Verification of security protocols: from confidentiality to privacy

Stéphanie Delaune

LSV, CNRS & ENS Cachan & INRIA Saclay Île-de-France, France

Friday, March 18th, 2011

Context: verification of critical softwares

Computers are everywhere!

Context: verification of critical softwares

Computers are everywhere!

A need for automated formal verification

- testing the system is not always sufficient
 - \longrightarrow we want to consider all the possible behaviours
- manual proofs are tedious and error-prone
 - \longrightarrow automated verification techniques

Cryptographic protocols

Cryptographic protocols

- small programs designed to secure communication (*e.g.* secrecy)
- use cryptographic primitives (e.g. encryption, signature,)

The network is unsecure!

Communications take place over a public network like the Internet.

Cryptographic protocols

Cryptographic protocols

- small programs designed to secure communication (*e.g.* secrecy)
- use cryptographic primitives (e.g. encryption, signature,)

Cryptographic protocols

Cryptographic protocols

- small programs designed to secure communication (*e.g.* secrecy)
- use cryptographic primitives (e.g. encryption, signature,)

It becomes more and more important to protect our privacy.

 \longrightarrow studied in [Arapinis *et al.*, 10]

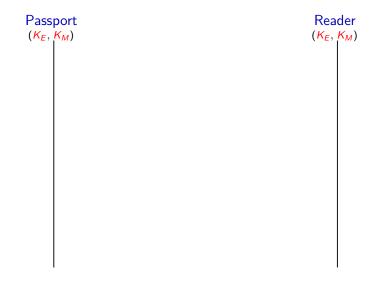
An electronic passport is a passport with an RFID tag embedded in it.

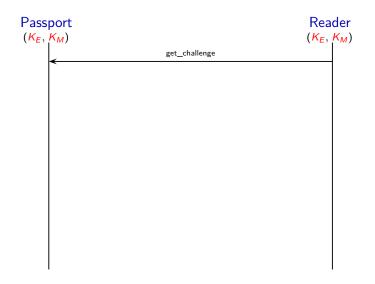
The RFID tag stores:

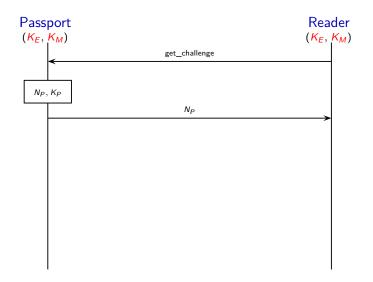
- the information printed on your passport,
- a JPEG copy of your picture.

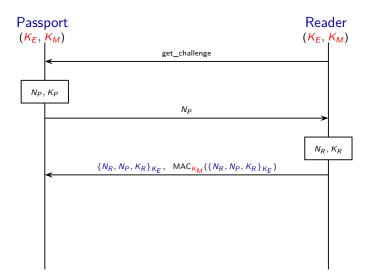
 \longrightarrow studied in [Arapinis *et al.*, 10]

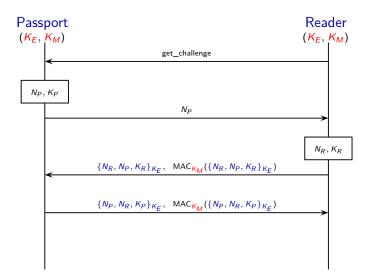
An electronic passport is a passport with an RFID tag embedded in it.

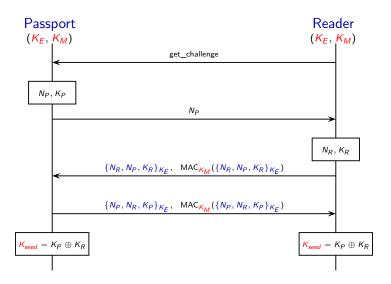

The RFID tag stores:


- the information printed on your passport,
- a JPEG copy of your picture.


The Basic Access Control (BAC) protocol is a key establishment protocol that has been designed to also ensure unlinkability.


