if one of the closed structures is cartesian and the other
symmetric monoidal and bicartesian if, in addition, it has finite coproducts.

In brief, models of proofs for BI are given using bicartesian DCCs.
To see how DCC structure gives rise to bunches, consider the two adjunctions

[H«E,F] = [H E+F] [HAE,F] = [HE — F]

where * is a symmetric monoidal product and A a cartesian (or categorical) product.
To mimic these adjunctions in the proof theory one would like to have a context extension corresponding
to *x and another to A. This leads directly to the rules

IotH9y ;b
T'F oy F'Fp—9y

and to the tree-like structure of antecedents.

Suppose, for a given DCC, we have an assignment of an object [p] to each propositional letter. We call
this an interpretation. Any interpretation extends in the obvious way to each formula [¢], and we can assign
an object [I'] to each bunch by mapping “” to * and “” to A in the DCC. (In our notation we are using
letters E, F' H to refer directly to the objects of a DCC, with [¢] indicating an object determined by a
formula.)

A form of soundness and completeness for these interpretations can be stated as follows [33, 34]:

Proposition 4 T' | ¢ is provable in BI iff, for every DCC, D, and interpretation [—] in D, the hom set
DIIT], [¢]] is non-empty.

A stronger notion of soundness and completeness is also possible [33, 34]. Given interpretations for proposi-
tional letters, any BI proof of a judgement T' F ¢ determines a morphism [I'] — [¢] in a DCC. The stronger
form connects the equality induced by this DCC semantics to an equational theory for proofs.

(Note: The assignment of morphisms to derivations should be evident, except that the interpretation of
the elimination rule for V we need to use distributivity of both * and A over V. We get that because E x (-)
and E A (-) are both left adjoints, and so they preserve coproducts.)

The conservativity of BI over IL can now be seen immediately in terms of DCCs. For suppose C is a
categorical model of IL, i.e., a bicartesian closed category. Then we can regard it as a bicartesian DCC, in
which the two closed structures are the same. When we restrict to the additive fragment of BI, this shows
that the denotations of BI proofs are exactly the same as those in the model of IL.

The DCC semantics suggests some, at first sight, unusual properties. In particular, a morphism from E
to F' can variously be viewed as a map [ — E—«F or 1 — E — F using the adjunctions and, indeed, we
have the following isomorphisms of hom sets:

[1,E— F] & [E,F] = [[,E~«F]
In BI, these isomorphisms are realized by the following deductions:
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Although these observations may make the difference between — and — appear rather thin, the two impli-
cations are not interconvertible:

pxp =1y and ooV oy

An example of a model will help to confirm these remarks.

Example 5 Set x Set is bicartesian closed, with coproducts and cartesian closed structure defined pointwise
from their corresponding versions in Set. A symmetric monoidal closed structure is given by

I = (1,0)
(Eo,El)*(Fo,Fl) = ((EO XFO)+(E1 XFl), (EO XF1)+(E1 XFO)
(E(],El)—* (Fo,Fl) = ((E() — Fo) X (El — Fl), (Eo — Fl) X (E1 — F()))

More generally, if M is a commutative monoid, considered as a discrete monoidal category, then SetM is a
bicartesian DCC; in this example, M is the two-element commutative monoid {0,1} with addition modulo
two.

Example 5 does not appear to convey any particularly useful computational ideas but we can use it to
make a few remarks.

1. Tt is a non-degenerate model, in that I is not a terminal object and * is not cartesian product. So the
definition of DCCs does not somehow induce a collapse of the specified structure.

2. There are no maps in the model from 1 to I.

3. ((0,1) = (1,0)) = (1,0) and ((0,1)—(1,0)) = (0,1). This, combined with the fact that there are no
maps between (0,1) and (1,0) in either direction, implies that there are no maps from ((0,1) — (1,0))
to ((0,1)—(1,0)) or back, confirming the remark above that — and — are not convertable to one
another in the linear version of the bunched language.

4. There is no functor ! : Set x Set — Set x Set admitting an isomorphism !E— F = E — F, thus
indicating that a DCC is not simply a model of linear logic in disguise. To see the remark, consider
that (1,0) — (2,2) = (2,1) but that, for any C is, C—(2,2) = (X,Y) for sets X and Y of the same
cardinality. Therefore, for any “!” we try to pick, !E—(2,2) cannot be (2,1).

3.1 Day’s Construction

We can generate a rich class of models of BI using a general construction due to Brian Day [10]. He shows
that any monoidal (not necessarily closed) category (C,#,I) induces a monoidal closed structure on the
functor category Setcop, and that when (C,*, I) is symmetric monoidal so is Set®™.

The construction is as follows. The unit I of the monoidal structure is C[, I]. Given functors E and F,
the formula for the tensor product is written using co-ends:

XY
(ExF)Z = / EX x FY xC[Z,X xY]
The formula for = uses an end:

(ExF)Z = /X Set®” [EX,F(Z x X)] = Set’”[E, F(Z %-)]



The formule for (E x F))Z and (E— F)Z are both contravariant in Z, giving the morphism parts of the
functors. It is often possible to give an explicit description of the tensor product without using co-ends at
all. In fact, we already did this with the Set x Set example above.

