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Research at LSV

Verification of critical software and systems

Goal: develop the algorithmic foundations for proving correctness and
detecting flaws in various types of programs

Applications: computerized systems, databases, security protocols

LSV in figures

founded in 1997

around 25 permanents + 15 PhD students

6 research teams
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SECSI team

Security of Information Systems

4 permanents: David Baelde, H. Comon-Lundh, S. Delaune, et J.
Goubault-Larrecq.

1 engineer + 1 postdoc

3 PhD students
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Cryptographic protocols everywhere !

Goal: they aim at securing communications over public/insecure networks
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A variety of security properties

Secrecy: May an intruder learn some secret message exchanged
between two honest participants?

Authentication: Is the agent Alice really talking to Bob?

Anonymity: Is an attacker able to learn something about the identity
of the participants who are communicating?

Non-repudiation: Alice sends a message to Bob. Alice cannot later
deny having sent this message. Bob cannot deny having received the
message.

...
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How does a cryptographic protocol work (or not)?

Protocol: small programs explaining how to exchange messages
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How does a cryptographic protocol work (or not)?

Protocol: small programs explaining how to exchange messages

Cryptographic: make use of cryptographic primitives

Examples: symmetric encryption, asymmetric en-
cryption, signature, hashes, . . .
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What is a symmetric encryption scheme?

Symmetric encryption

encryption decryption
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What is a symmetric encryption scheme?

Symmetric encryption

encryption decryption

Example: This might be as simple as shifting each letter by a number of
places in the alphabet (e.g. Caesar cipher)

Today: DES (1977), AES (2000)
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A famous example

Enigma machine (1918-1945)

electro-mechanical rotor cipher machines used by
the German to encrypt during Wold War II

permutations and substitutions

A bit of history

1918: invention of the Enigma machine

1940: Battle of the Atlantic during which Alan Turing’s Bombe was
used to test Enigma settings.

−→ Everything about the breaking of the Enigma cipher systems remained
secret until the mid-1970s.
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Advertisement
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What is an asymmetric encryption scheme?

Asymmetric encryption

encryption decryption

public key private key
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What is an asymmetric encryption scheme?

Asymmetric encryption

encryption decryption

public key private key

Examples:

1976: first system published by W. Diffie, and M. Hellman,

1977: RSA system published by R. Rivest, A. Shamir, and L. Adleman.

−→ their security relies on well-known mathematical problems (e.g.

factorizing large numbers, computing discrete logarithms)

Today: those systems are still in use Prix Turing 2016
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What is a signature scheme?

Signature

signature verification

private key public key

Example:

The RSA cryptosystem (in fact, most public key cryptosystems) can be
used as a signature scheme.
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Example: Denning Sacco protocol (1981)

aenc(sign(kAB , priv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol?
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Example: Denning Sacco protocol (1981)

aenc(sign(kAB , priv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol? No !
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Example: Denning Sacco protocol (1981)

aenc(sign(kAB , priv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol? No !

Description of a possible attack:

aenc(sign(kAC , priv(A)), pub(C ))
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Example: Denning Sacco protocol (1981)

aenc(sign(kAB , priv(A)), pub(B))

Is the Denning Sacco protocol a good key exchange protocol? No !

Description of a possible attack:

aenc(sign(kAC , priv(A)), pub(C ))

sign(kAC , priv(A))

kAC

aenc(sign(kAC , priv(A)), pub(B))
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Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B , sign(k , priv(A))〉, pub(B))

Version 2

A → B : aenc(sign(〈A,B , k〉, priv(A))〉, pub(B))

Which version would you prefer to use?
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Exercise

We propose to fix the Denning-Sacco protocol as follows:

Version 1

A → B : aenc(〈A,B , sign(k , priv(A))〉, pub(B))

Version 2

A → B : aenc(sign(〈A,B , k〉, priv(A))〉, pub(B))

Which version would you prefer to use? Version 2

−→ Version 1 is still vulnerable to the aforementioned attack.
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What about protocols used in real life ?
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Credit Card payment protocol

Serge Humpich case - “ Yescard “ (1997)
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Credit Card payment protocol

Serge Humpich case - “ Yescard “ (1997)

Step 1: A logical flaw in the protocol allows one to copy
a card and to use it without knowing the PIN code.

−→ not a real problem, there is still a bank account to
withdraw
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Credit Card payment protocol

Serge Humpich case - “ Yescard “ (1997)

Step 1: A logical flaw in the protocol allows one to copy
a card and to use it without knowing the PIN code.

−→ not a real problem, there is still a bank account to
withdraw

Step 2: breaking encryption via factorisation of the following (96 digits)
number: 213598703592091008239502270499962879705109534182
6417406442524165008583957746445088405009430865999

−→ now, the number that is used is made of 232 digits
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HTTPS connections

Lots of bugs and attacks, with fixes every month

FREAK attack discovered by Baraghavan et al (Feb. 2015)

1 a logical flaw that allows a man in the middle attacker to downgrade
connections from ’strong’ RSA to ’export-grade’ RSA;

2 breaking encryption via factorisation of such a key can be easily done.

−→ ’export-grade’ were introduced under the pressure of US governments
agencies to ensure that they would be able to decrypt all foreign encrypted
communication.
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Electronic passport

−→ studied in [Arapinis et al., 10]

This is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.
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Electronic passport

−→ studied in [Arapinis et al., 10]

This is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol
that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a service

or resource without others being able to link these uses together.
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP ,KP

NP
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP ,KP

NP

NR ,KR

{NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP ,KP

NP

NR ,KR

{NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

{NP ,NR ,KP}KE
, MACKM

({NP ,NR ,KP}KE
)
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BAC protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP ,KP

NP

NR ,KR

{NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

{NP ,NR ,KP}KE
, MACKM

({NP ,NR ,KP}KE
)

Kseed = f(KP ,KR ) Kseed = f(KP ,KR )

S. Delaune (LSV) Verification of security protocols 27th June 2016 18 / 72



This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?
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This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

E-passport application

What about unlinkability of the ePassport holders ?
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This talk: formal methods for protocol verification

|

Does the protocol

Modelling

satisfy

|= ϕ

a security property?