ISO/IEC standard 15408


Unlinkability aims to ensure that a user may make multiple uses of a service or resource without others being able to link these uses together.



 \rightarrow Various models (*e.g.* [Dolev & Yao, 81]) having some common features

 \rightarrow Various models (*e.g.* [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms together with an equational theory.

 \rightarrow Various models (*e.g.* [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms together with an equational theory.

Examples:

- \rightarrow symmetric encryption/decryption: dec(enc(x, y), y) = x
- \rightarrow exclusive or operator:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 $x \oplus x = 0$
 $x \oplus y = y \oplus x$ $x \oplus 0 = x$

 \rightarrow Various models (*e.g.* [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms together with an equational theory.

 \rightarrow Various models (*e.g.* [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms together with an equational theory.

 \rightarrow Various models (*e.g.* [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms together with an equational theory.

The attacker

- may read every message sent on the network,
- may intercept and send new messages according to its deduction capabilities.
 - \longrightarrow only symbolic manipulations on terms.

What about secrecy?

- several undecidability results for an unbounded number of sessions
 [Even & Goldreich, 83; Durgin et al, 99]
- decidability results for a bounded number of sessions (NP-complete) [Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]

 \longrightarrow extended by many authors to deal with various primitives.

What about secrecy?

- several undecidability results for an unbounded number of sessions
 [Even & Goldreich, 83; Durgin et al, 99]
- decidability results for a bounded number of sessions (NP-complete) [Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]

 \longrightarrow extended by many authors to deal with various primitives.

Some automatic verification tools	
AVISPA platform	[Armando <i>et al.</i> , 05]
\longrightarrow state-of-the-art for bounded verification	
ProVerif tool	[Blanchet, 01]
\longrightarrow quite flexible to analyse security properties	

 \rightarrow None of the existing tools is able to analyse the e-passport protocol.

Formal analysis of new applications

Target applications: electronic voting protocols, RFID protocols, routing protocols, vehicular ad hoc networks, electronic auction protocols, ...

Formal analysis of new applications

Target applications: electronic voting protocols, RFID protocols, routing protocols, vehicular ad hoc networks, electronic auction protocols, ...

Challenges:

- Formal definitions of the expected security properties

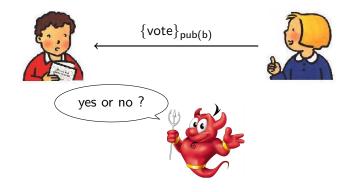
 —> privacy-type security properties
- Designing appropriate verification algorithms that take into account the specific features of this new type of protocols
- Composition results

1 Introduction

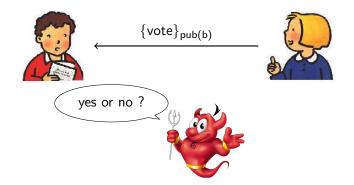
- 2 A simple setting: the passive case
- 3 A more complexe setting: the active case
 - Going beyond with the ProVerif tool
 - Constraint solving approach

Perspectives

Introduction


2 A simple setting: the passive case

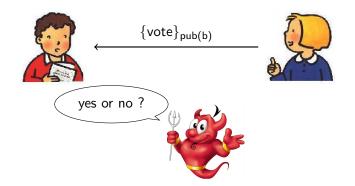
A more complexe setting: the active case


- Going beyond with the ProVerif tool
- Constraint solving approach

4 Perspectives

A simple protocol

A simple protocol



Question

Does the attacker know Alice's vote?

S. Delaune (LSV)

A simple protocol

The real question

Is the attacker able to tell whether Alice sends yes or no?