Two observations are useful for working with the tensor product. The first is that we have a form of
pairing operation: given a € EX and b € BY we can form an element [a,b] € (E * F)(X *Y). To see
how this element is defined, consider that the co-end E x F(Z) can be described as a quotient of quintuples
(X,)Y,f:Z >¢ X*xY,ae EX,be FY). The pair [a,b] is then the equivalence class of (X,Y, idx.y,a,b).

The second is a representation result which characterizes maps out of a tensor products: natural trans-
formations F * F — H are in bijection with families of functions

EX x FY — H(X *Y)

natural in X and Y. To see why this is true, consider the definition of =, and the isomorphism [E % F, H] =
[E, F- H]: the multi-map characterization is, essentially, forced by —.

To obtain models of BI we can combine this structure for multiplicatives with the standard fact that
Set®” is bicartesian [25]. Finite products are determined pointwise, from those in Set, and the additive
exponent can be represented as

(A= B)Z = Set®”[C[-, Z] A A, B]

Proposition 6 ([10]) If C is a symmetric monoidal category, then Set®” is a bicartesian DCC.

It is worth remarking that Day describes his results in much greater generality, in the context of enriched
categories, so this gives us many more models than those mentioned in the proposition.

In a separate paper [11], Day also shows that the Yoneda embedding preserves closed ctructure; this is
an analogue of the standard fact that Yoneda preserves CCC structure. From this we may conclude that BI
is conservative over MILL, again not only on the level of provability but also on the semantics of proofs.

3.2 Non-interpretations

We have seen how DCCs expose some of the workings of BI’s proof theory: They can equally be used to
indicate how the theory does not work by considering some non-examples of models.

First, CPOs (pointed, w-complete partial orders) admit constructions that are reminiscent of BI. If £
and F' are CPOs then the strict function space E—o F', continuous function space E — F', smash product
E®F and cartesian product E x F are all CPOs. However, this does not give us a DCC, because (—, x, 1) is
the cartesian closed structure in the category of continuous functions, while (—o, ®,I) gives monoidal closed
structure in the category of strict continuous functions. A DCC requires that a single category admit both
closed structures.

The situation with CPOs, where two closed categories are involved, is typical of linear logic. For example,
in the coherence space model [16] we have a monoidal exponent —o and a cartesian exponent —, but the
former is closed for the category of linear maps and the latter for the category of stable maps.

That, for example, the coherence space model does not work for BI may seem just a technical curiosity,
but the reasons for why it does not run rather deep and relate to “resource interpretations” of the connectives
[31]. For example, the judgement

OmbFox((p=o—=9) =)

has a proof that uses the ¢ premiss twice:

z:p;frpopaYEfrip—oyY z:pofroopa>vbxip
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z:pbaf.(fa)z: (g2 ¢ 29) >y
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Here we have used a A-calculus-like notation for proof-terms, where « stands for additive abstraction and A
for multiplicative (or Ainear). In the key, top-pictured, step we use the admissible rule for — elimination (or
equivalently we use — E followed by Contraction). It is at this step that the way that — admits sharing
between (f x) and its argument z appears.

The point of this example is the two occurrences in the body (f )z of the argument z to a —-typed
function. This serves to illustrate that the idea that a multiplicative, or “linear”, function uses its argument
exactly once does not directly carry over to BI. For this reason, we have chosen not to adopt the symbol
—o, with the associated readings it tends to carry, for BI’s multiplicative implication.

If the number-of-uses reading — which is often considered to be characteristic for a logic, like linear logic,
which restricts Contraction — does not carry over, then what meaning do the BI connectives have 7 And
what is the justification for this judgement ?

We can answer these questions in two ways. First, we claim that the Kripke resource semantics, given
later, provides a natural truth-based semantics for BI. We do not have to appeal to A-calculus to make
sense of it (although we certainly can do so). Secondly, although BI can be understood in terms of its truth
semantics, we can also offer a resource-based interpretation of proofs which does justify these judgements.
We call this the (propositional) sharing interpretation.

4 The Sharing Interpretation, I

To set the stage, the background idea is of functional programming data such as pairs, functions and so on,
but with an additional, intensional, notion of resource which can be accessed during a computation. The
resources are distributed, in the sense that a value may have access to some, to none or to all of them.

We concentrate on the two implications.

p—1: functions that may not share resources with their arguments.
(¢ — 1 functions that may share resources with their arguments.

To illustrate how this informal reading of connectives works, recall the “unusual” example of a proof-term
Az .af.(f z)z, in which a multiplicative assumption is used twice. From the point of view of the sharing
interpretation, the subterm (f ) in the proof-term is allowed to share with its argument x, because f x is of
additive function type ¢ — 9. That is why (f x) z is reasonable: There is no requirement that an argument
to a —x-typed function be used just once, only that it does not share with other variables in the proof-term.
The kind of thing that would be disallowed by the sharing interpretation is an application (f x) z, where f
has type p—x p—x 1.

The reading extends to other connectives in a straightforward way. For example, ¢ * % is the type of
non-sharing pairs, and ¢ A4 is the type of pairs that might share.