Outline of the this talk

1 Modelling cryptographic protocols and their security properties

2 Designing verification algorithms
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Part I

Modelling cryptographic protocols

and their security properties
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Two major families of models ...

... with some advantages and some drawbacks.

Computational model

+ messages are bitstring, a general and powerful adversary

– manual proofs, tedious and error-prone

Symbolic model

– abstract model, e.g. messages are terms

+ automatic proofs
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Two major families of models ...

... with some advantages and some drawbacks.

Computational model

+ messages are bitstring, a general and powerful adversary

– manual proofs, tedious and error-prone

Symbolic model

– abstract model, e.g. messages are terms

+ automatic proofs

Some results allowed to make a link between
these two very different models.

−→ Abadi & Rogaway 2000
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Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]
basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92] ...

P ,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation
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Protocols as processes

Applied pi calculus [Abadi & Fournet, 01]
basic programming language with constructs for concurrency and
communication

−→ based on the π-calculus [Milner et al., 92] ...

P ,Q := 0 null process
in(c , x).P input
out(c , u).P output
if u = v then P else Q conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

... but messages that are exchanged are not necessarily atomic !
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Messages as terms

Terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F
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Messages as terms

Terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

Example: representation of {a, n}k

Names: n, k , a

constructors: senc, pair,

senc

pair k

a n
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Messages as terms

Terms are built over a set of names N , and a signature F .

t ::= n name n

| f (t1, . . . , tk) application of symbol f ∈ F

Example: representation of {a, n}k

Names: n, k , a

constructors: senc, pair,

destructors: sdec, proj1, proj2.

senc

pair k

a n

The term algebra is equipped with an equational theory E.

sdec(senc(x , y), y) = x proj1(pair(x , y)) = x

proj2(pair(x , y)) = y

Example: sdec(senc(s, k), k) =E s.
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Semantics

Semantics →:

Comm out(c , u).P | in(c , x).Q → P | Q{u/x}

Then if u = v then P else Q → P when u =E v

Else if u = v then P else Q → Q when u 6=E v
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Semantics

Semantics →:

Comm out(c , u).P | in(c , x).Q → P | Q{u/x}

Then if u = v then P else Q → P when u =E v

Else if u = v then P else Q → Q when u 6=E v

closed by

structural equivalence (≡):

P | Q ≡ Q | P , P | 0 ≡ P , . . .

application of evaluation contexts:

P → P ′

newn.P → newn.P ′

P → P ′

P | Q → P ′ | Q
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Going back to the Denning Sacco protocol (1/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?
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Going back to the Denning Sacco protocol (1/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x
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Going back to the Denning Sacco protocol (1/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x
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Going back to the Denning Sacco protocol (1/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x

3 signature: ok, sign(·, ·), check(·, ·), getmsg(·)

−→ check(sign(x , y), pk(y)) = ok
−→ getmsg(sign(x , y)) = x
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Going back to the Denning Sacco protocol (1/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

What function symbols and equations do we need to model this protocol?

1 symmetric encryption: senc(·, ·), sdec(·, ·)

−→ sdec(senc(x , y), y) = x

2 asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·)

−→ adec(aenc(x , pk(y)), y) = x

3 signature: ok, sign(·, ·), check(·, ·), getmsg(·)

−→ check(sign(x , y), pk(y)) = ok
−→ getmsg(sign(x , y)) = x

The two terms involved in a normal execution are:

aenc(sign(k , ska), pk(skb)), and senc(s, k)
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Going back to the Denning Sacco protocol (2/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)
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Going back to the Denning Sacco protocol (2/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k . out(c , aenc(sign(k , ska), pkb)).in(c , xa). . . .
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Going back to the Denning Sacco protocol (2/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k . out(c , aenc(sign(k , ska), pkb)).in(c , xa). . . .

PB(skb, pka) = in(c , xb). if check(adec(xb, skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(xb, skb))))
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Going back to the Denning Sacco protocol (2/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k . out(c , aenc(sign(k , ska), pkb)).in(c , xa). . . .

PB(skb, pka) = in(c , xb). if check(adec(xb, skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(xb, skb))))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)
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Going back to the Denning Sacco protocol (2/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k . out(c , aenc(sign(k , ska), pkb)).in(c , xa). . . .

PB(skb, pka) = in(c , xb). if check(adec(xb, skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(xb, skb))))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)

→ new ska, skb, k .
(

in(c , xa). . . .
| if check(adec(aenc(sign(k , ska), pkb), skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(aenc(sign(k , ska), pkb), skb))))

)
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Going back to the Denning Sacco protocol (2/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k . out(c , aenc(sign(k , ska), pkb)).in(c , xa). . . .

PB(skb, pka) = in(c , xb). if check(adec(xb, skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(xb, skb))))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)

→ new ska, skb, k .
(

in(c , xa). . . .
| if check(adec(aenc(sign(k , ska), pkb), skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(aenc(sign(k , ska), pkb), skb))))

)

→ new ska, skb, k .
(

in(c , xa). . . .
new s.out(c , senc(s, getmsg(adec(aenc(sign(k , ska), pkb), skb))))

)
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Going back to the Denning Sacco protocol (2/2)

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

Alice and Bob as processes:

PA(ska, pkb) = new k . out(c , aenc(sign(k , ska), pkb)).in(c , xa). . . .

PB(skb, pka) = in(c , xb). if check(adec(xb, skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(xb, skb))))

One possible scenario:

PDS = new ska, skb.
(

PA(ska, pk(skb)) | PB(skb, pk(ska)
)

→ new ska, skb, k .
(

in(c , xa). . . .
| if check(adec(aenc(sign(k , ska), pkb), skb), pka) = ok then
new s.out(c , senc(s, getmsg(adec(aenc(sign(k , ska), pkb), skb))))

)

→ new ska, skb, k .
(

in(c , xa). . . .
new s.out(c , senc(s, getmsg(adec(aenc(sign(k , ska), pkb), skb))))

)

−→ this simply models a normal execution between two honest participants
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Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q ′] with c public.
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Security properties - confidentiality

Confidentiality for process P w.r.t. secret s

For all processes A such that A | P →∗ Q, we have that Q is not of the
form C [out(c , s).Q ′] with c public.

