Verification of security protocols: from confidentiality to privacy

Stéphanie Delaune

LSV, CNRS & ENS Cachan, Université Paris Saclay, France

Monday, June 27th, 2016

Verification of critical software and systems

Goal: develop the algorithmic foundations for proving correctness and detecting flaws in various types of programs

Applications: computerized systems, databases, security protocols

	LSV in figures
$\left(\alpha \right)$	• founded in 1997
$\Box U$	• around 25 permanents + 15 PhD students
	• 6 research teams

Security of Information Systems

• 4 permanents: David Baelde, H. Comon-Lundh, S. Delaune, et J. Goubault-Larrecq.

- 1 engineer + 1 postdoc
- 3 PhD students

Cryptographic protocols everywhere !

Goal: they aim at securing communications over public/insecure networks

- Secrecy: May an intruder learn some secret message exchanged between two honest participants?
- Authentication: Is the agent Alice really talking to Bob?
- Anonymity: Is an attacker able to learn something about the identity of the participants who are communicating?
- Non-repudiation: Alice sends a message to Bob. Alice cannot later deny having sent this message. Bob cannot deny having received the message.

How does a cryptographic protocol work (or not)?

Protocol: small programs explaining how to exchange messages

How does a cryptographic protocol work (or not)?

Protocol: small programs explaining how to exchange messages

How does a cryptographic protocol work (or not)?

Protocol: small programs explaining how to exchange messages

Cryptographic: make use of cryptographic primitives

Examples: symmetric encryption, asymmetric encryption, signature, hashes, ...

What is a symmetric encryption scheme?

Symmetric encryption

What is a symmetric encryption scheme?

Symmetric encryption

Example: This might be as simple as shifting each letter by a number of places in the alphabet (e.g. Caesar cipher)

Today: DES (1977), AES (2000)

Enigma machine (1918-1945)

- electro-mechanical rotor cipher machines used by the German to encrypt during Wold War II
- permutations and substitutions

A bit of history

- 1918: invention of the Enigma machine
- 1940: Battle of the Atlantic during which Alan Turing's Bombe was used to test Enigma settings.

 \rightarrow Everything about the breaking of the Enigma cipher systems remained secret until the mid-1970s.

Advertisement

What is an asymmetric encryption scheme?

Asymmetric encryption

Asymmetric encryption

Examples:

- 1976: first system published by W. Diffie, and M. Hellman,
- 1977: RSA system published by R. Rivest, A. Shamir, and L. Adleman.
- \rightarrow their security relies on well-known mathematical problems (*e.g.* factorizing large numbers, computing discrete logarithms)

Today: those systems are still in use

Prix Turing 2016

What is a signature scheme?

Signature

Example:

The RSA cryptosystem (in fact, most public key cryptosystems) can be used as a signature scheme.

 $\operatorname{aenc}(\operatorname{sign}(k_{AB},\operatorname{priv}(A)),\operatorname{pub}(B))$

Is the Denning Sacco protocol a good key exchange protocol?

Is the Denning Sacco protocol a good key exchange protocol? No !

 $\operatorname{aenc}(\operatorname{sign}(k_{AB},\operatorname{priv}(A)),\operatorname{pub}(B))$

Is the Denning Sacco protocol a good key exchange protocol? No !

Description of a possible attack:

Is the Denning Sacco protocol a good key exchange protocol? No !

Description of a possible attack:

We propose to fix the Denning-Sacco protocol as follows:

Version 1

$$A \rightarrow B$$
 : $\operatorname{aenc}(\langle A, B, \operatorname{sign}(k, \operatorname{priv}(A)) \rangle, \operatorname{pub}(B))$

Version 2

$$A \rightarrow B$$
 : aenc(sign($\langle A, B, k \rangle$, priv(A)) \rangle , pub(B))

Which version would you prefer to use?

We propose to fix the Denning-Sacco protocol as follows:

Version 1

$$A
ightarrow B$$
 : $\operatorname{aenc}(\langle A, B, \operatorname{sign}(k, \operatorname{priv}(A))
angle, \operatorname{pub}(B))$

Version 2

$$A \rightarrow B$$
 : aenc(sign($\langle A, B, k \rangle$, priv(A)) \rangle , pub(B))

Which version would you prefer to use? Version 2

 \longrightarrow Version 1 is still vulnerable to the aforementioned attack.

What about protocols used in real life ?

Credit Card payment protocol

Serge Humpich case - "Yescard" (1997)

Credit Card payment protocol

Serge Humpich case - "Yescard" (1997)

Step 1: A logical flaw in the protocol allows one to copy a card and to use it without knowing the PIN code.

 \longrightarrow not a real problem, there is still a bank account to withdraw

Credit Card payment protocol

Serge Humpich case - "Yescard" (1997)

Step 1: A logical flaw in the protocol allows one to copy a card and to use it without knowing the PIN code.

 \longrightarrow not a real problem, there is still a bank account to withdraw

Step 2: breaking encryption via factorisation of the following (96 digits) number: 213598703592091008239502270499962879705109534182 6417406442524165008583957746445088405009430865999

 \longrightarrow now, the number that is used is made of 232 digits

HTTPS connections

Lots of bugs and attacks, with fixes every month

FREAK attack discovered by Baraghavan et al (Feb. 2015)

- a logical flaw that allows a man in the middle attacker to downgrade connections from 'strong' RSA to 'export-grade' RSA;
- **2** breaking encryption via factorisation of such a key can be easily done.

 \longrightarrow 'export-grade' were introduced under the pressure of US governments agencies to ensure that they would be able to decrypt all foreign encrypted communication.

 \longrightarrow studied in [Arapinis *et al.*, 10]

This is a passport with an RFID tag embedded in it.

The RFID tag stores:

- the information printed on your passport,
- a JPEG copy of your picture.

 \longrightarrow studied in [Arapinis *et al.*, 10]

This is a passport with an RFID tag embedded in it.

The RFID tag stores:

- the information printed on your passport,
- a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a service or resource without others being able to link these uses together.

This talk: formal methods for protocol verification

This talk: formal methods for protocol verification

E-passport application

What about unlinkability of the ePassport holders ?
This talk: formal methods for protocol verification

Outline of the this talk

- Modelling cryptographic protocols and their security properties
- Obsigning verification algorithms

Modelling cryptographic protocols and their security properties

... with some advantages and some drawbacks.

Computational model

- \bullet + messages are bitstring, a general and powerful adversary
- - manual proofs, tedious and error-prone

Symbolic model

- – abstract model, e.g. messages are terms
- + automatic proofs

... with some advantages and some drawbacks.

Computational model

- \bullet + messages are bitstring, a general and powerful adversary
- - manual proofs, tedious and error-prone

Symbolic model

- – abstract model, e.g. messages are terms
- + automatic proofs

Some results allowed to make a link between these two very different models.

 \longrightarrow Abadi & Rogaway 2000

Applied pi calculus [Abadi & Fournet, 01] basic programming language with constructs for concurrency and communication

 \longrightarrow based on the π -calculus [Milner *et al.*, 92] ...

 $\begin{array}{rcl} P, Q & := & 0 & & \text{null process} \\ & & \text{in}(c, x).P & & \text{input} \\ & & \text{out}(c, u).P & & \text{output} \\ & & \text{if } u = v \text{ then } P \text{ else } Q & \text{conditional} \\ & P \mid Q & & \text{parallel composition} \\ & & !P & & \text{replication} \\ & & \text{new } n.P & & \text{fresh name generation} \end{array}$

Applied pi calculus [Abadi & Fournet, 01] basic programming language with constructs for concurrency and communication

 \rightarrow based on the π -calculus [Milner *et al.*, 92] ...