The sharing interpretation is inspired by John Reynolds’s work on syntactic control of interference and
Idealized Algol ([38, 39], and also the relevant [29]). These are programming languages that use affine and
intuitionistic A-calculus respectively, together with imperative features such as the assignment statement
z := e. The calculi give the “functional data” of the sharing interpretation, and the computer’s store gives
the “intensional” component; see [31].

A concrete model that corresponds to the informal reading can be obtained as an instance of Day’s
construction. Let 7 be the category of finite sets and injective functions. We think of an object X here as a
possible world which identifies a finite set of cells in the computer memory. These worlds are used to capture
the intensional part of the sharing interpretation, that part which refers to resource instead of merely to
values.

The (object parts of the) functors for implication display the basic character of the semantics: Given
E,F :7 — Set,

(B~ F)(X)

Il

Set’[E(-), F(X +-)]

(E = F)(X) Set’[E(X + ), F(X + )]

where + is the evident functor on Z given by disjoint union in Set. Notice how these clauses correspond
directly to the sharing interpretation. For —, the absence of X in E(-) indicates how a function (which



lives in world X) and argument must access disjoint resources. For —, the presence of X in E(X + -)
indicates how a procedure may share store with its argument. The other connectives are defined as in Day’s
construction.

We can relate these definitions further to the informal reading by defining a functor cell, which plays the
role of the type of storage cells: It is the inclusion functor from 7 to Set. The value cellX = X of cell at
world X is thought of as the set of cells associated with that world.

Now, consider any element p € cell-= (cell-x E)X. The definition of — says that, for an arbitrary ¥ and
a € cellY, p[Y]a is an element of (cell- E)(X +Y"). Unpacking further, this says that, for an arbitrary Z
and b e cellZ, (p[Y]a)[Z]b € E(X +Y + Z). The crucial point is that a is in the X-component and b in the
Z-component: so, from the point of view of the summed-up world X + Y + Z, they must be different cells.

(An aside: Strictly speaking, the sharing interpretation presented in this section works as well for the
affine variant of BI, where “” admits Weakening. In terms of the model, Set” is an affine DCC, in that the
unit I =Z[{},] is a terminal object. A linear variant of this model can be obtained by replacing Z by the
category of finite sets and bijections. The informal reading of connectives is then adjusted by saying that an
additive function accesses the same resources as its argument.)

Our intention in this section has been to explain how there is a resource interpretation of BI proofs
that is consistent with the fact that —-typed functions in BI (or its calculus of proof-terms) can use their
arguments multiple times. We have seen that such an interpretation is possible, and given a specific model
corresponding to it. We have also hinted at a connection to imperative programming, but a full study of
that connection would take us too far afield here; we refer to the companion paper [31] for more information.

5 Kripke Resource Semantics

Thus far we have considered BI from proof- or type-theoretic perspectives, with a semantic focus on the
interpretation of proofs. However, BI can also be understood from a model-theoretic point of view, in which
we consider a notion of truth for formulse, which are thus seen to denote propositions in the established
sense. We are not looking for an algebraic semantics here, where one takes (say) a Heyting algebra with
enough structure to model the multiplicatives; this would just be a collapsed version of the DCC semantics,
and would not be very informative.

A more penetrating semantics of MILL was given by Urquhart [45]. The semantics uses possible worlds,
arranged as a commutative monoid, which Urquhart justifies in terms of a philosophical analysis of a notion
of “piece of information”. Recall also that Kripke gave a possible world semantics of IL which can be
understood as using functor categories Set”, where P is a preorder [23]. We can obtain a semantics of
BI, which combines these two semantics directly, by working in categories Setccp, where C is a symmetric
monoidal category. For simplicity, we describe this for the special case that C°? = M is a partially-ordered
commutative monoid. (This means that the multiplication of the monoid must be monotone, but note that
it need not be given by meet or join, and the unit need not be a least or greatest element.)

Given such a monoid M = (M,-,e,C), the semantics of BI is defined via a forcing relation m = ¢,
for a world m € M and formula ¢. All propositions will satisfy the familiar monotonicity property from
intuitionistic logic:

Kripke Monotonicity: n = ¢ and m C n impliesm = ¢

In more detail, an interpretation must specify the forcing relation m |= p for propositional variables p in
a way compatible with Kripke Monotonicity. The clauses for the additive connectives are then

mpE1 always
mEeAyYy T mEgandmEy
mp=0 never

mEevy iff mEgorm=1
mEe—=vY iff VYnCm.nkE ¢ implies n = 1)
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The multiplicatives follow Urquhart’s semantics of MILL.
mETI if mCe
mpEepxy ff Inn'eM(mCn-n and n ¢ and n' =)
mpEp—=xty ff Vne M(n|¢ implies n-m =)

If the order on the monoid M is discrete then the clauses for * and I reduce to Urquhart’s semantics for
MILL. The clause for — is precisely the one used by him. Given this definition, formulated in the category
Set™, we can proceed to establish soundness and completeness theorems, with a model-existence result
being established via a term model constructed using normal natural deductions [33, 34].