Some difficulties:

we have to consider all the possible executions in presence of an
arbitrary adversary (modelled as a process)

we have to consider realistic initial configurations
−→ an unbounded number of agents,
−→ replications to model an unbounded number of sessions,
−→ reveal public keys and private keys to model dishonest agents,
−→ honest agents may initiate a session with a dishonest agent, . . .
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

The aforementioned attack

1. A → C : aenc(sign(k , priv(A)), pub(C ))

2. C (A) → B : aenc(sign(k , priv(A)), pub(B))
3. B → A : senc(s, k)

The “minimal” initial configuration to retrieve the attack is:

PDS = new ska, skb.
(

PA(ska, pk(skc)) | PB(skb, pk(ska) | out(c , pk(skb))
)
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

The aforementioned attack

1. A → C : aenc(sign(k , priv(A)), pub(C ))

2. C (A) → B : aenc(sign(k , priv(A)), pub(B))
3. B → A : senc(s, k)

The “minimal” initial configuration to retrieve the attack is:

PDS = new ska, skb.
(

PA(ska, pk(skc)) | PB(skb, pk(ska) | out(c , pk(skb))
)

Exercise: Exhibit the process A (the behaviour of the attacker) that
witnesses the aforementioned attack, i.e. such that:

A | PDS →∗ C [out(c , s).Q ′]
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 1: out(a, yes)
?
≈ out(a, no)
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 1: out(a, yes) 6≈ out(a, no)

−→ A = in(a, x).if x = yes then out(c , ok)
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 2: k and k ′ are known to the attacker

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
?
≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 2: k and k ′ are known to the attacker

new s.out(a, senc(s, k)).out(a, senc(s, k ′))
6≈

new s, s ′.out(a, senc(s, k)).out(a, senc(s ′, k ′))

−→ A = in(a, x).in(a, y).if (sdec(x , k) = sdec(y , k ′)) then out(c , ok)
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Security properties - privacy

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted P ≈ Q

for all processes A, we have that:

(A | P) ⇓c if, and only if, (A | Q) ⇓c

where R ⇓c means that R can evolve and emits on public channel c .

Exercise 3: Are the two following processes in testing equivalence?

new s.out(a, s)
?
≈ new s.new k .out(a, senc(s, k))
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Some privacy-type properties

Unlinkability [Arapinis et al, 2010]

!new ke.new km.(!PBAC | !RBAC) ≈ !new ke.new km.( PBAC | !RBAC)
↑ ↑

many sessions

for each passport

only one session

for each passport
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Some privacy-type properties

Unlinkability [Arapinis et al, 2010]

!new ke.new km.(!PBAC | !RBAC) ≈ !new ke.new km.( PBAC | !RBAC)
↑ ↑

many sessions

for each passport

only one session

for each passport

Vote privacy [Kremer and Ryan, 2005]

S [VA(yes)| VB(no)] ≈ S [VA(no)| VB(yes)]
↑ ↑

A votes yes

B votes no

A votes no

B votes yes
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Part II

Designing verification algorithms

(from confidentiality to privacy)
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State of the art in a nutshell

for analysing confidentiality properties

Unbounded number of sessions

undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

decidable for restricted classes [Lowe, 99; Rammanujam & Suresh, 03]

−→ ProVerif: A tool that does not correspond to any decidability result but
works well in practice. [Blanchet, 01]
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State of the art in a nutshell

for analysing confidentiality properties

Unbounded number of sessions

undecidable in general [Even & Goldreich, 83; Durgin et al, 99]

decidable for restricted classes [Lowe, 99; Rammanujam & Suresh, 03]

−→ ProVerif: A tool that does not correspond to any decidability result but
works well in practice. [Blanchet, 01]

Bounded number of sessions

a decidability result (NP-complete)
[Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]

result extended to deal with various cryptographic primitives.

−→ various automatic tools, e.g. AVISPA platform [Armando et al., 05]

S. Delaune (LSV) Verification of security protocols 27th June 2016 32 / 72



The deduction problem: is u deducible from T ?

We consider a signature F and an equational theory E.

The deduction problem

input A sequence φ of ground terms (i.e. messages) and a term s

(the secret) φ = {w1 ⊲ v1, . . . ,wn ⊲ vn}

output Can the attacker learn s from φ, i.e. does there exist a term
(called recipe) R built using public symbols and w1, . . . ,wn

such that Rφ =E s.
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The deduction problem: is u deducible from T ?

We consider a signature F and an equational theory E.

The deduction problem

input A sequence φ of ground terms (i.e. messages) and a term s

(the secret) φ = {w1 ⊲ v1, . . . ,wn ⊲ vn}

output Can the attacker learn s from φ, i.e. does there exist a term
(called recipe) R built using public symbols and w1, . . . ,wn

such that Rφ =E s.

Exercise: Let φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k , ska), pk(skc)); w5 ⊲ senc(s, k)}.

1 Is k deducible from φ?

2 What about s?
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The deduction problem: is u deducible from T ?

We consider a signature F and an equational theory E.

The deduction problem

input A sequence φ of ground terms (i.e. messages) and a term s

(the secret) φ = {w1 ⊲ v1, . . . ,wn ⊲ vn}

output Can the attacker learn s from φ, i.e. does there exist a term
(called recipe) R built using public symbols and w1, . . . ,wn

such that Rφ =E s.

Exercise: Let φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k , ska), pk(skc)); w5 ⊲ senc(s, k)}.

1 Is k deducible from φ? Yes, using R1 = getmsg(adec(w4,w3))

2 What about s?
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The deduction problem: is u deducible from T ?

We consider a signature F and an equational theory E.

The deduction problem

input A sequence φ of ground terms (i.e. messages) and a term s

(the secret) φ = {w1 ⊲ v1, . . . ,wn ⊲ vn}

output Can the attacker learn s from φ, i.e. does there exist a term
(called recipe) R built using public symbols and w1, . . . ,wn

such that Rφ =E s.