S. Delaune (LSV)

Static equivalence (indistinguishability relation)

frame
$$\phi = \{ \stackrel{M_1}{\underset{x_1}, \ldots, \stackrel{M_\ell}{\underset{x_\ell}} \}$$

Static equivalence $(\phi \sim \phi')$

[Abadi & Fournet, 01]

Two frames ϕ and ϕ' are statically equivalent if, and only if

$$C_1[M_1, \dots, M_\ell] = C_2[M_1, \dots, M_\ell] \Leftrightarrow C_1[M'_1, \dots, M'_\ell] = C_2[M'_1, \dots, M'_\ell]$$

for all public contexts C_1 and C_2

Static equivalence (indistinguishability relation)

frame
$$\phi = \{ {}^{M_1}\!/_{\!x_1}, \ldots, {}^{M_\ell}\!/_{\!x_\ell} \}$$

Static equivalence $(\phi \sim \phi')$

[Abadi & Fournet, 01]

Two frames ϕ and ϕ' are statically equivalent if, and only if

 $C_1[M_1, \dots, M_\ell] = C_2[M_1, \dots, M_\ell] \Leftrightarrow C_1[M'_1, \dots, M'_\ell] = C_2[M'_1, \dots, M'_\ell]$ for all public contexts C_1 , and C_2 .

Example: ϕ_1 and ϕ_2 are not in static equivalence.

$$\phi_1 = \{ ^{\{yes\}_{\mathsf{pub}(b)}\!/_{\!\!X}} \}$$
 and $\phi_2 = \{ ^{\{no\}_{\mathsf{pub}(b)}\!/_{\!\!X}} \}$

 $\longrightarrow C_1 = {yes}_{pub(b)}$ and $C_2 = x$

Static equivalence (indistinguishability relation)

frame
$$\phi = \{ {}^{M_1}\!/_{x_1}, \ldots, {}^{M_\ell}\!/_{x_\ell} \}$$

Static equivalence $(\phi \sim \phi')$

[Abadi & Fournet, 01]

Two frames ϕ and ϕ' are statically equivalent if, and only if

 $C_1[M_1, \ldots, M_\ell] = C_2[M_1, \ldots, M_\ell] \Leftrightarrow C_1[M'_1, \ldots, M'_\ell] = C_2[M'_1, \ldots, M'_\ell]$ for all public contexts C_1 , and C_2 .

State of the art in 2006:

[Abadi & Cortier, 06]

- PTIME decision procedure for subterm convergent equational theories $\rightarrow e.g.$ symmetric/asymmetric encryption, signature, ...
- some abstract conditions that ensure decidability for many more theories
 - \longrightarrow exclusive or, homomorphic encryption, \ldots

Some results for deduction and static equivalence (1/2)

A generic procedure implemented in the YAPA tool for deciding both notions for subterm convergent equational theories, blind signatures, homomorphic encryption, ...

http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html

 \longrightarrow in collaboration with M. Baudet & V. Cortier

A generic procedure implemented in the YAPA tool for deciding both notions for subterm convergent equational theories, blind signatures, homomorphic encryption, ...

http://www.lsv.ens-cachan.fr/~baudet/yapa/index.html

 \longrightarrow in collaboration with M. Baudet & V. Cortier

Some equational theories motivated by the e-voting application *e.g.* re-encryption, trapdoor bit commitment (KiSs tool), ...

http://www.lsv.ens-cachan.fr/~ciobaca/kiss

 \longrightarrow in collaboration with S. Ciobaca & S. Kremer

Monoidal equational theories (AC operators)

e.g. exclusive or, abelian groups, ... together with some homomorphism laws h(x + y) = h(x) + h(y)

$$h(x+y) = h(x) + h(y)$$

General schema for deciding both problems:

- Reduce both problems to classical algebraic problems.
- Use existing results to conclude for many interesting equational theories.

 \longrightarrow in collaboration with V. Cortier

Monoidal equational theories (AC operators)

e.g. exclusive or, abelian groups, ... together with some homomorphism laws h(x + y) = h(x) + h(y)

$$h(x+y) = h(x) + h(y)$$

General schema for deciding both problems:

- **Reduce** both problems to classical algebraic problems.
- Use existing results to conclude for many interesting equational theories.