We can read the clauses informally in terms of resources. For example, the formula for x says, roughly, that
a world forces a multiplicative conjunction if and only if there is a partition of that world into components
which force the constituents of the formula.This narrative about partitioning suggests a sense in which
multiplicative (or intensional, in the relevant terminology) connectives depend on the internal structure of
worlds. On top of this, one can understand the formula for — as follows: if m is the cost of the function
and if n is the cost of (any) argument, then the cost of obtaining the result of applying the function to the
argument is m - n. The clauses for additives should be understood in terms of conservation, rather than
splitting, of information. For example, to establish an additive conjunction one can make use of the same
information when showing each conjunct.

The reader might have recognized a similarity to Day’s construction in the treatment of the multiplica-
tives. This can be made precise as follows: Given an interpretation of propositional letters, we can define an

object [p] in Set™, where
_ [ {x} ifmEpP
(el = { {} ifmpp

with the morphism part being evident. [—] extends to all formula inductively, using the DCC structure of
Set™. The connection between the two semantics can then be stated as follows:

Proposition 7 For all formule ¢ and worlds m, [p]m is non-empty iff m = .

An important point is that [y * ¢]m can have more than one element if M is not connected; not every
[] is a subobject of 1. Thus, Urquhart’s form of semantics is not exactly the same as Day’s, but it is closely
related to it and can be recovered from it [33, 34].

We regard the DCC and Kripke resource semantics as complementary. DCCs provide a proof-theoretic
view, emphasizing adjoint relationships between implications and conjunctions. The Kripke semantics exists
independently, and emphasizes a notion of truth, parameterized by worlds. The world structure can be
understood as axiomatizing some minimal assumptions about resources, in a way similar to the considerations
of Urquhart, but with some key points of divergence [33]. Day’s construction provides the link between the
two views.

One last comment. In his work Urquhart was aiming to model relevant logics which admit Contraction,
and for this he included an equation m -m = m. This lead to a mismatch with the relevant logic R, where
(=1 Vx) A (= x)—* (¢—* x) holds in Urquhart’s semantics but is not provable in R. We do not have such a
mismatch here for two reasons. First, we do not accept the equation, because BI does not admit Contraction
for “,”. Second, even if we were to add Contraction to BI we would not insist on m -m being equal to m, but
only greater or equal. In this respect, our semantics is related to the ternary relation semantics of Routley
and Meyer [14, 37]; but taking a commutative monoid, along the lines of Urquhart, as primitive seems a
natural choice in the light of Day’s construction.

6 Quantifiers
The predicate version of BI has the familiar intuitionistic quantifiers V and 3. It also has intensional quan-

tifiers, obtained by observing structural restrictions on the level of terms as well as propositions. This is
formulated using a notion of bunch of variables, which is separate from bunches of propositions. We describe
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this here using a single-sorted version of predicate BI.

BUNCHES OF VARIABLES. z is used to range over variables, and X over bunches of variables.
X =z | XX | X, X |{Inl{}a

Bunches of variables are subject to the linearity restriction: any variable appears at most once in a bunch.

JUDGEMENTS.  We consider terms- and propositions-in-context, with a syntax of the form
XFt:Term and XF ¢:Prop

which assert that a term or proposition is well-formed in context X [26]. Constants and predicate letters are
given by schematic judgements and, as in the bunched logic itself, Contraction and Weakening are allowed

“w”

for “” but not for “,”. We omit a formal definition and move on to consider the quantifiers.

Logical judgements have the form
(X)Tkg

asserting that ¢ is a consequence of I'; where the terms and atomic predicates in the sequent are well-formed
according to X.

MULTIPLICATIVES
(X,2) Tk v (X)TF Vyewt-¢ Yl—t:Termv 5
(X) T+ VYpewz.0 00 (X,Y) T F oft/x] new
(X, Y)THFy[t/z] YFEt:Term XFET:Prop (X)TFJpewzo (Y,2) A1 1 E
(X) T F Gnew.¢ new (X,Y)T,AF ¢ new
ADDITIVES
(X;2)T ko VI (X)THEVz.p X Ft:Term
(X) T FVz.p (X) T+ o[t/x]

(X)TFot/z] XFt:Term (X)TH3zp (X;2) Aok o
(X)TF 3z.p . (X)T;AF ¢

The idea of the introduction rule for Vyew is that we may infer Vyhew. in the usual way for universal
quantification, except that the variable x must sit in multiplicative combination with all of the other vari-
ables. In the elimination rule we must be careful not to substitute an arbitrary term for x, but only one
that is respective of the multiplicative relationship between x and other variables in X. In particular, ¢
cannot contain any of these other variables appearing in X; this requirement is implemented by the linearity
restriction. The universal introduction rules have the usual restriction that £ must not occur in I'; similarly,
the existential elimination rules have the restriction that  must not occur in A or ¢p. X F I" : Prop has its
evident meaning, i.e., X F or, where ¢r is the proposition constructed from I' by replacing each “;” with A
and each “)” with .

A consequence of these observations is that it is not exactly reasonable to read Vpew literally as “for
all”. Rather, we must take into account that in Vhew2. the multiplicative relationship between = and other
variables must be observed. In terms of the sharing interpretation, we would read it as “for all z that don’t
share resources with other variables in ¢”, or more briefly, for all new z. The nomenclature for Vyew can
be considered to come from the relationship it has with new storage variables in Idealized Algol. Similar
considerations apply to Jnew-

It is important to avoid the trap of thinking of Vjew as an infinite multiplicative conjunction; this idea is
sometimes mentioned, by analogy with the view of additive quantification as an infinite additive conjunction.