Exercise: Let φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k , ska), pk(skc)); w5 ⊲ senc(s, k)}.

1 Is k deducible from φ? Yes, using R1 = getmsg(adec(w4,w3))

2 What about s? Yes, using R2 = sdec(w5,R1).
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The deduction problem

Proposition

The deduction problem is decidable in PTIME for the equational theory
modelling the DS protocol (and for many others)

Algorithm

1 saturation of φ with its deducible subterms in one-step: φ+

2 does there exist R such that Rφ+=s (syntaxic equality)
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The deduction problem

Proposition

The deduction problem is decidable in PTIME for the equational theory
modelling the DS protocol (and for many others)

Algorithm

1 saturation of φ with its deducible subterms in one-step: φ+

2 does there exist R such that Rφ+=s (syntaxic equality)

Going back to the previous example:

φ = {w1 ⊲ pk(ska); w2 ⊲ pk(skb); w3 ⊲ skc ;
w4 ⊲ aenc(sign(k , ska), pk(skc)); w5 ⊲ senc(s, k)}.

φ+ = φ ⊎ {w6 ⊲ sign(k , ska); w7 ⊲ k ; w8 ⊲ s}.
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Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible
from φ. −→ easy to prove
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Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible
from φ. −→ easy to prove

Termination The set of subterms is finite and polynomial, and one-step
deducibility can be checked in polynomial time.

−→ easy to prove for the deduction rules under study
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Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible
from φ. −→ easy to prove

Termination The set of subterms is finite and polynomial, and one-step
deducibility can be checked in polynomial time.

−→ easy to prove for the deduction rules under study

Completeness If u is deducible from φ, then the algorithm returns Yes.
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Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible
from φ. −→ easy to prove

Termination The set of subterms is finite and polynomial, and one-step
deducibility can be checked in polynomial time.

−→ easy to prove for the deduction rules under study

Completeness If u is deducible from φ, then the algorithm returns Yes.
−→ this relies on a locality property

Locality lemma

Let φ be a frame and u be a deducible subterm of φ. There exists a recipe
R witnessing this fact which satisfies the locality property:

for any R ′ subterm of R , we have that R ′φ↓ is a subterm of φ.
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Caution !

One should never underestimate
the attacker !

The attacker can listen to the communication but also:

intercept the messages that are sent by the participants,

build new messages according to his deduction capabilities, and

send messages on the communication network.

−→ this is the co-called active attacker
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Confidentiality using the constraint solving approach

−→ active attacker, only for a bounded number of sessions
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Confidentiality using the constraint solving approach

−→ active attacker, only for a bounded number of sessions

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are represented
by a finite set of constraint systems

−→ this set can be huge (exponential on the number of sessions) ...
but some optimizations are used to reduce this number

2 A decision procedure for deciding whether a constraint system has a
solution or not.

−→ this algorithm works quite well
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Step 1: confidentiality via constraint solving

We consider a finite sequence of actions:

in(u1); out(v1); in(u2); . . . out(vn)

−→ ui and vi may contain variables
We build the following constraint system:

C =



























T0

?
⊢ u1

T0, v1

?
⊢ u2

...

T0, v1, .., vn
?
⊢ s
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Step 1: confidentiality via constraint solving

We consider a finite sequence of actions:

in(u1); out(v1); in(u2); . . . out(vn)

−→ ui and vi may contain variables
We build the following constraint system:

C =



























T0

?
⊢ u1

T0, v1

?
⊢ u2

...

T0, v1, .., vn
?
⊢ s

Solution of a constraint system C

A substitution σ such that: for every T
?
⊢ u ∈ C, uσ is deducible from Tσ.
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k , ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k , ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k , ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k , ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k , ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

Question: Does C admit a solution?
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Going back to the Denning Sacco protocol

A → B : aenc(sign(k , priv(A)), pub(B))
B → A : senc(s, k)

One possible interleaving:

out(aenc(sign(k , ska), pk(skc)))
in(aenc(sign(x , ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

T0; aenc(sign(k , ska), pk(skc)); senc(s, x)
?
⊢ s

with T0 = {pk(ska), pk(skb); skc}.

Question: Does C admit a solution? Yes: x → k .
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The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching ⊥ or solved forms

Constraint system in solved form

C =



























T0

?
⊢ x0

T0 ∪ T1

?
⊢ x1

...

T0 ∪ T1 . . . ∪ Tn

?
⊢ xn

Question

Is there a solution to such a system ?
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The general case: is the constraint system C satisfiable?

Main idea: simplify them until reaching ⊥ or solved forms

Constraint system in solved form

C =



























T0

?
⊢ x0

T0 ∪ T1

?
⊢ x1

...

T0 ∪ T1 . . . ∪ Tn

?
⊢ xn

Question

Is there a solution to such a system ?

Of course, yes ! Choose u0 ∈ T0, and consider the substitution:

σ = {x0 7→ u0, . . . , xn 7→ u0}
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Step 2: simplification rules

−→ these rules deal with pairs and symmetric encryption only

Rax : C ∧ T
?
⊢ u  C if u is deducible from

T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T}

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Rfail : C ∧ T
?
⊢ u  ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}
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Applying rule Rf

Rf : C ∧ T
?
⊢ f(u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2

Example:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))
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Applying rule Rf

Rf : C ∧ T
?
⊢ f(u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2

Example:

T0; aenc(sign(k , ska), pk(skc))
?
⊢ aenc(sign(x , ska), pk(skb))

 







T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(x , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)
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Applying rule Runif

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Example:






T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(x , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)
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Applying rule Runif

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Example:






T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(x , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

 







T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)
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Applying rule Rax

Rax : C ∧ T
?
⊢ u  C if u deducible from

T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T}

Example: (assuming that skc and pk(skb) are in T0)






T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)
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Applying rule Rax

Rax : C ∧ T
?
⊢ u  C if u deducible from

T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T}

Example: (assuming that skc and pk(skb) are in T0)






T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

 

{

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)
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Applying rule Rax

Rax : C ∧ T
?
⊢ u  C if u deducible from

T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T}

Example: (assuming that skc and pk(skb) are in T0)






T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

T0; aenc(sign(k , ska), pk(skc))
?
⊢ pk(skb)

 

{

T0; aenc(sign(k , ska), pk(skc))
?
⊢ sign(k , ska)

 ∅ (empty constraint system)
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Results on the simplification rules

Rax : C ∧ T
?
⊢ u  C if u is deducible from

T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T}

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Rfail : C ∧ T
?
⊢ u  ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Given a (well-formed) constraint system C:

Soundness

If C  ∗

σ C′ and θ solution of C′ then σθ is a solution of C.