 \longrightarrow in collaboration with V. Cortier

Combination results for disjoint theories

If deduction and static equivalence are decidable for E_1 and E_2 , then deduction and static equivalence are decidable for $E_1 \cup E_2$.

 \longrightarrow in collaboration with V. Cortier

Conclusion

• Several new decidability and complexity results

Theory E	Deduction	Static equivalence
subterm convergent	PTIME	
blind signature	PTIME	
homomorphic encryption	decidable	
trapdoor commitment	PTIME	
ACUN	PTIME	PTIME
AG	PTIME	PTIME
ACUNh/AGh	PTIME	decidable
$AGh_1 \dots h_n$	decidable	

Conclusion

- Several new decidability and complexity results ...
- that have been partly implemented (YAPA and KiSs).

Conclusion

- Several new decidability and complexity results ...
- that have been partly implemented (YAPA and KiSs).

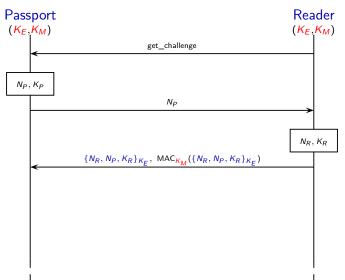
Some perspectives

- Extension of YAPA and/or KiSs to theories with AC operators
- Combination for non-disjoint equational theories

More importantly, we have to move to the active case.

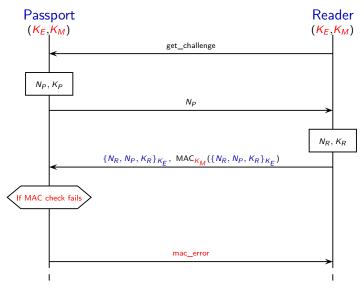
Introduction

2 A simple setting: the passive case

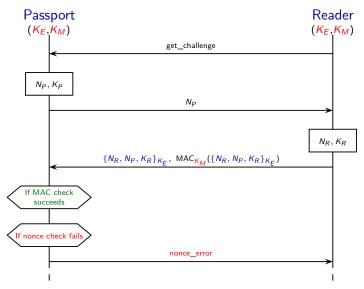

3 A more complexe setting: the active case

- Going beyond with the ProVerif tool
- Constraint solving approach

4 Perspectives


French electronic passport

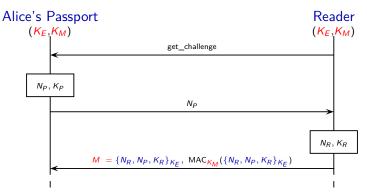
 \rightarrow the passport must reply to all received messages.


French electronic passport

 \rightarrow the passport must reply to all received messages.

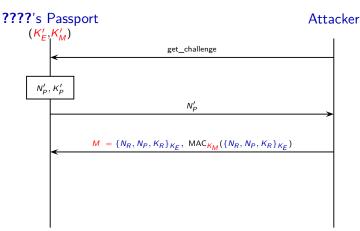
French electronic passport

 \rightarrow the passport must reply to all received messages.

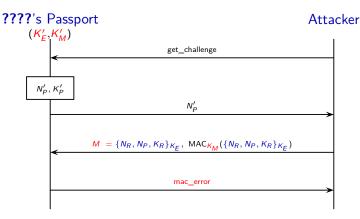

Attack against unlinkability

An attacker can track a French passport, provided he has once witnessed a successful authentication.

Attack against unlinkability


An attacker can track a French passport, provided he has once witnessed a successful authentication.

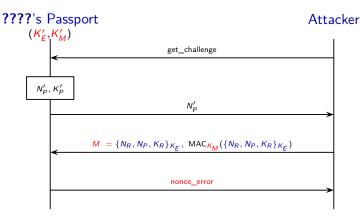
Part 1 of the attack. The attacker eavesdropes on Alice using her passport and records message M.


Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.