JE
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Rather, Vyew is closely allied to the multiplicative implication —, although a version allied to multiplicative
conjunction is possible under restricted circumstances. It would be interesting to formulate a dependent
function type, along the lines of [21], which generalizes both of them.

We now extend the Kripke Resource Semantics to quantifiers. To do this, we must first define a notion
of environment, which specifies a binding of variables to individuals. For this, we suppose that we are given
a functor D in Set™; this functor is the “domain of individuals”. As in the possible worlds semantics of
intuitionistic logic, the use of a functor instead of a constant set allows different collections of individuals to
exist at different worlds.

Example 8 Consider the monoid M = (N,0,+, <) of natural numbers, under addition. Then D might be
taken to be the functor sending n to the set {0, ...,n — 1}, with the morphism part being inclusion. Here, we
may regard the set D(n) as specifying the collection of memory locations active at world n, borrowing from
the sharing interpretation in terms of imperative programming.

Continuing with the definitions, given such a functor D we may define the environment functor [X], for
X a bunch of variables, as follows:

[«] = D
[{}n] = I [X,Y] = [X]=+[Y]
[{}a =1 [X;Y] = [XIA[Y]

Here, the * on the right is Day’s tensor product, and A is cartesian product of functors. As a result, each
[X] is a functor, so that when n C m and a € [X]m we obtain an element [X](n C m)a € [X]n.
The forcing relation for predicate BI is of the form

(X)u|m¢

where m € M is a world as before, ¢ is a formula, possibly involving quantifiers and predicate letters, and
u € [X]m is an environment appropriate to a bunch of variables X, at world m. (We emphasise here that
an environment is an element of a set, and not a map in Set™'.)

The functorial action of environments enables us to formulate an extension of Kripke Monotonicity:

X)u|nkEy and mCn implies (X) ([X](m Cn)u) |m e

We now move on to give the semantics of the quantifiers. The semantics of the additive quantifiers is
standard, and the multiplicative quantifiers use the monoid structure, as follows:

(X)u|mpEVe.¢  iff YnCm.Vde Dn. (X;2) ([X](n Cm)u,d) |n = ¢
(X)u|mE3Iz.o  iff IdeDm.(X;z) (u,d) |mE ¢

(X)u|mE Ynewz .9 iff ¥n.Vde Dn.(X,z)[u,d] |n-m| ¢

(X)u|mE Jnews.p iff In.3deDn.(X,z)[u,d] |n-mf ¢

In the multiplicative cases, we have used the pairing operation [u,d] for Day’s tensor product (§ 3.1).
In each case, it takes an environment u € [X]m and an element d € Dn and forms the element [u,d] €
([IX]*D)m-n. (Notice from the definition of environment functors that this functor [X] * D is in fact equal
to [X,z], so the definitions are type correct.)

The difference between V and Vyew is that the former considers elements d € Dn only in accessible worlds
where n C m, where for the latter we look to a completely separate world n, and then use the monoid
operation - to combine it with m.

The multiplicative existential is different in another respect from its additive counterpart. The additive
3, from intuitionistic logic, is often described as being “local”, in that the definition stays at the same world,
where for V you travel to accessible worlds to find elements. The multiplicative J,ew does not stay at the
same world when it looks for an element that exists, but nor does it travel along accessible lines; it hops
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to an arbitrary world, accessible or not, to find an element, and then considers the resulting formula in an
environment formed by multiplicative combination.

The connection of multiplicative quantifiers to “newness” is clear if we go back to § 4, and the sharing
interpretation. Hopping to a world multiplicatively apart from the current one guarantees, in the sharing
model, that the element obtained doesn’t interfere with any identifiers evaluated at the current world. This
non-interference property is one of the characteristic properties of local state in imperative languages.

We conclude this section with one further point, first mentioned in the introduction. The inclusion of
bunched structure on the level of individuals raises the question of how this information will be incorporated in
the rules for propositional connectives. For each connective, we must choose whether to follow multiplicative
or additive maintenance on the level of individuals. The most common cases for multiplicative connectives
are in fact cross cases, in which a multiplicative connective allows the same variable to be shared between its
components (this approach is taken, for example, in predicate versions of linear logic). In BI, we also have
the more radical possibility of multiplicative maintenance. A full discussion of predicate BI is beyond the
scope of the present article: the details of predicate BI, including its proof theory, Kripke and categorical
semantics, in both presheaves and fibred (indexed) categories, can be found in [34]. However, we illustrate
some of the main points in the next section, under the heading of logic programming,.

7 The Sharing Interpretation, II

The background idea is now of logic programming, with proof-search as the primitive concept. Again, we
have an intensional notion of resource. The resources here are variables occurring in answer substitutions.
These will be distributed in the sense that access to variables will be localized to specific branches in the
process of proof-search. On the level of the formula themselves, this gives rise to a new form of modularity
in logic programs.