−→ easy to show
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Results on the simplification rules

Rax : C ∧ T
?
⊢ u  C if u is deducible from

T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T}

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Rfail : C ∧ T
?
⊢ u  ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Given a (well-formed) constraint system C:

Exercise: Termination

There is no infinite chain C  σ1 C1 . . . σn
Cn.
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Results on the simplification rules

Rax : C ∧ T
?
⊢ u  C if u is deducible from

T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T}

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Rfail : C ∧ T
?
⊢ u  ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Given a (well-formed) constraint system C:

Exercise: Termination

There is no infinite chain C  σ1 C1 . . . σn
Cn.

−→ using the lexicographic order (number of var, size of rhs)
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Results on the simplification rules

Rax : C ∧ T
?
⊢ u  C if u is deducible from

T ∪ {x | T ′

?
⊢ x ∈ C,T ′ ( T}

Runif : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ

if σ = mgu(t1, t2) where t1, t2 ∈ st(T ) ∪ {u}

Rfail : C ∧ T
?
⊢ u  ⊥ if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f (u1, u2)  C ∧ T

?
⊢ u1 ∧ T

?
⊢ u2 f ∈ {〈〉, senc}

Given a (well-formed) constraint system C:

Completeness

If θ is a solution of C then there exists C′ and θ′ such that C  ∗

σ C′, θ′ is a
solution of C′, and θ = σθ′.

−→ more involved to show
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Step 2: procedure for solving a constraint system

Main idea of the procedure:

C =























T0

?
⊢ u1

T0, v1

?
⊢ u2

. . .

T0, v1, . . . , vn

?
⊢ s

C1 C2 C3

⊥ C4 solved ⊥

−→ this gives us a symbolic representation of all the solutions.
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Main result

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for
classical primitives (actually in co-NP).

Exercise: NP-hardness can be shown by encoding 3-SAT
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Main result

Theorem

Deciding confidentiality for a bounded number of sessions is decidable for
classical primitives (actually in co-NP).

Exercise: NP-hardness can be shown by encoding 3-SAT

Some extensions that already exist:

1 disequality tests (protocol with else branches)

2 more primitives: asymmetric encryption, blind signature, exclusive-or,
. . .
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Avantssar platform

This approach has been implemented in the Avantssar Platform.

http://www.avantssar.eu

−→ Typically concludes within few seconds over the flawed protocols of the
Clark/Jacob library .
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Part II

Designing verification algorithms

(from confidentiality to privacy)
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Deduction is not always sufficient

pub(k)

enc(yes, pub(k))

→ The intruder knows the values yes and no !

The real question

Is the intruder able to tell whether Alice sends yes or no?
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The ground case: are φ and ψ in static equivalence?

The static equivalence problem

input Two frames φ and ψ

φ = {w1 ⊲ u1, . . . ,wℓ ⊲ uℓ} ψ = {w1 ⊲ v1, . . . ,wℓ ⊲ vℓ}

ouput Can the attacker distinguish the two frames, i.e. does there

exist a test R1
?
= R2 such that:

R1φ =E R2φ but R1ψ 6=E R2ψ (or the converse).
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The static equivalence problem

input Two frames φ and ψ

φ = {w1 ⊲ u1, . . . ,wℓ ⊲ uℓ} ψ = {w1 ⊲ v1, . . . ,wℓ ⊲ vℓ}

ouput Can the attacker distinguish the two frames, i.e. does there

exist a test R1
?
= R2 such that:

R1φ =E R2φ but R1ψ 6=E R2ψ (or the converse).

Example: Consider the frames:

φ = {w1 ⊲ aenc(〈yes, r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.
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Exercise

Consider the equational theories:

Esenc defined by sdec(senc(x , y), y) = x , and

Ecipher which extends Esenc by the equation senc(sdec(x , y), y) = x .

Questions

Which of the following pairs of frames are statically equivalent ? Whenever
applicable give the distinguishing test.

{w1 ⊲ yes}
?
∼Esenc {w1 ⊲ no}

{w1 ⊲ senc(yes, k)}
?
∼Esenc {w1 ⊲ senc(no, k)}

{w1 ⊲ senc(n, k),w2 ⊲ k}
?
∼Esenc {w1 ⊲ senc(n, k),w2 ⊲ k

′}

{w1 ⊲ senc(n, k),w2 ⊲ k}
?
∼Ecipher

{w1 ⊲ senc(n, k),w2 ⊲ k
′}

k , k ′, and n are a priori unknown to the attacker
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Exercise

Consider the equational theories:

Esenc defined by sdec(senc(x , y), y) = x , and

Ecipher which extends Esenc by the equation senc(sdec(x , y), y) = x .

Questions

Which of the following pairs of frames are statically equivalent ? Whenever
applicable give the distinguishing test.

{w1 ⊲ yes}
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∼Esenc {w1 ⊲ no} X
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∼Esenc {w1 ⊲ senc(no, k)} X
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?
∼Ecipher
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k , k ′, and n are a priori unknown to the attacker
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The static equivalence problem

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and for many others)
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The static equivalence problem

Proposition

The static equivalence problem is decidable in PTIME for the theory
modelling the DS protocol (and for many others)

Algorithm

1 saturation of φ/ψ with their deducible subterms φ+/ψ+

2 does there exist a test R1
?
= R2 such that R1φ

+ = R2φ
+ whereas

R1ψ
+ 6= R2ψ

+ (again syntaxic equality) ?
−→ Actually, we only need to consider small tests
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Going back to our previous example

Example

φ = {w1 ⊲ aenc(〈yes, r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.
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φ = {w1 ⊲ aenc(〈yes, r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm

φ+ = φ ⊎ { , and

ψ+ = ψ ⊎ { .
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φ = {w1 ⊲ aenc(〈yes, r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; , and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; .
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φ = {w1 ⊲ aenc(〈yes, r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; w4 ⊲ yes; , and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; w4 ⊲ no; .
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ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; w4 ⊲ yes; w5 ⊲ r1}, and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; w4 ⊲ no; w5 ⊲ r2}.
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Going back to our previous example

Example

φ = {w1 ⊲ aenc(〈yes, r1〉, pk(sks)); w2 ⊲ sks}; and

ψ = {w1 ⊲ aenc(〈no, r2〉, pk(sks)); w2 ⊲ sks}.