\implies MAC check failed $\implies K'_M \neq K_M \implies$???? is not Alice

S. Delaune (LSV)

18 / 37

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

\implies MAC check succeeded \implies $K'_M = K_M \implies$???? is Alice

S. Delaune (LSV)

Formalizing security properties and privacy-type properties is rather subtle.

- Privacy for electronic voting protocols \longrightarrow in collaboration with S. Kremer & M. Ryan
- Privacy in vehicular ad hoc network

 \longrightarrow in collaboration with M. Dahl & G. Steel

Formalizing security properties and privacy-type properties is rather subtle.

- \bullet Privacy for electronic voting protocols \longrightarrow in collaboration with S. Kremer & M. Ryan
- Privacy in vehicular ad hoc network \longrightarrow in collaboration with M. Dahl & G. Steel

Observational equivalence

[Abadi & Fournet, 01]

The processes *P* and *Q* are indistinguishable, denoted $P \approx Q$, if for all attacker *A* we have that:

 $A \mid P$ can emit on $c \iff A \mid Q$ can emit on c

1 Introduction

2 A simple setting: the passive case

A more complexe setting: the active case
 Going beyond with the ProVerif tool

Constraint solving approach

4 Perspectives

ProVerif

Automated protocol verifier mainly developed by B. Blanchet.

Main features

- unbounded number of sessions;
- various cryptographic primitives modeled using rewriting rules and equations;
- various security properties: (strong) secrecy, authentication, equivalence-based security properties.

The tool may not terminate or give false attacks. It works well in practice.

ProVerif

Automated protocol verifier mainly developed by B. Blanchet.

Main features

- unbounded number of sessions;
- various cryptographic primitives modeled using rewriting rules and equations;
- various security properties: (strong) secrecy, authentication, equivalence-based security properties.

The tool may not terminate or give false attacks. It works well in practice.

Some results obtained with ProVerif Formal analysis of secrecy and authentication properties in the TPM.

 \longrightarrow in collaboration with S. Kremer, G. Steel, & M. Ryan

- ProVerif considers processes having the same structure (bi-process);
- the notion of equivalence, diff-equivalence, is too strong.

- ProVerif considers processes having the same structure (bi-process);
- the notion of equivalence, diff-equivalence, is too strong.

Example

 $P = \operatorname{out}(a) | \operatorname{out}(b)$ and $Q = \operatorname{out}(b) | \operatorname{out}(a)$

We have that *P* and *Q* are indistinguishable, *i.e.* $P \approx Q$.

- ProVerif considers processes having the same structure (bi-process);
- the notion of equivalence, diff-equivalence, is too strong.

Example

$$P = \operatorname{out}(a) | \operatorname{out}(b)$$
 and $Q = \operatorname{out}(b) | \operatorname{out}(a)$

We have that *P* and *Q* are indistinguishable, *i.e.* $P \approx Q$.

Forming a bi-process, we obtain:

out(choice[a, b]) | out(choice[b, a]).

 $\longrightarrow \mathsf{ProVerif}$ is not able to conclude since they are not in diff-equivalence.

- ProVerif considers processes having the same structure (bi-process);
- the notion of equivalence, diff-equivalence, is too strong.

Example

$$P = \operatorname{out}(a) | \operatorname{out}(b)$$
 and $Q = \operatorname{out}(b) | \operatorname{out}(a)$

We have that *P* and *Q* are indistinguishable, *i.e.* $P \approx Q$.

We can also form the bi-process:

out(choice[a, a]) | out(choice[b, b]).

 \longrightarrow ProVerif is able to conclude. They are in diff-equivalence.

Contributions

We propose a transformation to expand the scope of ProVerif

Input: a bi-process P with some additional comment (** swap *) Output: a bi-process Q on which ProVerif can directly reason, and such that: P satisfies obs. equiv. $\Leftrightarrow Q$ satisfies obs. equiv. \longrightarrow in collaboration with B. Smyth & M. Ryan

Contributions

We propose a transformation to expand the scope of ProVerif

Input: a bi-process P with some additional comment (** swap *) Output: a bi-process Q on which ProVerif can directly reason, and such that: P satisfies obs. equiv. $\Leftrightarrow Q$ satisfies obs. equiv. \longrightarrow in collaboration with B. Smyth & M. Ryan

Recently, the transformation has been revisited [Smyth & Blanchet, 10], and implemented in the ProSwapper tool.