The proof-theoretic account of logic programming is simple and elegant. A program is expressed as
an antecedent (or context), P, of a sequent and a goal is expressed as a succedent, typically existentially
quantified. A goal 3z.G is often written in the Prolog style as G(X), with X described as a “logical variable”.
The whole sequent, P ?- 3z.G, is interpreted as a request to calculate a pair (®, ) in which o is an answer
substitution for X and ® is a proof of the sequent P F Go.

Operationally, we must describe how to execute a program when it is supplied with a goal. Recall first
that inference rules can be read as reduction operators, from conclusion to premisses. (Kleene [22] explains
this in the case of the classical predicate calculus.) Such operators are the basic units of proof-search, or
backward chaining, just as inference rules are the basic units of deduction, or forward chaining.

A semantics based on goal-directed proof-search is computationally appealing. Fix a program, P, and
proceed, informally, as follows:

e Given a complex goal, G, we first reduce G by applying, as a reduction operator, the introduction
rule which corresponds to the outermost connective of G. This reduction process is repeated until all
remaining goal formulee are atomic. For example, given the goal G1 A (G2 — G3), we construct the
tree

P; G2 7- G
P?-Gy P?-G2 = Gs
P?2-Gi A (G2 — Gs)
Note that upper rightmost step adds G2 to the program;

-1

e Given an atomic goal, A, we invoke the program, using a resolution step. Suppose the program includes
a proposition of the form V.G — B, in which B is atomic, such that there is a substitution ¢ for z
such that Bo = A. Then we can immediately proceed to the sub-goal Go:

P?-Go
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This operational semantics has several desirable features. Most importantly, it is not very non-deterministic,
thereby reducing the need for backtracking to an acceptable level. More details of this model of computation
can be found in [28, 36, 27, 18].

Proofs constructed according to this goal-directed strategy are called uniform proofs [28, 36]. Uniform
proofs are not complete for all of BI (or indeed for all of intuitionistic logic). For example, consider the
following, trivially provable, sequent:

GVHFGVH.

To see that there is no uniform proof of this sequent, consider the VI rule:

TG I'+-H
I'~GvH rFGVH

Any attempt to reduce the right-hand side of GV H + GV H first forces a premature choice between G and
H leading, for example, to

GVHFG

which is clearly not provable.

However, uniform proofs are complete for a clausal hereditary Harrop fragment of BI. The basic idea is
to restrict the classes of propositions permitted to occur in each side of a sequent, program clauses, P, on
the left and goals, G, on the right. These two classes (here, for simplicity, we make do with a simplified
form and suppress some operational issues) are defined by mutual induction as follows, where A ranges over
atomic propositions:

Program clauses P 1= A |Vz.G = A | Ypews.G— A
Goals G == A|GAG|GxG | GVG |

P— G| PxG|

32.G | Jnewz.G

A sequent is said to be hereditary Harrop if it is of the form P + G, where P is a bunch of program clauses
and G is a goal. We get a version of the resolution step for each of V.G — A and Vypewz.G—¢ A. In fact,
there are also the cross cases, one in which Vyew is paired with — and one in which V is paired with —«. The
latter case is the one taken in linear logic and so in Lolli [19] and Lygon [18, 36].

The proof that uniform proofs are complete for hereditary Harrop sequents relies most naturally on a
presentation of BI as a sequent calculus [33], in which the elimination rules are replaced by “left rules” which
introduce connective to the left-hand side of a sequent. Provided we restrict our attention to normal proofs,
such a presentation is equivalent to the natural deduction one. The details of these arguments are beyond
the scope of our present purposes. However, it will be helpful to consider the resolution rule itself in a bit
more detail. Recall that our treatment of quantifiers required the introduction of a collection of variables
to sequents, (X) I' - G denoting that X is the set of first-order variables occurring in T' and G. Resolution
makes explicit use of these variables. notation for

In predicate BI, the elimination rule for — [34] can be replaced with the left rule

(X)TFE (Y)AF-G

L.
(X,Y)LExFFG -
Similarly, the V,ew F rule can be replaced with the left rule
X,2)E(x) - F
(X TE@FF

(X)T,Vnews.EF F

Taking these two together, and adding a substitution, the resolution rule for the multiplicative clause
Vnew-G— A can be expressed as the following derived rule:

——Id (Ao = Bo)
(X)r+a (Y) Ao + Bo 1)

Resolution
(X, Y) '\ Vpewy. G+ A+ B
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A similar argument describes the case for the additive clause.

Whilst the behaviour of the additive clauses is familiar from Prolog-like languages, the multiplicative
clauses provided by BI have a different interpretation which provides an account of local variables and
interference in logic programming. An example will illustrate these ideas.

Consider a simple version of the famous “blocks world” [41], in which a robotic arm is supposed to ma-
nipulate blocks, here labelled x , ¥ and z. Suppose further that we wish to remove from the computation —
imagine perhaps that it is a construction process — any components that may be defective. A sketch of a
possible program P follows the diagram:

robot

X

y z
empty. % the robot’s arm is empty
clear (X). % X supports nothing else
support (X) . % X is supported by the ground
on(Y,X). % Y is on top of X
defect (X). % X is defective
ready *- ... % the robot’s arm is in position and

% other conditions hold

defect(X) <- remove(X) & clear(X). % we write & for
% additive conjunction
remove(X) *- empty * ready.