 $\begin{array}{rcl} P, Q & := & 0 & & \text{null process} \\ & & \text{in}(c, x).P & & \text{input} \\ & & \text{out}(c, u).P & & \text{output} \\ & & \text{if } u = v \text{ then } P \text{ else } Q & \text{conditional} \\ & P \mid Q & & \text{parallel composition} \\ & & !P & & \text{replication} \\ & & \text{new } n.P & & \text{fresh name generation} \end{array}$

... but messages that are exchanged are not necessarily atomic !

Terms are built over a set of names \mathcal{N} , and a signature \mathcal{F} .

Terms are built over a set of names \mathcal{N} , and a signature \mathcal{F} .

 $egin{array}{cccc} {
m t} & ::= & n & {
m name} \ n \ & & & & & \\ & & & & & & f(t_1,\ldots,t_k) & {
m application} \ {
m of symbol} \ f \in \mathcal{F} \end{array}$

Example: representation of $\{a, n\}_k$

- Names: n, k, a
- constructors: senc, pair,

Terms are built over a set of names \mathcal{N} , and a signature \mathcal{F} .

Example: representation of $\{a, n\}_k$

- Names: n, k, a
- constructors: senc, pair,
- destructors: sdec, $proj_1$, $proj_2$.

The term algebra is equipped with an equational theory E.

$$sdec(senc(x, y), y) = x \qquad proj_1(pair(x, y)) = x proj_2(pair(x, y)) = y$$

Example: sdec(senc(s, k), k) =_E s.

Semantics \rightarrow :

Comm	$out(c,u).P \mid in(c,x).Q ightarrow P \mid Q\{u/x\}$
Then	if $u = v$ then P else $Q o P$ when $u =_{E} v$
Else	$ \text{ if } u = v \text{ then } P \text{ else } Q \to Q \text{ when } u \neq_{E} v \\$

Semantics \rightarrow :

Comm	$out(c,u).P \mid in(c,x).Q \to P \mid Q\{u/x\}$
Then	if $u = v$ then P else $Q o P$ when $u =_{E} v$
Else	if $u = v$ then P else $Q \rightarrow Q$ when $u \neq_{F} v$

closed by

• structural equivalence (\equiv) :

$$P \mid Q \equiv Q \mid P, \quad P \mid 0 \equiv P, \quad \dots$$

• application of evaluation contexts:

$$\frac{P \to P'}{\text{new}n. P \to \text{new}n. P'} \qquad \frac{P \to P'}{P \mid Q \to P' \mid Q}$$

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

What function symbols and equations do we need to model this protocol?

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

What function symbols and equations do we need to model this protocol?
symmetric encryption: senc(·, ·), sdec(·, ·)

 \longrightarrow sdec(senc(x, y), y) = x

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

What function symbols and equations do we need to model this protocol?
symmetric encryption: senc(·, ·), sdec(·, ·) → sdec(senc(x, y), y) = x
asymmetric encryption: aenc(·, ·), adec(·, ·), pk(·) → adec(aenc(x, pk(y)), y) = x

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

What function symbols and equations do we need to model this protocol?

3 symmetric encryption: $senc(\cdot, \cdot)$, $sdec(\cdot, \cdot)$

2 asymmetric encryption: $aenc(\cdot, \cdot)$, $adec(\cdot, \cdot)$, $pk(\cdot)$

 \longrightarrow adec(aenc(x, pk(y)), y) = x

 \rightarrow sdec(senc(x, y), y) = x

Signature: ok, sign(\cdot, \cdot), check(\cdot, \cdot), getmsg(\cdot)

 $\longrightarrow \mathsf{check}(\mathsf{sign}(x, y), \mathsf{pk}(y)) = \mathsf{ok} \\ \longrightarrow \mathsf{getmsg}(\mathsf{sign}(x, y)) = x$

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

What function symbols and equations do we need to model this protocol?

• symmetric encryption:
$$senc(\cdot, \cdot)$$
, $sdec(\cdot, \cdot)$

 $\longrightarrow \operatorname{sdec}(\operatorname{senc}(x, y), y) = x$ asymmetric encryption: $\operatorname{aenc}(\cdot, \cdot)$, $\operatorname{adec}(\cdot, \cdot)$, $\operatorname{pk}(\cdot)$

 \rightarrow adec(aenc(x, pk(y)), y) = x

Signature: ok, sign(\cdot, \cdot), check(\cdot, \cdot), getmsg(\cdot)

 $\longrightarrow \mathsf{check}(\mathsf{sign}(x, y), \mathsf{pk}(y)) = \mathsf{ok} \\ \longrightarrow \mathsf{getmsg}(\mathsf{sign}(x, y)) = x$

The two terms involved in a normal execution are:

aenc(sign(k, ska), pk(skb)), and senc(s, k)

Alice and Bob as processes:

 $P_A(sk_a, pk_b) = \text{new } k. \text{out}(c, \text{aenc}(\text{sign}(k, sk_a), pk_b)).in(c, x_a). \dots$

Alice and Bob as processes:

 $P_A(sk_a, pk_b) = \text{new } k. \text{out}(c, \text{aenc}(\text{sign}(k, sk_a), pk_b)). \text{in}(c, x_a). \dots$

 $P_B(sk_b, pk_a) = in(c, x_b)$. if check(adec(x_b, sk_b), pk_a) = ok then new s.out(c, senc(s, getmsg(adec(x_b, sk_b))))

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

Alice and Bob as processes:

 $P_A(sk_a, pk_b) = \text{new } k. \text{out}(c, \text{aenc}(\text{sign}(k, sk_a), pk_b)). \text{in}(c, x_a). \dots$

 $P_B(sk_b, pk_a) = in(c, x_b)$. if check(adec(x_b, sk_b), pk_a) = ok then new s.out(c, senc(s, getmsg(adec(x_b, sk_b))))

One possible scenario:

$$P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) | P_B(sk_b, \text{pk}(sk_a)))$$

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

Alice and Bob as processes:

 $P_A(sk_a, pk_b) = \text{new } k. \text{out}(c, \text{aenc}(\text{sign}(k, sk_a), pk_b)). \text{in}(c, x_a). \dots$

 $P_B(sk_b, pk_a) = in(c, x_b). \text{ if check}(adec(x_b, sk_b), pk_a) = ok \text{ then} \\ new s.out(c, senc(s, getmsg(adec(x_b, sk_b))))$

One possible scenario:

$$P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) \mid P_B(sk_b, \text{pk}(sk_a)))$$

$$\rightarrow \text{ new } sk_a, sk_b, k.(in(c, x_a), \dots) \\ | \text{ if check}(adec(aenc(sign(k, sk_a), pk_b), sk_b), pk_a) = ok \text{ then} \\ \text{ new } s.out(c, senc(s, getmsg(adec(aenc(sign(k, sk_a), pk_b), sk_b))))$$

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

Alice and Bob as processes:

 $P_A(sk_a, pk_b) = \text{new } k. \text{out}(c, \text{aenc}(\text{sign}(k, sk_a), pk_b)). \text{in}(c, x_a). \dots$

 $P_B(sk_b, pk_a) = in(c, x_b). \text{ if check}(adec(x_b, sk_b), pk_a) = ok \text{ then} \\ new s.out(c, senc(s, getmsg(adec(x_b, sk_b))))$

One possible scenario:

$$P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) \mid P_B(sk_b, \text{pk}(sk_a)))$$

- $\rightarrow \text{ new } sk_a, sk_b, k.(in(c, x_a), \dots) \\ | \text{ if check}(adec(aenc(sign(k, sk_a), pk_b), sk_b), pk_a) = ok \text{ then} \\ \text{ new } s.out(c, senc(s, getmsg(adec(aenc(sign(k, sk_a), pk_b), sk_b)))))$
- $\rightarrow \text{ new } sk_a, sk_b, k.(in(c, x_a). \dots \\ new \ s.out(c, senc(s, getmsg(adec(aenc(sign(k, sk_a), pk_b), sk_b)))))$