We propose a transformation to expand the scope of ProVerif

Input: a bi-process P with some additional comment (** swap *) Output: a bi-process Q on which ProVerif can directly reason, and such that: P satisfies obs. equiv. $\Leftrightarrow Q$ satisfies obs. equiv. \longrightarrow in collaboration with B. Smyth & M. Ryan

Recently, the transformation has been revisited [Smyth & Blanchet, 10], and implemented in the ProSwapper tool.

Applications

- Electronic voting protocol by Fujioka, Okamoto, and Ohta (FOO)
- Direct Anonymous Attestation protocol based on the TPM (DAA) \longrightarrow in collaboration with B. Smyth & M. Ryan
- Vehicular ad hoc network (CMIX protocol, E-toll collection protocol) \longrightarrow in collaboration with M. Dahl & G. Steel

1 Introduction

- 2 A simple setting: the passive case
- A more complexe setting: the active case
 - Going beyond with the ProVerif tool
 - Constraint solving approach

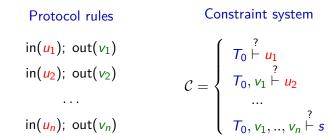
Perspectives

Secrecy problem via constraint solving

 \longrightarrow for a fixed number of sessions

Protocol rules

 $in(u_1); out(v_1)$ $in(u_2); out(v_2)$


 $in(u_n); out(v_n)$

Constraint system

$$C = \begin{cases} T_0 \vdash u_1 \\ ? \\ T_0, v_1 \vdash u_2 \\ ... \\ T_0, v_1, ..., v_n \vdash s \end{cases}$$

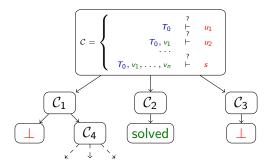
Secrecy problem via constraint solving

 \longrightarrow for a fixed number of sessions

Solution of a constraint system \mathcal{C}

A substitution σ such that

for every
$$T \stackrel{?}{\vdash} u \in C$$
, we have that $u\sigma$ is deducible from $T\sigma$.


Main idea of the decision procedure

There exist some algorithms (actually a set of simplification rules) to decide whether such kind of constraint systems have a solution or not. [Millen & Shmatikov, 01; Comon *et al.*, 09]

Main idea of the decision procedure

There exist some algorithms (actually a set of simplification rules) to decide whether such kind of constraint systems have a solution or not. [Millen & Shmatikov, 01; Comon *et al.*, 09]

Main idea of the procedure:

 \rightarrow this gives us a symbolic representation of all the solutions.

S. Delaune (LSV)

Some results

We extend this procedure to other kind of contraints

Some results

We extend this procedure to other kind of contraints

Other cryptographic primitives

- a generic result for good inference systems that are finite;
- blind signatures (used in e-voting): $v \stackrel{?}{\in} \mathcal{B}d(T, u)$,

 $\frac{\operatorname{sign}(\operatorname{blind}(x,y),z) \quad y}{\operatorname{sign}(x,z)}$

 \longrightarrow Part of PhD work of S. Bursuc

Some results

We extend this procedure to other kind of contraints

Other cryptographic primitives

- a generic result for good inference systems that are finite;
- blind signatures (used in e-voting): $v \stackrel{?}{\in} \mathcal{B}d(T, u)$,

$$\frac{\operatorname{sign}(\operatorname{blind}(x,y),z) \quad y}{\operatorname{sign}(x,z)}$$

 \longrightarrow Part of PhD work of S. Bursuc

Routing protocols

- Disequality constraints of the form $\forall X.v \neq u$.
- Neigboorhood constraints: *e.g.* check(a,b)

 \longrightarrow Part of PhD work of M. Arnaud

Equivalence-based security properties via constraint solving

Step 1: From observational equivalence to symbolic equivalence \rightarrow reduce the problem of deciding an equivalence-based properties on processes to a decision problem on constraint systems.