Here we intend the logical variable X in the program clause for “remove” to be quantified not by V, as it
would be in a Prolog-like language, but by Vhew. Suppose that quantification in the clause for defect is the
usual, Prolog-like V.

Suppose the block z is possibly defective, i.e., that we have reached the sub-goal defect(z). By invoking
the clause “defect”, in the Prolog-like style, we obtain the sub-goal remove(z). Now we are ready to invoke
the clause for “remove”, as described by the resolution rule in (1). The substitution o, a fragment of the
ultimate answer substitution for the computation, replaces the bound variable X with z, thereby creating a
match with the sub-goal remove(z). As there are no other variables required, the bunch Y is empty. Thus
we get the following instance of resolution:

Id

W)YPrG (z) remove(z) F remove(z)
Resolution

(W, x) P,VnewX.G—xremove(X) F remove(x)
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where G = empty * ready.

Here it follows immediately that x, the possibly defective block, can take no further part in the compu-
tation, which proceeds up the left-hand branch. Had we taken a version of “remove” in the Prolog-like style,
z could have persisted on the left-hand branch, thereby requiring additional code to enforce its absence from
further constructions.

Thus the use of z in this setting is local to the invocation of the clause for “remove” and z cannot be
shared by “remove” and other clauses. This is in contrast to the situation arising from additive resolutions,
in which the variables used in (fragments of) answer substitutions are global and can be shared. More
generally, given two clauses

Vnew?.G—* A(z) and Vpewz.G'— A'(z)

the use of Vpew can be interpreted as enforcing their non-interference, i.e., the fragments of the answer
substitution generated by their invocations are disjoint. This behaviour arises partly from the form of
— L, in which the bunch of variables (X,Y") is distributed to the left and right branches of the proof-search.
Semantically, for models in Set™, this behaviour can be seen in (a case of) the forcing relation for implication
in predicate BI:

(X,Y) [ux,uy] | mx -my EGxA iff YnVZVve[Z]n (Z,Y)[v,uy]|n-my EG
implies (X, Z) [ux,v] | mx -n}E=A

Here, we require that Y F G : Prop and X F A : Prop, and we are using the pairing operation of Day’s
tensor product. The arbitrary nature of the environment v € [Z]n, used in the clause for G, reflects the fact
that the answer substitution on G’s branch of the computation remains to be calculated. The contribution
of the quantifiers is thus to regulate the scope of the variables. Again, this is reflected in the semantic clause
for the quantifier:

(X)u|mpEVaewz. A i Vn.Vde Fn.(X,z) [u,d]|n-mEA

Here the environment for the instantiated clause is formed by taking Day’s product of an environment for
the whole clause with the interpretation of the substitution determined by the resolution step. These topics
will be developed further in [35].

8 BI in Context

RELATION TO RELEVANT LOGIC

BI should be considered a relevant logic, where we follow Stephen Read [37] in considering “relevant logic”
broadly, as referring to a variety of logics which control the use of structural rules, and not necessarily to
ones that possess Contraction. In this context, the problem that originally gave rise to bunches involved not
implication per se, but distribution of additive conjunction over disjunction (see [14]); that is, o A (¥ V x) F
(e A1)V (p A x) and its converse. The difficulty is that distribution fails in standard sequent calculi for
logics that omit structural rules, whereas it is present in the main relevant logic R. Bunches were used to
give a more delicate treatment of structural rules, which was crucial in accounting for distribution.

Distribution of A over V has been a source of debate within and without the relevant logic community
(see [7] for a lively account). But for our purposes the debate is not a serious issue. Simply, distribution
is valid in Kripke resource semantics, which we regard as a natural semantics, and we must accept it when
working in a situation justified by the semantics. Similarly, distribution follows at once in the semantics of
proofs, using the fact that E A (-) is a left adjoint. This is not to suggest that one wants distribution in all
circumstances; the use of linear typing to provide a type structure for domain theory [32] is a prime example
of where one does not.

From this historical perspective, the relationship of (propositional) BI to R can be stated as follows: to
get to BI from Dunn’s sequent calculus NR* for positive R first remove multiplicative Contraction, then
add the unit I of multiplicative conjunction (fusion), and finally the intuitionistic falsity L and implication
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—. Bl is also, we believe, closely related to Belnap’s scheme of display logic, which gives a method of mixing
several logics together [6, 4].

While we acknowledge this historical debt to relevant logic, the fact that BI could have been obtained in
this way says nothing about its significance. That is, why would one ever consider modifying a presentation
of R in this way? Our account of BI has, therefore, had somewhat of a revisionist bent. In a sense, the aim
has been to show where BI, and bunches themselves, could have come from.

To recap, we began by noting a curious asymmetry. The decomposition of conjunction (and even dis-
junction, with the relevantists fission or linear logic’s par) into multiplicative and additive components is
decades old, but a similarly direct decomposition of implication had not been emphasized. It seemed natural
to ask, then, whether such a decomposition could be given; implication, after all, lies at the very heart of
logic. We then argued how this question, together with proof-theoretic considerations on implication, leads
to the use of two forms of context extension. Evidence that the original question was worth asking was then
provided by the semantics, particularly the semantics in terms of doubly closed categories, which display BI
as a naturally occurring logic.