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

Alice and Bob as processes:

 $P_A(sk_a, pk_b) = \text{new } k. \text{out}(c, \text{aenc}(\text{sign}(k, sk_a), pk_b)). \text{in}(c, x_a). \dots$

 $P_B(sk_b, pk_a) = in(c, x_b). \text{ if check}(adec(x_b, sk_b), pk_a) = ok \text{ then} \\ new s.out(c, senc(s, getmsg(adec(x_b, sk_b))))$

One possible scenario:

$$P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) \mid P_B(sk_b, \text{pk}(sk_a)))$$

- $\rightarrow \text{ new } sk_a, sk_b, k.(in(c, x_a), \dots) \\ | \text{ if check}(adec(aenc(sign(k, sk_a), pk_b), sk_b), pk_a) = ok \text{ then} \\ \text{ new } s.out(c, senc(s, getmsg(adec(aenc(sign(k, sk_a), pk_b), sk_b)))))$
- $\rightarrow \text{ new } sk_a, sk_b, k.(in(c, x_a). \dots \\ new \ s.out(c, senc(s, getmsg(adec(aenc(sign(k, sk_a), pk_b), sk_b)))))$

 \rightarrow this simply models a normal execution between two honest participants

S. Delaune (LSV)

26 / 72

Confidentiality for process P w.r.t. secret s

For all processes A such that $A \mid P \rightarrow^* Q$, we have that Q is not of the form $C[\operatorname{out}(c, s), Q']$ with c public.

Confidentiality for process P w.r.t. secret s

For all processes A such that $A \mid P \rightarrow^* Q$, we have that Q is not of the form $C[\operatorname{out}(c, s), Q']$ with c public.

Some difficulties:

- we have to consider all the possible executions in presence of an arbitrary adversary (modelled as a process)
- we have to consider realistic initial configurations
 - \longrightarrow an unbounded number of agents,
 - \longrightarrow replications to model an unbounded number of sessions,
 - \longrightarrow reveal public keys and private keys to model dishonest agents,
 - \longrightarrow honest agents may initiate a session with a dishonest agent, ...

The aforementioned attack

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k)

The "minimal" initial configuration to retrieve the attack is:

 $P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_c)) \mid P_B(sk_b, \text{pk}(sk_a) \mid \text{out}(c, \text{pk}(skb))))$

The aforementioned attack

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k)

The "minimal" initial configuration to retrieve the attack is:

 $P_{\mathsf{DS}} = \mathsf{new} \ sk_a, sk_b.(P_A(sk_a, \mathsf{pk}(sk_c)) \mid P_B(sk_b, \mathsf{pk}(sk_a) \mid \mathsf{out}(c, \mathsf{pk}(skb)))$

Exercise: Exhibit the process A (the behaviour of the attacker) that witnesses the aforementioned attack, i.e. such that:

$$A \mid P_{\text{DS}} \rightarrow^* C[\operatorname{out}(c, s).Q']$$

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted Ppprox Q

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted Ppprox Q

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Exercise 1:

$$\operatorname{out}(a, \operatorname{yes}) \stackrel{?}{\approx} \operatorname{out}(a, \operatorname{no})$$

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted Ppprox Q

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Exercise 1:

$$out(a, yes) \not\approx out(a, no)$$

 \longrightarrow A = in(a, x).if x = yes then out(c, ok)

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted Ppprox Q

for all processes A, we have that:

$$(A \mid P) \Downarrow_c$$
 if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Exercise 2: k and k' are known to the attacker

new s.out(a, senc(s, k)).out(a, senc(s, k'))

$$\approx^? \approx^?$$
new s, s'.out(a, senc(s, k)).out(a, senc(s', k'))

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted $P \approx Q$

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Exercise 2: k and k' are known to the attacker

new s.out(a, senc(s, k)).out(a, senc(s, k'))

$$\approx$$

new s, s'.out(a, senc(s, k)).out(a, senc(s', k'))

 $\longrightarrow A = in(a, x).in(a, y).if (sdec(x, k) = sdec(y, k')) then out(c, ok)$

Privacy-type properties are modelled as equivalence-based properties

Testing equivalence between P and Q, denoted Ppprox Q

for all processes A, we have that:

 $(A \mid P) \Downarrow_c$ if, and only if, $(A \mid Q) \Downarrow_c$

where $R \Downarrow_c$ means that R can evolve and emits on public channel c.

Exercise 3: Are the two following processes in testing equivalence?

new s.out(a, s)
$$\stackrel{?}{\approx}$$
 new s.new k.out(a, senc(s, k))

Unlinkability

[Arapinis et al, 2010]

Unlinkability

[Arapinis et al, 2010]

Vote privacy

[Kremer and Ryan, 2005]

Designing verification algorithms (from **confidentiality** to privacy)
for analysing confidentiality properties

Unbounded number of sessions

- undecidable in general [Even & Goldreich, 83; Durgin *et al*, 99]
- decidable for restricted classes [Lowe, 99; Rammanujam & Suresh, 03]

 $\label{eq:proversion} \stackrel{\longrightarrow}{\text{ProVerif:}} A \text{ tool that does not correspond to any decidability result but} works well in practice. [Blanchet, 01]$

for analysing confidentiality properties

Unbounded number of sessions

- undecidable in general [Even & Goldreich, 83; Durgin *et al*, 99]
- decidable for restricted classes [Lowe, 99; Rammanujam & Suresh, 03]

 $\label{eq:proversion} \stackrel{\longrightarrow}{\text{ProVerif:}} A \text{ tool that does not correspond to any decidability result but} works well in practice. [Blanchet, 01]$

Bounded number of sessions

- a decidability result (NP-complete)
 [Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]
- result extended to deal with various cryptographic primitives.
- \rightarrow various automatic tools, e.g. AVISPA platform [Armando *et al.*, 05]

We consider a signature ${\cal F}$ and an equational theory E.

The deduction problem

input A sequence ϕ of ground terms (*i.e.* messages) and a term s(the secret) $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ output Can the attacker learn s from ϕ , *i.e.* does there exist a term (called recipe) R built using public symbols and w_1, \dots, w_n such that $R\phi =_{\mathsf{E}} s$.

We consider a signature ${\cal F}$ and an equational theory E.

The deduction problem

input A sequence ϕ of ground terms (*i.e.* messages) and a term s(the secret) $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ output Can the attacker learn s from ϕ , *i.e.* does there exist a term (called recipe) R built using public symbols and w_1, \dots, w_n such that $R\phi =_{\mathsf{E}} s$.

Exercise: Let $\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$

• Is k deducible from ϕ ?

What about s?

We consider a signature ${\cal F}$ and an equational theory E.

The deduction problem

input A sequence ϕ of ground terms (*i.e.* messages) and a term s(the secret) $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ output Can the attacker learn s from ϕ , *i.e.* does there exist a term (called recipe) R built using public symbols and w_1, \dots, w_n such that $R\phi =_{\mathsf{E}} s$.

Exercise: Let
$$\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$$

Is k deducible from ϕ ? Yes, using $R_1 = \text{getmsg}(\text{adec}(w_4, w_3))$

What about s?

We consider a signature ${\cal F}$ and an equational theory E.

The deduction problem

input A sequence ϕ of ground terms (*i.e.* messages) and a term s(the secret) $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ output Can the attacker learn s from ϕ , *i.e.* does there exist a term (called recipe) R built using public symbols and w_1, \dots, w_n such that $R\phi =_{\mathsf{E}} s$.