They are not in static equivalence: proj1(adec(w1,w2))
?
= yes.

Applying the algorithm

φ+ = φ ⊎ {w3 ⊲ 〈yes, r1〉; w4 ⊲ yes; w5 ⊲ r1}, and

ψ+ = ψ ⊎ {w3 ⊲ 〈no, r2〉; w4 ⊲ no; w5 ⊲ r2}.

−→ φ+ and ψ+ are not in static equivalence: w4
?
= yes.
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State of the art in a nutshell (active attacker)

for analysing privacy properties

Unbounded number of sessions

undecidable in general (and even under quite severe restriction)

decidable for restricted classes [Chrétien PhD thesis, 16]

−→ ProVerif checks diff-equivalence (too strong) [Blanchet et al, 05]
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State of the art in a nutshell (active attacker)

for analysing privacy properties

Unbounded number of sessions

undecidable in general (and even under quite severe restriction)

decidable for restricted classes [Chrétien PhD thesis, 16]

−→ ProVerif checks diff-equivalence (too strong) [Blanchet et al, 05]

Bounded number of sessions

several decision procedures under various restrictions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10],
[Chadha et al., 12], [Cheval PhD thesis, 12].
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One “recent” contribution

−→ PhD thesis of V. Cheval, 2012

Main result

A procedure for deciding testing equivalence for a large class of processes
for a bounded number of sessions.
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One “recent” contribution

−→ PhD thesis of V. Cheval, 2012

Main result

A procedure for deciding testing equivalence for a large class of processes
for a bounded number of sessions.

Class of processes:

+ non-trivial else branches, private channels, and non-deterministic
choice;

– a fixed set of cryptographic primitives (signature, encryption, hash
function, mac).
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Privacy using the constraint solving approach

What about unlinkability of the ePassport holders ?

PBAC(KE ,KM)
?
≈ PBAC(K

′

E ,K
′

M)

Two main steps:

1 A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are represented
by a finite set of constraint systems

−→ this set can be huge (exponential on the number of sessions) !

2 A decision procedure for deciding (symbolic) equivalence between sets
of constraint systems

−→ this algorithm works quite well
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French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP ,KP

NP

NR ,KR

{NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)
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French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP ,KP

NP

NR ,KR

{NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

If MAC check fails

mac_error
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French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP ,KP

NP

NR ,KR

{NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

If MAC check
succeeds

If nonce check fails

nonce_error
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Step 1: from processes to constraint systems

Passport P(KE ,KM)

in(= get_challenge); new NP ; new KP ;
out(NP); in(〈zE , zM〉);
if zM = macKM

(zE ) then
if NP = proj1(proj2(sdec(zE ,KE ))) then

out(〈m,macKM
(m)〉)

else out(nonce_error)
else out(mac_error)

where
m = {〈NP , proj1(sdec(zE ,KE )),KP〉}KE

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:
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if zM = macKM

(zE ) then
if NP = proj1(proj2(sdec(zE ,KE ))) then

out(〈m,macKM
(m)〉)

else out(nonce_error)
else out(mac_error)

where
m = {〈NP , proj1(sdec(zE ,KE )),KP〉}KE

T0

?
⊢ get_challenge

Φ = T0;

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:
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in(= get_challenge); new NP ; new KP ;
out(NP); in(〈zE , zM〉);
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(m)〉)
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else out(mac_error)

where
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T0

?
⊢ get_challenge

Φ = T0;NP ;

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:
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Step 1: from processes to constraint systems

Passport P(KE ,KM)

in(= get_challenge); new NP ; new KP ;
out(NP); in(〈zE , zM〉);
if zM = macKM

(zE ) then
if NP = proj1(proj2(sdec(zE ,KE ))) then

out(〈m,macKM
(m)〉)

else out(nonce_error)
else out(mac_error)

where
m = {〈NP , proj1(sdec(zE ,KE )),KP〉}KE

T0

?
⊢ get_challenge

T0,NP

?
⊢ 〈zE , zM〉

zM
?
6= macKM

(zE )

Φ = T0;NP ;mac_error

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:
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Step 1: from processes to constraint systems

Passport P(KE ,KM)

in(= get_challenge); new NP ; new KP ;
out(NP); in(〈zE , zM〉);
if zM = macKM

(zE ) then
if NP = proj1(proj2(sdec(zE ,KE ))) then

out(〈m,macKM
(m)〉)

else out(nonce_error)
else out(mac_error)

where
m = {〈NP , proj1(sdec(zE ,KE )),KP〉}KE

T0

?
⊢ get_challenge

T0,NP

?
⊢ 〈zE , zM〉

zM
?
6= macKM

(zE )

Φ = T0;NP ;mac_error

−→ Cmac

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac;
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Step 1: from processes to constraint systems

Passport P(KE ,KM)

in(= get_challenge); new NP ; new KP ;
out(NP); in(〈zE , zM〉);
if zM = macKM

(zE ) then
if NP = proj1(proj2(sdec(zE ,KE ))) then

out(〈m,macKM
(m)〉)

else out(nonce_error)
else out(mac_error)

where
m = {〈NP , proj1(sdec(zE ,KE )),KP〉}KE

T0

?
⊢ get_challenge

T0,NP

?
⊢ 〈zE , zM〉

zM
?
= macKM

(zE )

NP

?
6= proj1(proj2(sdec(zE ,KE )))

Φ = T0;NP ; nonce_error

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac;
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Step 1: from processes to constraint systems