In contrast, it seems fair to say that (with some exceptions [37, 42]) bunches have appeared mainly as
a technical device in the work of relevantists. And from the outside the view is often less charitable. For
example, in his history of substructural logics [12], Dosen mentions “complications of nonstandard Gentzen
systems” and “technically unwholesome properties”, comments that bear directly on bunched formalisms, or
on features (such as distribution) that necessitate them. A certain regret is even evident in [4], when extra
constants or connectives are entered into a Gentzen formalism in order to account for a particular logic.

We would argue, however, that bunches do have a good conceptual status. One may arrive at them from
a consideration of the proof-theoretic relationship between conjunction and implication. And an alternative,
perhaps more forceful, route is obtained from doubly closed categories, where the adjoint relationship between
conjunction and implication leads inexorably to bunched structure. From this point of view bunches are not
purely technical, and neither are they particularly unwholesome; rather, bunched structure is, in certain
situations, semantically inevitable.

We have also sketched how BI admits “resource interpretations”, based on sharing. Our results here
are more tentative, and it will take time to evaluate their consequences. But we do believe that there are
good possibilities for applications, some of which are described in more detail in companion papers and
other papers under development. Apart from the specifics of BI, the bunch-based approach to controlling
structural rules opens up further possibilities for controlling the scope and dynamic extent of information
dependencies, in both programs and specifications.

We conclude this part with two general points about relevant logics and bunches. First, we would suggest
that useful analyses of existing relevant logics, or identification of interesting variants, might be obtained
from attention to categorical proof theory, particularly by focusing on structural relationships between an-
tecedents and logical connectives. And second, other relevant logics might benefit from convincing resource
interpretations of proofs (as opposed to just formulae). Such interpretations are not easy to find, but there
is reason to believe that they should be different from those for substructural logics not based on bunches
(because of the different semantic properties, exemplified by the distribution).

RELATION TO LINEAR LOGIC

We have already acknowledged the leading influence of linear logic in the Introduction; here we would like
to discuss in detail several of the differences. The point is to aid comprehension by comparison to a well
known system, and particularly to go past the surface similarity (where both logics combine multiplicative
and additive implications) between them. The comparison is made to intuitionistic linear logic, with “!”,
and not to smaller fragments.

First, the informal readings given to the connectives are different. Where the linear implication ¢—o 1) is
often considered to be about using an argument once, the multiplicative implication ¢—*1 does not readily
admit such a reading. The sharing interpretation, however, provides a reading of connectives consistent with
the existence of —x-typed functions which use their arguments multiple times.

Second, bunches are not similar to the zoned contexts used in some presentations of linear logic (e.g.,

[17, 5]). In particular, ¢” and “” can be nested in a bunch, and “;” (just like ) is internalized as a
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connective in the logic, while the zone marker “;” does not internalize in this way. (Uses of bunches in
linear logic, such as [40], do not appear to be aimed at providing any analysis of implication. Moreover, the
relationship of such uses to prior work in relevant logic is unclear.)

Third, linear logic admits a decomposition of — as lp—o ), while BI admits no similar decomposition of
— in terms of —.

Fourth, in common with R, BI is a distributive logic, where additive conjunction distributes over additive
disjunction. Linear logic does not admit distribution.

Fifth, categorical models of linear logic are based on two closed categories, where for BI we use a semantics
of proofs based on a single category with two closed structures on it. In fact, from a categorical point of
view, BI appears as a natural progression (which isn’t to say the only one). Models of linear logic were first
described in terms of a single closed category, and a comonad “!” [43]. Later, the intuitionistic and linear
structures were given equal status, in the form of two separate closed categories, one symmetric monoidal
and the other cartesian, with functors between them [8, 5]. BI also accepts the linear and intuitionistic
aspects on an equal footing, but takes the further step of asking that the two closed structures reside in the
same category.

Sixth, the Tarski-style models of BI, which explain formule in terms of a notion of truth, are obtained
by combining existing semantics of intuitionistic and relevant logics. We know of no comparable semantics of
linear logic, where one combines standard semantics for the multiplicatives and additives. such a semantics
should linear logic is

Seventh, linear logic has a number of vivid computational readings, including: the number-of-uses reading,
based on the original coherence space model; an eager and lazy evaluation reading, based on a strict function
model; a concurrency reading of proofs [1]; and a logic programming interpretation [36, 19]. In these
comparitively early days for BI, we have just two related computational readings: one based on imperative
programming and the other on logic programming.

Eighth, BT has multiplicative quantifiers Vpew and Jpew, alongside the usual additive quantifiers. Despite
many rumblings on this topic over the years, we have not been able to locate a worked-out predicate logic
which has multiplicative quantifiers. That is, apart from Ambler’s system for the existential only [2], the
formulation of which is somewhat more complex than ours. Also relevant is the theory of multiplicative
dependent function types in [21], together with its fibrational semantics [20]; incidentally, it can be regarded
as relying on a version of bunches appropriate to dependent type theory.
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