Exercise: Let
$$\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$$

(1) Is k deducible from ϕ ? Yes, using $R_1 = \text{getmsg}(\text{adec}(w_4, w_3))$

2 What about s? Yes, using $R_2 = \text{sdec}(w_5, R_1)$.

Proposition

The deduction problem is decidable in PTIME for the equational theory modelling the DS protocol (and for many others)

Algorithm

- **(**) saturation of ϕ with its deducible subterms in one-step: ϕ^+
- **2** does there exist *R* such that $R\phi^+=s$ (syntaxic equality)

Proposition

The deduction problem is decidable in PTIME for the equational theory modelling the DS protocol (and for many others)

Algorithm

- **(**) saturation of ϕ with its deducible subterms in one-step: ϕ^+
- **2** does there exist *R* such that $R\phi^+=s$ (syntaxic equality)

Going back to the previous example:

Termination The set of subterms is finite and polynomial, and one-step deducibility can be checked in polynomial time. \longrightarrow easy to prove for the deduction rules under study

Termination The set of subterms is finite and polynomial, and one-step deducibility can be checked in polynomial time. \longrightarrow easy to prove for the deduction rules under study

Completeness If u is deducible from ϕ , then the algorithm returns Yes.

Termination The set of subterms is finite and polynomial, and one-step deducibility can be checked in polynomial time. \longrightarrow easy to prove for the deduction rules under study

Completeness If u is deducible from ϕ , then the algorithm returns Yes. \longrightarrow this relies on a locality property

Locality lemma

Let ϕ be a frame and u be a deducible subterm of ϕ . There exists a recipe R witnessing this fact which satisfies the locality property:

for any R' subterm of R, we have that $R'\phi\downarrow$ is a subterm of ϕ .

One should never underestimate the attacker !

The attacker can listen to the communication but also:

- intercept the messages that are sent by the participants,
- build new messages according to his deduction capabilities, and
- send messages on the communication network.

 \longrightarrow this is the co-called active attacker

Confidentiality using the constraint solving approach

 \longrightarrow active attacker, only for a bounded number of sessions

Confidentiality using the constraint solving approach

 \longrightarrow active attacker, only for a bounded number of sessions

Two main steps:

A decision procedure for deciding whether a constraint system has a solution or not.

 \longrightarrow this algorithm works quite well

Step 1: confidentiality via constraint solving

We consider a finite sequence of actions:

$$\operatorname{in}(u_1)$$
; $\operatorname{out}(v_1)$; $\operatorname{in}(u_2)$; ... $\operatorname{out}(v_n)$

We build the following constraint system: $\rightarrow u_i$ and v_i may contain variables

$$C = \begin{cases} T_0 \stackrel{?}{\vdash} u_1 \\ ? \\ T_0, v_1 \stackrel{!}{\vdash} u_2 \\ ... \\ T_0, v_1, ..., v_n \stackrel{?}{\vdash} s \end{cases}$$

Step 1: confidentiality via constraint solving

We consider a finite sequence of actions:

$$\operatorname{in}(u_1)$$
; $\operatorname{out}(v_1)$; $\operatorname{in}(u_2)$; ... $\operatorname{out}(v_n)$

We build the following constraint system: $\rightarrow u_i$ and v_i may contain variables

$$C = \begin{cases} T_0 \stackrel{?}{\vdash} u_1 \\ ? \\ T_0, v_1 \stackrel{!}{\vdash} u_2 \\ ... \\ T_0, v_1, ..., v_n \stackrel{?}{\vdash} s \end{cases}$$

Solution of a constraint system CA substitution σ such that: for every $T \stackrel{?}{\vdash} u \in C$, $u\sigma$ is deducible from $T\sigma$.S. Delaune (LSV)Verification of security protocols27th June 201638 / 72

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc))) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$$

$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)); \operatorname{senc}(s, x) \stackrel{?}{\vdash} s$$

with $T_0 = \{ pk(ska), pk(skb); skc \}$.

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc))) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$$
$$T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)); \operatorname{senc}(s, x) \stackrel{?}{\vdash} s$$

2

with
$$T_0 = \{ pk(ska), pk(skb); skc \}.$$

Question: Does C admit a solution?

One possible interleaving:

out(aenc(sign(k, ska), pk(skc)))
in(aenc(sign(x, ska), pk(skb))); out(senc(s, x))

The associated constraint system is:

 $T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc))) \stackrel{?}{\vdash} \operatorname{aenc}(\operatorname{sign}(x, ska), \operatorname{pk}(skb))$ $T_{0}; \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)); \operatorname{senc}(s, x) \stackrel{?}{\vdash} s$

with $T_0 = \{ pk(ska), pk(skb); skc \}$.

Question: Does C admit a solution? Yes: $x \to k$.

The general case: is the constraint system $\mathcal C$ satisfiable?

Main idea: simplify them until reaching \perp or solved forms

Constraint system in solved form

$$C = \begin{cases} T_0 \stackrel{?}{\vdash} \mathbf{x}_0 \\ T_0 \cup T_1 \stackrel{?}{\vdash} \mathbf{x}_1 \\ \dots \\ T_0 \cup T_1 \dots \cup T_n \stackrel{?}{\vdash} \mathbf{x}_n \end{cases}$$

Question

Is there a solution to such a system ?

The general case: is the constraint system $\mathcal C$ satisfiable?

Main idea: simplify them until reaching \perp or solved forms

Constraint system in solved form

$$C = \begin{cases} T_0 \stackrel{?}{\vdash} \mathbf{x}_0 \\ T_0 \cup T_1 \stackrel{?}{\vdash} \mathbf{x}_1 \\ \dots \\ T_0 \cup T_1 \dots \cup T_n \stackrel{?}{\vdash} \mathbf{x}_n \end{cases}$$

Question

Is there a solution to such a system ?

Of course, yes ! Choose $u_0 \in T_0$, and consider the substitution:

$$\sigma = \{x_0 \mapsto u_0, \ldots, x_n \mapsto u_0\}$$

 \rightarrow these rules deal with pairs and symmetric encryption only

$$\mathsf{R}_{\mathsf{ax}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } u \text{ is deducible from} \\ T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\}$$

$$\begin{array}{rcl} \mathsf{R}_{\mathsf{unif}}: & \mathcal{C} \land T \stackrel{?}{\vdash} u & \rightsquigarrow_{\sigma} & \mathcal{C} \sigma \land T \sigma \stackrel{?}{\vdash} u \sigma \\ & \mathsf{if} \ \sigma = \mathsf{mgu}(t_1, t_2) \ \mathsf{where} \ t_1, t_2 \in \mathsf{st}(T) \cup \{u\} \end{array}$$

$$\mathsf{R}_{\mathsf{fail}}: \quad \mathcal{C} \land T \stackrel{!}{\vdash} u \quad \rightsquigarrow \quad \bot \qquad \text{if } \mathsf{vars}(T \cup \{u\}) = \emptyset \text{ and } T \not\vdash u$$

 $\mathsf{R}_{\mathsf{f}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} f(u_1, u_2) \rightsquigarrow \mathcal{C} \land T \stackrel{?}{\vdash} u_1 \land T \stackrel{?}{\vdash} u_2 \ f \in \{\langle\rangle, \mathsf{senc}\}$

$$\mathsf{R}_{\mathsf{f}}: \ \mathcal{C} \land \ T \stackrel{?}{\vdash} \frac{\mathsf{f}}{\mathsf{I}}(u_1, u_2) \ \leadsto \ \mathcal{C} \land \ T \stackrel{?}{\vdash} u_1 \land \ T \stackrel{?}{\vdash} u_2$$