Passport P(KE ,KM)

in(= get_challenge); new NP ; new KP ;
out(NP); in(〈zE , zM〉);
if zM = macKM

(zE ) then
if NP = proj1(proj2(sdec(zE ,KE ))) then

out(〈m,macKM
(m)〉)

else out(nonce_error)
else out(mac_error)

where
m = {〈NP , proj1(sdec(zE ,KE )),KP〉}KE

T0

?
⊢ get_challenge

T0,NP

?
⊢ 〈zE , zM〉

zM
?
= macKM

(zE )

NP

?
6= proj1(proj2(sdec(zE ,KE )))

Φ = T0;NP ; nonce_error

−→ Cnonce

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac; Cnonce;
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Step 1: from processes to constraint systems

Passport P(KE ,KM)

in(= get_challenge); new NP ; new KP ;
out(NP); in(〈zE , zM〉);
if zM = macKM

(zE ) then
if NP = proj1(proj2(sdec(zE ,KE ))) then

out(〈m,macKM
(m)〉)

else out(nonce_error)
else out(mac_error)

where
m = {〈NP , proj1(sdec(zE ,KE )),KP〉}KE

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac; Cnonce; ...
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Step 2: symbolic equivalence

To check whether P ≈ P ′, we have to check whether

Σ ≈s Σ
′ for all sequence of symbolic actions (e.g. in;in;out).
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Step 2: symbolic equivalence

To check whether P ≈ P ′, we have to check whether

Σ ≈s Σ
′ for all sequence of symbolic actions (e.g. in;in;out).

Symbolic equivalence Σ ≈s Σ
′

for all C ∈ Σ for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ such that:

(σ′, θ) ∈ Sol(C′) and Φσ ∼ Φ′σ′ (static equivalence).

and conversely
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Step 2: symbolic equivalence

To check whether P ≈ P ′, we have to check whether

Σ ≈s Σ
′ for all sequence of symbolic actions (e.g. in;in;out).

Symbolic equivalence Σ ≈s Σ
′

for all C ∈ Σ for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ such that:

(σ′, θ) ∈ Sol(C′) and Φσ ∼ Φ′σ′ (static equivalence).

and conversely

Going back to the E-passport example

PBAC(KE ,KM)
?
≈ PBAC(K

′

E .K
′

M)

Among others, we have to check: {Cmac; Cnonce; . . .}
?
≈s {C

′

mac; C
′

nonce; . . .}
where C′

mac, C
′

nonce, . . . are the counterparts of Cmac, Cnonce, . . . in which
KE/KM are replaced by K ′

E
/K ′

M
.
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French passport (1/2)

{Cmac; Cnonce; . . .}
?
≈s {C

′

mac; C
′

nonce; . . .}

when T0 contains w0 ⊲ 〈{N
0
R
,N0

P
,K 0

R
}KE

, macKM
({N0

R
,N0

P
,K 0

R
}KE

)〉
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French passport (1/2)

{Cmac; Cnonce; . . .}
?
≈s {C

′

mac; C
′

nonce; . . .}

when T0 contains w0 ⊲ 〈{N
0
R
,N0

P
,K 0

R
}KE

, macKM
({N0

R
,N0

P
,K 0

R
}KE

)〉

Cnonce =











































T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM
?
= macKM

(zE )

NP

?
6= proj1(proj2(sdec(zE ,KE )))

Φ = T0; nonce_error

−→ A solution for Cnonce is:

σ =
{

zE 7→ {N0
R ,N

0
P ,K

0
R}KE

, zM 7→ macKM
({N0

R ,N
0
P ,K

0
R}KE

)
}

with θ =
{

X1 7→ get_challenge, X2 7→ w0

}

.
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French passport (2/2)

{Cmac; Cnonce; . . .}
?
≈s {C

′

mac; C
′

nonce; . . .}

when T0 contains w0 ⊲ 〈{N
0
R
,N0

P
,K 0

R
}KE

, macKM
({N0

R
,N0

P
,K 0

R
}KE

)〉

Is θ =
{

X1 7→ get_challenge, X2 7→ w0

}

also a solution on the other side?
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French passport (2/2)

{Cmac; Cnonce; . . .}
?
≈s {C

′

mac; C
′

nonce; . . .}

when T0 contains w0 ⊲ 〈{N
0
R
,N0

P
,K 0

R
}KE

, macKM
({N0

R
,N0

P
,K 0

R
}KE

)〉

Is θ =
{

X1 7→ get_challenge, X2 7→ w0

}

also a solution on the other side?

What about the constraint system C′

nonce?

C′

nonce =











































T0

?
⊢ get_challenge

T0,NP

?
⊢ 〈zE , zM〉

zM
?
= macK ′

M
(zE )

NP

?
6= proj1(proj2(sdec(zE ,K

′

E
)))

Φ = T0;NP ; nonce_error
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French passport (2/2)

{Cmac; Cnonce; . . .}
?
≈s {C

′

mac; C
′

nonce; . . .}

when T0 contains w0 ⊲ 〈{N
0
R
,N0

P
,K 0

R
}KE

, macKM
({N0

R
,N0

P
,K 0

R
}KE

)〉

Is θ =
{

X1 7→ get_challenge, X2 7→ w0

}

also a solution on the other side?

What about the constraint system C′

nonce?

C′

nonce =











































T0

?
⊢ get_challenge

T0,NP

?
⊢ 〈zE , zM〉

zM
?
= macK ′

M
(zE )

NP

?
6= proj1(proj2(sdec(zE ,K

′

E
)))

Φ = T0;NP ; nonce_error

−→ θ is not a solution !
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French passport (2/2)

{Cmac; Cnonce; . . .}
?
≈s {C

′

mac; C
′

nonce; . . .}

when T0 contains w0 ⊲ 〈{N
0
R
,N0

P
,K 0

R
}KE

, macKM
({N0

R
,N0

P
,K 0

R
}KE

)〉

Is θ =
{

X1 7→ get_challenge, X2 7→ w0

}

also a solution on the other side?

What about the constraint system C′

mac?