- simple processes

 \longrightarrow in collaboration with V. Cortier

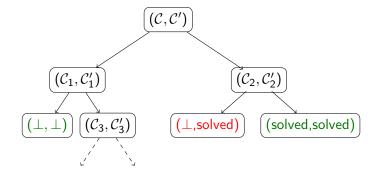
Equivalence-based security properties via constraint solving

Step 1: From observational equivalence to symbolic equivalence \rightarrow reduce the problem of deciding an equivalence-based properties on processes to a decision problem on constraint systems.

- simple processes

 \longrightarrow in collaboration with V. Cortier

- Step 2: Decision procedure for symbolic equivalence
- \longrightarrow several procedures already exist,


e.g. [Baudet, 05; Chevalier & Rusinowitch, 09].

- a new procedure based on a set of simplification rules
- implementation: the ADECS tool http://www.lsv.ens-cachan.fr/~cheval/program/adecs/

 \longrightarrow part of PhD work of V. Cheval

Our procedure in a nutshell

Main idea: We rewrite pairs of constraint systems (extended to keep track of some information) until a trivial failure or a trivial success is found.

Some perspectives

How can we expand further the scope of ProVerif?

- \longrightarrow more cryptographic primitives (*e.g.* exclusive or)
 - by relying on the finite variant property as done in [Küsters & Truderung, 10] for trace-based security properties;
 - Application: RFID protocols.

Some perspectives

How can we expand further the scope of ProVerif?

- \longrightarrow more cryptographic primitives (*e.g.* exclusive or)
 - by relying on the finite variant property as done in [Küsters & Truderung, 10] for trace-based security properties;
 - Application: RFID protocols.

Constraint solving approach

- Algorithms for symbolic equivalence for more general systems *e.g.* disequality tests, more primitives
- Moving from symbolic equivalence of pairs of constraints to symbolic equivalence of sets of constraints
 - \longrightarrow This will allow us to analyse the e-passport protocol
- Efficient procedure to reduce equivalence of processes to symbolic equivalence of constraints

Introduction

- 2 A simple setting: the passive case
- A more complexe setting: the active case
 - Going beyond with the ProVerif tool
 - Constraint solving approach

Perspectives

Formal analysis of new applications

Target applications: electronic voting protocols, RFID protocols, routing protocols, vehicular ad hoc networks, electronic auction protocols, ...

Challenges:

- Formal definitions of the expected security properties

 —> privacy-type security properties
- Designing appropriate verification algorithms that take into account the specific features of this new type of protocols
- Composition results

Security issues in mobile ad hoc network

Applications: RFID protocols, routing protocols, protocols in vehicular ad hoc network (*e.g.* e-toll collection protocol)

Security issues in mobile ad hoc network

Applications: RFID protocols, routing protocols, protocols in vehicular ad hoc network (*e.g.* e-toll collection protocol)

Modelling issues

- security properties: privacy, route validity
- classical Dolev-Yao attacker model is too strong
 → local attacker, rushing attacks
- taking into account mobility

Security issues in mobile ad hoc network

Applications: RFID protocols, routing protocols, protocols in vehicular ad hoc network (*e.g.* e-toll collection protocol)

Modelling issues

- security properties: privacy, route validity
- classical Dolev-Yao attacker model is too strong
 → local attacker, rushing attacks
- taking into account mobility

Verification issues

- we need to extend the verification techniques to integrate these new features
- reduction results to simplify the topology, the attacker model, ...

A taxonomy for privacy-type properties

For many applications (e.g. routing protocols), formal definitions of privacy-type properties are still missing.

A taxonomy for privacy-type properties For many applications (*e.g.* routing protocols), formal definitions of privacy-type properties are still missing.