 T_0 ; aenc(sign(k, ska), pk(skc)) $\stackrel{?}{\vdash}$ aenc(sign(x, ska), pk(skb))

$$\mathsf{R}_{\mathsf{f}}: \ \mathcal{C} \land \ T \stackrel{?}{\vdash} \mathsf{f}(u_1, u_2) \ \rightsquigarrow \ \mathcal{C} \land \ T \stackrel{?}{\vdash} u_1 \land \ T \stackrel{?}{\vdash} u_2$$

 T_0 ; aenc(sign(k, ska), pk(skc)) $\stackrel{?}{\vdash}$ aenc(sign(x, ska), pk(skb))

$$\sim \left\{ \begin{array}{l} T_0; \ \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{sign}(x, ska) \\ T_0; \ \operatorname{aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{pk}(skb) \end{array} \right.$$

$$\mathsf{R}_{\mathsf{unif}}: \ \mathcal{C} \land \ T \stackrel{?}{\vdash} u \ \rightsquigarrow_{\sigma} \ \mathcal{C} \sigma \land \ T \sigma \stackrel{?}{\vdash} u \sigma$$

if $\sigma = \mathsf{mgu}(t_1, t_2)$ where $t_1, t_2 \in st(T) \cup \{u\}$

$$\left\{ \begin{array}{l} T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{sign}(x, ska) \\ T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) \stackrel{?}{\vdash} \operatorname{pk}(skb) \end{array} \right.$$

$$\mathsf{R}_{\mathsf{unif}}: \ \mathcal{C} \land \ T \stackrel{?}{\vdash} u \ \rightsquigarrow_{\sigma} \ \mathcal{C}\sigma \land \ T\sigma \stackrel{?}{\vdash} u\sigma \\ \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in st(T) \cup \{u\}$$

$$\left(\begin{array}{c} T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{sign}(x, ska) \\ T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{pk}(skb) \end{array} \right)$$

$$\sim \left\{ \begin{array}{ll} T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{sign}(k, ska) \\ T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{pk}(skb) \end{array} \right.$$

$$\mathsf{R}_{\mathsf{ax}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } u \text{ deducible from} \\ T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\}$$

Example: (assuming that skc and pk(skb) are in T_0)

$$T_0; \text{ aenc(sign}(k, ska), pk(skc)) \stackrel{?}{\vdash} sign(k, ska)$$
$$T_0; \text{ aenc(sign}(k, ska), pk(skc)) \stackrel{?}{\vdash} pk(skb)$$

$$\mathsf{R}_{\mathsf{ax}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } u \text{ deducible from} \\ T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\}$$

Example: (assuming that skc and pk(skb) are in T_0)

$$\begin{array}{ccc} & ? \\ & T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{sign}(k, ska) \\ & T_0; \text{ aenc}(\operatorname{sign}(k, ska), \operatorname{pk}(skc)) & \stackrel{?}{\vdash} & \operatorname{pk}(skb) \end{array}$$

$$\stackrel{\sim}{\longrightarrow} \left\{ T_0; \text{ aenc}(\text{sign}(k, ska), \text{pk}(skc)) \stackrel{?}{\vdash} \text{sign}(k, ska) \right\}$$

$$\mathsf{R}_{\mathsf{ax}}: \quad \mathcal{C} \land T \stackrel{?}{\vdash} u \quad \rightsquigarrow \quad \mathcal{C} \quad \text{if } u \text{ deducible from} \\ T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\}$$

Example: (assuming that skc and pk(skb) are in T_0)

$$\left(\begin{array}{cc} T_0; \text{ aenc(sign}(k, ska), \text{pk}(skc)) & \stackrel{?}{\vdash} & \text{sign}(k, ska) \\ T_0; \text{ aenc}(\text{sign}(k, ska), \text{pk}(skc)) & \stackrel{?}{\vdash} & \text{pk}(skb) \end{array} \right)$$

$$\xrightarrow{} \left\{ T_0; \text{ aenc}(\text{sign}(k, ska), \text{pk}(skc)) \stackrel{?}{\vdash} \text{sign}(k, ska) \right\}$$

$$\rightsquigarrow \quad \emptyset \quad (\mathsf{empty} \ \mathsf{constraint} \ \mathsf{system})$$

$$\begin{aligned} \mathsf{R}_{\mathsf{ax}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u & \rightsquigarrow & \mathcal{C} \quad \text{if } u \text{ is deducible from} \\ & & T \cup \{x \mid T' \stackrel{?}{\vdash} x \in \mathcal{C}, T' \subsetneq T\} \end{aligned}$$
$$\begin{aligned} \mathsf{R}_{\mathsf{unif}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u & \rightsquigarrow_{\sigma} & \mathcal{C} \sigma \land T \sigma \stackrel{?}{\vdash} u \sigma \\ & & \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in \mathsf{st}(T) \cup \{u\} \end{aligned}$$
$$\begin{aligned} \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land T \stackrel{?}{\vdash} u & \rightsquigarrow & \bot \qquad \text{if } \mathsf{vars}(T \cup \{u\}) = \emptyset \text{ and } T \nvDash u \end{aligned}$$
$$\begin{aligned} \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land T \stackrel{?}{\vdash} f(u_1, u_2) \rightsquigarrow \mathcal{C} \land T \stackrel{?}{\vdash} u_1 \land T \stackrel{?}{\vdash} u_2 \ f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$$

Given a (well-formed) constraint system C:

Soundness

If $\mathcal{C} \rightsquigarrow_{\sigma}^{*} \mathcal{C}'$ and θ solution of \mathcal{C}' then $\sigma \theta$ is a solution of \mathcal{C} .

 \longrightarrow easy to show

 $\begin{aligned} \mathsf{R}_{\mathsf{ax}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow & \mathcal{C} \quad \text{if } u \text{ is deducible from} \\ & & \mathcal{T} \cup \{x \mid \mathcal{T}' \stackrel{?}{\vdash} x \in \mathcal{C}, \mathcal{T}' \subsetneq \mathcal{T}\} \end{aligned}$ $\begin{aligned} \mathsf{R}_{\mathsf{unif}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow_{\sigma} & \mathcal{C} \sigma \land \mathcal{T} \sigma \stackrel{?}{\vdash} u \sigma \\ & & \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in \mathsf{st}(\mathcal{T}) \cup \{u\} \end{aligned}$ $\begin{aligned} \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow & \bot \qquad \text{if } \mathsf{vars}(\mathcal{T} \cup \{u\}) = \emptyset \text{ and } \mathcal{T} \nvDash u \end{aligned}$ $\begin{aligned} \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} f(u_1, u_2) \rightsquigarrow & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u_1 \land \mathcal{T} \stackrel{?}{\vdash} u_2 \ f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$

Given a (well-formed) constraint system C:

Exercise: Termination

There is no infinite chain $\mathcal{C} \rightsquigarrow_{\sigma_1} \mathcal{C}_1 \ldots \rightsquigarrow_{\sigma_n} \mathcal{C}_n$.

 $\begin{aligned} \mathsf{R}_{\mathsf{ax}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow & \mathcal{C} \quad \text{if } u \text{ is deducible from} \\ & & \mathcal{T} \cup \{x \mid \mathcal{T}' \stackrel{?}{\vdash} x \in \mathcal{C}, \mathcal{T}' \subsetneq \mathcal{T}\} \end{aligned}$ $\begin{aligned} \mathsf{R}_{\mathsf{unif}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow_{\sigma} & \mathcal{C} \sigma \land \mathcal{T} \sigma \stackrel{?}{\vdash} u \sigma \\ & & \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in \mathsf{st}(\mathcal{T}) \cup \{u\} \end{aligned}$ $\begin{aligned} \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow & \bot \qquad \text{if } \mathsf{vars}(\mathcal{T} \cup \{u\}) = \emptyset \text{ and } \mathcal{T} \nvDash u \end{aligned}$ $\begin{aligned} \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} f(u_1, u_2) \rightsquigarrow & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u_1 \land \mathcal{T} \stackrel{?}{\vdash} u_2 \ f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$

Given a (well-formed) constraint system C:

Exercise: Termination

There is no infinite chain $\mathcal{C} \leadsto_{\sigma_1} \mathcal{C}_1 \ldots \leadsto_{\sigma_n} \mathcal{C}_n$.