C′

mac =































T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM
?
6= macK ′

M
(zE )

Φ′ = T0; NP ; mac_error
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French passport (2/2)

{Cmac; Cnonce; . . .}
?
≈s {C

′

mac; C
′

nonce; . . .}

when T0 contains w0 ⊲ 〈{N
0
R
,N0

P
,K 0

R
}KE

, macKM
({N0

R
,N0

P
,K 0

R
}KE

)〉

Is θ =
{

X1 7→ get_challenge, X2 7→ w0

}

also a solution on the other side?

What about the constraint system C′

mac?

C′

mac =































T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM
?
6= macK ′

M
(zE )

Φ′ = T0; NP ; mac_error

−→ θ is a solution ...
but the resulting sequence of messages are not in static equivalence.

T0; NP ; nonce_error 6∼ T0; NP , mac_error
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An attack on the French passport [Chothia & Smirnov, 10]

Attack against unlinkability

An attacker can track a French passport, provided he has once witnessed a
successful authentication.
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An attack on the French passport [Chothia & Smirnov, 10]

Attack against unlinkability

An attacker can track a French passport, provided he has once witnessed a
successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport
and records message M.

Alice’s Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP ,KP

NP

NR ,KR

M = {NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)
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An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
,K

′

P

N
′

P

M = {NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)
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An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
,K

′

P

N
′

P

M = {NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

mac_error

=⇒ MAC check failed =⇒ K ′

M
6= KM =⇒ ???? is not Alice
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An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K ′

M
)

Attacker

get_challenge

N
′

P
,K

′

P

N
′

P

M = {NR ,NP ,KR}KE
, MACKM

({NR ,NP ,KR}KE
)

nonce_error

=⇒ MAC check succeeded =⇒ K ′

M
= KM =⇒ ???? is Alice
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Step 2: deciding symbolic equivalence

Main idea: We rewrite pairs (Σ,Σ′) of sets of constraint systems (extended
to keep track of some information) until a trivial failure or a trivial success
is found.

(Σ,Σ′)

(Σ1,Σ
′

1) (Σ2,Σ
′

2)

(⊥,⊥) (Σ3,Σ
′

3) (solved,solved)(⊥,solved)
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Results on the simplification rules

Termination
Applying blindly the simplification rules does not terminate but there is a
particular strategy S that allows us to ensure termination.

Soundness/Completeness
Let (Σ0,Σ

′

0) be pair of sets of constraint systems, and consider a binary
tree obtained by applying our simplification rule following a strategy S.

1 soundness: If all leaves of the tree are labeled with (⊥,⊥) or
(solved , solved), then Σ0 ≈s Σ

′

0.

2 completeness: if Σ0 ≈s Σ
′

0, then all leaves of the tree are labeled with
(⊥,⊥) or (solved , solved).
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APTE- Algorithm for Proving Trace Equivalence

http://projects.lsv.ens-cachan.fr/APTE (Ocaml - 12 KLocs)

−→ developed by Vincent Cheval [Cheval, TACAS’14]
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APTE- Algorithm for Proving Trace Equivalence

http://projects.lsv.ens-cachan.fr/APTE (Ocaml - 12 KLocs)

−→ developed by Vincent Cheval [Cheval, TACAS’14]

−→ but a limited practical impact because it scales badly
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Partial order reduction for security protocols

part of the PhD thesis of L. Hirschi

Main objective

to develop POR techniques that are suitable for analysing security protocols
(especially testing equivalence)
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Partial order reduction for security protocols

part of the PhD thesis of L. Hirschi

Main objective

to develop POR techniques that are suitable for analysing security protocols
(especially testing equivalence)

Example: in(c1, x1).out(c1, ok) | in(c2, x2).out(c2, ok)

We propose two optimizations:

1 compression: we impose a simple strategy on the exploration of the
available actions (roughly outputs are performed first and using a fixed
arbitrary order)

2 reduction: we avoid exploring some redundant traces taking into
account the data that are exchanged
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Practical impact of our optimizations (in APTE)

Toy example Denning Sacco protocol

−→ Each optimisation brings an exponential speedup.
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Practical impact of our optimizations (in APTE)

Toy example Denning Sacco protocol

−→ Each optimisation brings an exponential speedup.

Protocol reference with POR

Yahalom (3-party) 4 5
Needham Schroeder (3-party) 4 7
Private Authentication (2-party) 4 7
E-Passport PA (2-party) 4 9
Denning-Sacco (3-party) 5 10
Wide Mouthed Frog (3-party) 6 13

Maximum number of parallel processes verifiable in 20 hours.

−→ Our optimisations make Apte much more useful in practice for
investigating interesting scenarios.
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Limitations of this approach

1 the algebraic properties of the primitives are abstracted away
−→ no guarantee if the protocol relies on an encryption that satisfies
some additional properties (e.g. RSA, ElGamal)

2 only the specification is analysed and not the implementation
−→ most of the passports are actually linkable by a carefull analysis of
time or message length.

http://www.loria.fr/g̃londu/epassport/attaque-tailles.html

3 not all scenario are checked
−→ no guarantee if the protocol is used one more time !

S. Delaune (LSV) Verification of security protocols 27th June 2016 70 / 72



To sum up

Cryptographic protocols are:

difficult to design and analyse;
particularly vulnerable to logical attacks.

Strong primitives are necessary . . .

. . .but this is not sufficient !
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To sum up

Cryptographic protocols are:

difficult to design and analyse;

particularly vulnerable to logical attacks.

It is important to ensure that
the protocols we are using every day work properly.

We now have automatic and powerful verification tools to analyse:

classical security goals, e.g. secrecy and authentication;

relatively small protocols;

protocols that rely on standard cryptographic primitives.
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Conclusion

A need of formal methods in verification of security protocols.
Regarding confidentiality (or authentication), powerful tool support that are
nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

formal definitions of some sublte security properties
−→ receipt-freeness, coercion-resistance in e-voting

algorithms (and tools!) for checking automatically trace equivalence
for various cryptographic primitives;
−→ homomorphic encryption used in e-voting, exclusive-or used in
RFID protocols

more composition results
−→ Could we derive some security guarantees of the whole e-passport
application from the analysis performed on each subprotocol?
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