Verification algorithms (in the active setting)

First step: an efficient verification tool (for a bounded number of sessions) allowing us to deal with:

- e-passport protocol see [Arapinis et al., 10]
- private authentication protocols see [Abadi & Fournet, 04]
- \longrightarrow those protocols are out of reach of the current existing tools

A taxonomy for privacy-type properties For many applications (*e.g.* routing protocols), formal definitions of privacy-type properties are still missing.

Verification algorithms (in the active setting)

First step: an efficient verification tool (for a bounded number of sessions) allowing us to deal with:

- e-passport protocol see [Arapinis et al., 10]
- private authentication protocols see [Abadi & Fournet, 04]
- \longrightarrow those protocols are out of reach of the current existing tools Second step:
 - more primitives: subterm convergent, monoidal, and combination results
 - integrate some specific features depending on the target applications

Composition (1/2)

Motivations

- Existing tools allow us to verify relatively small protocols and sometimes only for a bounded number of sessions
- Most often, we verify them in isolation

Protocols do not compose well as soon as they share data.

Composition (1/2)

Motivations

- Existing tools allow us to verify relatively small protocols and sometimes only for a bounded number of sessions
- Most often, we verify them in isolation

Protocols do not compose well as soon as they share data.

Example:

$$P_1: A \to B: \{s\}_{pub(B)}$$

Question: What about the secrecy of *s*?

Composition (1/2)

Motivations

- Existing tools allow us to verify relatively small protocols and sometimes only for a bounded number of sessions
- Most often, we verify them in isolation

Protocols do not compose well as soon as they share data.

Example:

$$P_1: A \to B: \{s\}_{\mathsf{pub}(B)} \qquad P_2: A \to B: \{N_a\}_{\mathsf{pub}(B)} \\ B \to A: N_a$$

Question: What about the secrecy of *s*?

Motivations

- Existing tools allow us to verify relatively small protocols and sometimes only for a bounded number of sessions
- Most often, we verify them in isolation

Protocols do not compose well as soon as they share data.

Main goal: Investigate sufficient conditions under which protocols can be safely composed.

Motivations

- Existing tools allow us to verify relatively small protocols and sometimes only for a bounded number of sessions
- Most often, we verify them in isolation

Protocols do not compose well as soon as they share data.

Main goal: Investigate sufficient conditions under which protocols can be safely composed.

• From one protocol to many (secrecy, authentication, password-based protocols)

 \longrightarrow in collaboration with V. Cortier, S. Kremer, & M. Ryan

From one sessions to many

 \longrightarrow in collaboration with M. Arapinis & S. Kremer

Composition (2/2)

Composition

- What about protocols that involve an arbitrary number of agents?
- What about equivalence-based properties?

 \rightarrow establish unlinkability for two tags and obtain guarantee in a setting that involves an arbitrary number of tags.

Composition (2/2)

Composition

- What about protocols that involve an arbitrary number of agents?
- What about equivalence-based properties?

 \rightarrow establish unlinkability for two tags and obtain guarantee in a setting that involves an arbitrary number of tags.

Symbolic Universal Composability (UC)

A paradigm that has been quite successful in the computational approach.

 $\exists \mathcal{S} \text{ such that } \mathcal{F} \approx \mathcal{S}[P]$

 \longrightarrow in collaboration with S. Kremer & O. Pereira

- bring the benefit of this approach in the symbolic setting;
- analysis of more sophisticated protocols specified by an ideal functionality.

The results presented in this habilitation thesis have been obtained in collaboration with many other researchers that are listed below:

Myrto Arapinis Mathilde Arnaud Mathieu Baudet Sergiu Bursuc Rohit Chadha Vincent Cheval Ștefan Ciobâcă Hubert Comon-Lundh Véronique Cortier Morten Dahl Jérémie Delaitre Steve Kremer Olivier Pereira Mark D. Ryan Ben Smyth Graham Steel

Many thanks to all of them!