 \rightarrow using the lexicographic order (number of var, size of rhs)

45 / 72

$$\begin{aligned} \mathsf{R}_{\mathsf{ax}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow \mathcal{C} \quad \text{if } u \text{ is deducible from} \\ & \mathcal{T} \cup \{x \mid \mathcal{T}' \stackrel{?}{\vdash} x \in \mathcal{C}, \mathcal{T}' \subsetneq \mathcal{T}\} \end{aligned}$$
$$\begin{aligned} \mathsf{R}_{\mathsf{unif}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow_{\sigma} & \mathcal{C} \sigma \land \mathcal{T} \sigma \stackrel{?}{\vdash} u \sigma \\ & \text{if } \sigma = \mathsf{mgu}(t_1, t_2) \text{ where } t_1, t_2 \in st(\mathcal{T}) \cup \{u\} \end{aligned}$$
$$\begin{aligned} \mathsf{R}_{\mathsf{fail}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u & \rightsquigarrow \bot & \text{if } vars(\mathcal{T} \cup \{u\}) = \emptyset \text{ and } \mathcal{T} \not\vdash u \\ \mathsf{R}_{\mathsf{f}} : & \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} f(u_1, u_2) \rightsquigarrow \mathcal{C} \land \mathcal{T} \stackrel{?}{\vdash} u_1 \land \mathcal{T} \stackrel{?}{\vdash} u_2 \ f \in \{\langle\rangle, \mathsf{senc}\} \end{aligned}$$

Given a (well-formed) constraint system \mathcal{C} :

Completeness

If θ is a solution of C then there exists C' and θ' such that $C \rightsquigarrow_{\sigma}^* C'$, θ' is a solution of C', and $\theta = \sigma \theta'$.

 \rightarrow more involved to show

Step 2: procedure for solving a constraint system

Main idea of the procedure:

 \rightarrow this gives us a symbolic representation of all the solutions.
Theorem

Deciding confidentiality for a **bounded number of sessions** is **decidable** for classical primitives (actually in co-NP).

Exercise: NP-hardness can be shown by encoding 3-SAT

Theorem

Deciding confidentiality for a **bounded number of sessions** is **decidable** for classical primitives (actually in co-NP).

Exercise: NP-hardness can be shown by encoding 3-SAT

Some extensions that already exist:

- I disequality tests (protocol with else branches)
- e more primitives: asymmetric encryption, blind signature, exclusive-or,

Avantssar platform

This approach has been implemented in the Avantssar Platform.

http://www.avantssar.eu

 \longrightarrow Typically concludes within few seconds over the flawed protocols of the Clark/Jacob library .

S. Delaune (LSV)

Designing verification algorithms (from confidentiality to **privacy**)

Deduction is not always sufficient

 \rightarrow The intruder knows the values yes and no !

The real question

Is the intruder able to tell whether Alice sends yes or no?

S. Delaune (LSV)

Verification of security protocols

27th June 2016 50 / 72

The static equivalence problem

input Two frames ϕ and ψ

$$\phi = \{ w_1 \triangleright u_1, \dots, w_\ell \triangleright u_\ell \} \qquad \psi = \{ w_1 \triangleright v_1, \dots, w_\ell \triangleright v_\ell \}$$

ouput Can the attacker distinguish the two frames, *i.e.* does there exist a test $R_1 \stackrel{?}{=} R_2$ such that:

 $R_1\phi =_E R_2\phi$ but $R_1\psi \neq_E R_2\psi$ (or the converse).

The static equivalence problem

input Two frames ϕ and ψ

$$\phi = \{w_1 \triangleright u_1, \dots, w_\ell \triangleright u_\ell\} \qquad \psi = \{w_1 \triangleright v_1, \dots, w_\ell \triangleright v_\ell\}$$

ouput Can the attacker distinguish the two frames, *i.e.* does there exist a test $R_1 \stackrel{?}{=} R_2$ such that:

 $R_1\phi =_E R_2\phi$ but $R_1\psi \neq_E R_2\psi$ (or the converse).

Example: Consider the frames:

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and }$$

•
$$\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$$

They are not in static equivalence: $proj_1(adec(w_1, w_2)) \stackrel{?}{=} yes$.

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{no} \rbrace \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k) \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k) \rbrace \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \end{cases}$$

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright no \rbrace & \mathsf{X} \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k) \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k) \rbrace \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \end{cases}$$

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \end{cases} \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} \{w_1 \triangleright \mathsf{no}\} X \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k)\} \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k)\} \checkmark \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k\} \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k'\} \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k\} \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k'\}$$

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{no} \rbrace & X \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k) \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k) \rbrace & \checkmark \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace & X \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \end{cases}$$

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright no \rbrace & \mathsf{X} \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k) \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{n}, k) \} & \checkmark \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace & \mathsf{X} \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace & \checkmark \end{cases}$$

Proposition

The static equivalence problem is decidable in PTIME for the theory modelling the DS protocol (and for many others)

Proposition

The static equivalence problem is decidable in PTIME for the theory modelling the DS protocol (and for many others)

Algorithm

- ${\tt O}$ saturation of ϕ/ψ with their deducible subterms ϕ^+/ψ^+
- ② does there exist a test $R_1 \stackrel{?}{=} R_2$ such that $R_1 \phi^+ = R_2 \phi^+$ whereas $R_1 \psi^+ \neq R_2 \psi^+$ (again syntaxic equality) ? → Actually, we only need to consider small tests

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

•
$$\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$$

They are not in static equivalence: $proj_1(adec(w_1, w_2)) \stackrel{?}{=} yes$.

• $\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$ • $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are not in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

Applying the algorithm

• $\phi^+ = \phi \uplus \{$, and • $\psi^+ = \psi \uplus \{$.

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are **not** in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

Applying the algorithm

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle;$$
, and
• $\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle;$.

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are **not** in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

Applying the algorithm

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle; w_4 \triangleright yes;$$
, and
• $\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle; w_4 \triangleright no;$.

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

•
$$\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$$

They are not in static equivalence: $proj_1(adec(w_1, w_2)) \stackrel{?}{=} yes$.

Applying the algorithm

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle; w_4 \triangleright yes; w_5 \triangleright r_1 \}$$
, and

•
$$\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle; w_4 \triangleright no; w_5 \triangleright r_2 \}.$$

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are **not** in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

Applying the algorithm

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle; w_4 \triangleright yes; w_5 \triangleright r_1 \}$$
, and
• $\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle; w_4 \triangleright no; w_5 \triangleright r_2 \}$.

 $\longrightarrow \phi^+$ and ψ^+ are not in static equivalence: $w_4 \stackrel{?}{=} yes$.

for analysing privacy properties

Unbounded number of sessions

- undecidable in general (and even under quite severe restriction)
- decidable for restricted classes [Chrétien PhD thesis, 16]
- \rightarrow ProVerif checks diff-equivalence (too strong) [Blanchet et al, 05]

for analysing privacy properties

Unbounded number of sessions

- undecidable in general (and even under quite severe restriction)
- decidable for restricted classes [Chrétien PhD thesis, 16]
- \rightarrow ProVerif checks diff-equivalence (too strong) [Blanchet et al, 05]

Bounded number of sessions

several decision procedures under various restrictions
 e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], [Chadha et al., 12], [Cheval PhD thesis, 12].

 \longrightarrow PhD thesis of V. Cheval, 2012

Main result

A procedure for deciding testing equivalence for a large class of processes for a bounded number of sessions.

\longrightarrow PhD thesis of V. Cheval, 2012

Main result

A procedure for deciding testing equivalence for a large class of processes for a bounded number of sessions.

Class of processes:

- + non-trivial else branches, private channels, and non-deterministic choice;
- - a fixed set of cryptographic primitives (signature, encryption, hash function, mac).

What about unlinkability of the ePassport holders ?

$$P_{\mathsf{BAC}}(K_E,K_M) \stackrel{?}{\approx} P_{\mathsf{BAC}}(K'_E,K'_M)$$

Two main steps:

A symbolic exploration of all the possible traces
 The infinite number of possible traces (*i.e.* experiment) are represented by a finite set of constraint systems

 — this set can be huge (exponential on the number of sessions) !

A decision procedure for deciding (symbolic) equivalence between sets of constraint systems

 \longrightarrow this algorithm works quite well

French electronic passport

 \longrightarrow the passport must reply to all received messages.

French electronic passport

 \longrightarrow the passport must reply to all received messages.

58 / 72

French electronic passport

 \longrightarrow the passport must reply to all received messages.

58 / 72

```
\begin{split} &\text{in}(=\textit{get\_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{out}(N_P); \text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \max_{K_M}(z_E) \text{ then} \\ &\text{if } N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E))) \text{ then} \\ &\text{out}(\langle m, \max_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce\_error}) \\ &\text{else out}(\textit{mac\_error}) \end{split}
```

where $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle \}_{K_E} \}$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

Passport $P(K_F, K_M)$ in(= get challenge); new N_P ; new K_P ; $_{0}^{?} \vdash get_challenge$ out(N_P); in($\langle z_F, z_M \rangle$); if $z_M = \max_{K_M}(z_E)$ then if $N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E)))$ then $\operatorname{out}(\langle m, \operatorname{mac}_{K_M}(m) \rangle)$ else out(nonce error) $\Phi = T_0$: else out(*mac error*) where $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle \}_{K_E} \}$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

in(= get challenge); new N_P ; new K_P ; out(N_P); in($\langle z_F, z_M \rangle$); if $z_M = \max_{K_M}(z_E)$ then if $N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E)))$ then $\operatorname{out}(\langle m, \operatorname{mac}_{K_M}(m) \rangle)$ else out(nonce error) else out(*mac error*) where

 $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle \}_{K_E} \}$

 $_{0}^{?} \vdash get_challenge$

$$\Phi = T_0; N_P;$$

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out), we generate the associated constraint systems:

$$\begin{split} & \text{in}(= get_challenge); \text{new } N_P; \text{new } K_P; \\ & \text{out}(N_P); \text{in}(\langle z_E, z_M \rangle); \\ & \text{if } z_M = \max_{K_M}(z_E) \text{ then} \\ & \text{if } N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E))) \text{ then} \\ & \text{out}(\langle m, \max_{K_M}(m) \rangle) \\ & \text{else out}(nonce_error) \\ & \text{else out}(mac_error) \\ & \text{where} \\ & m = \{\langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle\}_{K_E} \end{split}$$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

 $\langle z_E, z_M \rangle$

$$\begin{array}{l} & \text{in}(= get_challenge); \text{new } N_P; \text{new } K_P; \\ & \text{out}(N_P); \text{in}(\langle z_E, z_M \rangle); \\ & \text{if } z_M = \max_{K_M}(z_E) \text{ then} \\ & \text{if } N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E))) \text{ then} \\ & \text{out}(\langle m, \max_{K_M}(m) \rangle) \\ & \text{else out}(nonce_error) \\ & \text{else out}(mac_error) \end{array}$$

$$T_{0} \vdash get_challenge$$

$$?$$

$$T_{0}, N_{P} \vdash \langle z_{E}, z_{M} \rangle$$

$$?$$

$$z_{M} \neq mac_{K_{M}}(z_{E})$$

?

$$\Phi = T_0; N_P; mac_error$$

where $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, \kappa_E)), \kappa_P \rangle \}_{\kappa_E} \}$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

$$\begin{array}{ll} & \text{in}(= get_challenge); \text{new } N_P; \text{new } K_P; \\ & \text{out}(N_P); \text{in}(\langle z_E, z_M \rangle); \\ & \text{if } z_M = \max_{K_M}(z_E) \text{ then} \\ & \text{if } N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E))) \text{ then} \\ & \text{out}(\langle m, \max_{K_M}(m) \rangle) \\ & \text{else out}(nonce_error) \\ & \text{else out}(mac_error) \end{array}$$

where $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle \}_{K_E} \}$

 $T_{0} \stackrel{?}{\vdash} get_challenge$ $T_{0}, N_{P} \vdash \langle z_{E}, z_{M} \rangle$ $Z_{M} \neq mac_{K_{M}}(z_{E})$ $\Phi = T_{0}; N_{P}; mac_error$ $\longrightarrow C_{mac}$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

 $\mathcal{C}_{\mathsf{mac}};$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

 $\mathcal{C}_{mac};$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

 $\mathcal{C}_{mac};$
Passport $P(K_F, K_M)$ $T_{0} \stackrel{?}{\vdash} get_challenge$ $T_{0}, N_{P} \vdash \langle z_{E}, z_{M} \rangle$ in(= get challenge); new N_P ; new K_P ; out(N_P); in($\langle z_F, z_M \rangle$); if $z_M = \max_{K_M}(z_E)$ then if $N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E)))$ then $\operatorname{out}(\langle m, \operatorname{mac}_{K_M}(m) \rangle)$ else out(nonce error) else out(*mac error*) $\Phi = T_0; N_P;$ where $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle \}_{K_E} \}$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

 $\mathcal{C}_{\mathsf{mac}};$

Passport $P(K_E, K_M)$

$$\begin{split} &\text{in}(=\textit{get_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{out}(N_P); \text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \max_{K_M}(z_E) \text{ then} \\ &\text{if } N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E))) \text{ then} \\ &\text{out}(\langle m, \max_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce_error}) \\ &\text{else out}(\textit{mac_error}) \end{split}$$

where $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle \}_{K_E} \}$

$$T_{0} \stackrel{?}{\vdash} get_challenge$$

$$T_{0}, N_{P} \vdash \langle z_{E}, z_{M} \rangle$$

$$z_{M} \stackrel{?}{=} mac_{K_{M}}(z_{E})$$

$$N_{P} \neq proj_{1}(proj_{2}(sdec(z_{E}, K_{E})))$$

$$\Phi = T_{0}; N_{P}; nonce_error$$

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out), we generate the associated constraint systems:

 $\mathcal{C}_{\mathsf{mac}};$

Passport $P(K_E, K_M)$

$$\begin{split} &\text{in}(=\textit{get_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{out}(N_P); \text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \max_{K_M}(z_E) \text{ then} \\ &\text{if } N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E))) \text{ then} \\ &\text{out}(\langle m, \max_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce_error}) \\ &\text{else out}(\textit{mac_error}) \end{split}$$

where $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle \}_{K_E} \}$

$$T_{0} \stackrel{?}{\vdash} get_challenge$$

$$T_{0}, N_{P} \vdash \langle z_{E}, z_{M} \rangle$$

$$z_{M} \stackrel{?}{=} mac_{K_{M}}(z_{E})$$

$$N_{P} \neq proj_{1}(proj_{2}(sdec(z_{E}, K_{E})))$$

$$\Phi = T_{0}; N_{P}; nonce_error$$

$$\longrightarrow C_{nonce}$$

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out), we generate the associated constraint systems:

$$C_{mac}; C_{nonce};$$

Passport $P(K_E, K_M)$

```
\begin{split} &\text{in}(=\textit{get\_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{out}(N_P); \text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \max_{K_M}(z_E) \text{ then} \\ &\text{if } N_P = \text{proj}_1(\text{proj}_2(\text{sdec}(z_E, K_E))) \text{ then} \\ &\text{out}(\langle m, \max_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce\_error}) \\ &\text{else out}(\textit{mac\_error}) \end{split}
```

where $m = \{ \langle N_P, \text{proj}_1(\text{sdec}(z_E, K_E)), K_P \rangle \}_{K_E}$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

$$\mathcal{C}_{mac}; \mathcal{C}_{nonce}; \ldots$$

Step 2: symbolic equivalence

To check whether $P \approx P'$, we have to check whether

 $\Sigma \approx_s \Sigma'$ for all sequence of symbolic actions (*e.g.* in;in;out).

Step 2: symbolic equivalence

To check whether $P \approx P'$, we have to check whether

 $\Sigma \approx_s \Sigma'$ for all sequence of symbolic actions (*e.g.* in;in;out).

Symbolic equivalence $\Sigma \approx_s \Sigma'$

for all C ∈ Σ for all (σ, θ) ∈ Sol(C), there exists C' ∈ Σ' such that: (σ', θ) ∈ Sol(C') and Φσ ~ Φ'σ' (static equivalence).
and conversely

Step 2: symbolic equivalence

To check whether $P \approx P'$, we have to check whether

 $\Sigma \approx_s \Sigma'$ for all sequence of symbolic actions (e.g. in;in;out).

Symbolic equivalence $\Sigma \approx_s \Sigma'$

 for all C ∈ Σ for all (σ, θ) ∈ Sol(C), there exists C' ∈ Σ' such that: (σ', θ) ∈ Sol(C') and Φσ ~ Φ'σ' (static equivalence).
 and conversely

Going back to the E-passport example

$$P_{\text{BAC}}(K_E, K_M) \stackrel{?}{\approx} P_{\text{BAC}}(K'_E, K'_M)$$

Among others, we have to check: $\{C_{\text{mac}}; C_{\text{nonce}}; \ldots\} \approx \frac{?}{s} \{C'_{\text{mac}}; C'_{\text{nonce}}; \ldots\}$ where $C'_{\text{mac}}, C'_{\text{nonce}}, \ldots$ are the counterparts of $C_{\text{mac}}, C_{\text{nonce}}, \ldots$ in which K_E/K_M are replaced by K'_E/K'_M .

$\{\mathcal{C}_{\mathsf{mac}}; \ \mathcal{C}_{\mathsf{nonce}}; \ \ldots\} \approx^? _{s} \{\mathcal{C}'_{\mathsf{mac}}; \mathcal{C}'_{\mathsf{nonce}}; \ldots\}$

when T_0 contains $w_0 \triangleright \langle \{N_R^0, N_P^0, K_R^0\}_{K_E}, \operatorname{mac}_{K_M}(\{N_R^0, N_P^0, K_R^0\}_{K_E}) \rangle$

$$\{\mathcal{C}_{\text{mac}}; \mathcal{C}_{\text{nonce}}; \ldots\} \stackrel{:}{\approx}_{s} \{\mathcal{C}'_{\text{mac}}; \mathcal{C}'_{\text{nonce}}; \ldots\}$$

when T_0 contains $w_0 \triangleright \langle \{N^0_R, N^0_P, K^0_R\}_{K_E}, \operatorname{mac}_{K_M}(\{N^0_R, N^0_P, K^0_R\}_{K_E})\rangle$

2

$$C_{nonce} = \begin{cases} T_0 \stackrel{?}{\vdash} get_challenge \\ T_0 \stackrel{?}{\vdash} \langle z_E, z_M \rangle \\ z_M \stackrel{?}{=} mac_{K_M}(z_E) \\ N_P \neq proj_1(proj_2(sdec(z_E, K_E))) \\ \hline \Phi = T_0; nonce_error \end{cases}$$

 \longrightarrow A solution for \mathcal{C}_{nonce} is:

 $\sigma = \left\{ z_E \mapsto \{N_R^0, N_P^0, K_R^0\}_{K_E}, \ z_M \mapsto \mathsf{mac}_{K_M}(\{N_R^0, N_P^0, K_R^0\}_{K_E}) \right\}$ with $\theta = \left\{ X_1 \mapsto get_challenge, \ X_2 \mapsto w_0 \right\}.$

$$\{\mathcal{C}_{\mathsf{mac}}; \ \mathcal{C}_{\mathsf{nonce}}; \ \ldots\} \stackrel{?}{\approx}_{s} \{\mathcal{C}'_{\mathsf{mac}}; \mathcal{C}'_{\mathsf{nonce}}; \ldots\}$$

when T_0 contains $w_0 \triangleright \langle \{N_R^0, N_P^0, K_R^0\}_{\kappa_E}, \operatorname{mac}_{\kappa_M}(\{N_R^0, N_P^0, K_R^0\}_{\kappa_E}) \rangle$ Is $\theta = \{X_1 \mapsto get_challenge, X_2 \mapsto w_0\}$ also a solution on the other side?

 $\{\mathcal{C}_{\mathsf{mac}}; \ \mathcal{C}_{\mathsf{nonce}}; \ \ldots\} \stackrel{?}{\approx}_{s} \{\mathcal{C}'_{\mathsf{mac}}; \mathcal{C}'_{\mathsf{nonce}}; \ldots\}$

when T_0 contains $w_0 \triangleright \langle \{N_R^0, N_P^0, K_R^0\}_{K_E}, \operatorname{mac}_{K_M}(\{N_R^0, N_P^0, K_R^0\}_{K_E}) \rangle$ Is $\theta = \{X_1 \mapsto get_challenge, X_2 \mapsto w_0\}$ also a solution on the other side?

What about the constraint system C'_{nonce} ?

$$C'_{nonce} = \begin{cases} T_0 \stackrel{?}{\vdash} get_challenge \\ ? \\ T_0, N_P \stackrel{!}{\vdash} \langle z_E, z_M \rangle \\ z_M \stackrel{?}{=} mac_{K'_M}(z_E) \\ ? \\ N_P \neq proj_1(proj_2(sdec(z_E, K'_E))) \\ \hline \Phi = T_0; N_P; nonce_error \end{cases}$$

 $\{\mathcal{C}_{\mathsf{mac}}; \ \mathcal{C}_{\mathsf{nonce}}; \ \ldots\} \stackrel{?}{\approx}_{s} \{\mathcal{C}'_{\mathsf{mac}}; \mathcal{C}'_{\mathsf{nonce}}; \ldots\}$

when T_0 contains $w_0 \triangleright \langle \{N_R^0, N_P^0, K_R^0\}_{K_E}, \operatorname{mac}_{K_M}(\{N_R^0, N_P^0, K_R^0\}_{K_E}) \rangle$ Is $\theta = \{X_1 \mapsto get_challenge, X_2 \mapsto w_0\}$ also a solution on the other side?

What about the constraint system C'_{nonce} ?

$$C'_{nonce} = \begin{cases} T_0 \stackrel{?}{\vdash} get_challenge \\ ?\\ T_0, N_P \stackrel{!}{\vdash} \langle z_E, z_M \rangle \\ z_M \stackrel{?}{=} mac_{K'_M}(z_E) \\ N_P \neq proj_1(proj_2(sdec(z_E, K'_E))) \\ \hline \Phi = T_0; N_P; nonce_error \end{cases}$$

 $\rightarrow \quad \theta$ is not a solution !

 $\{\mathcal{C}_{mac}; \ \mathcal{C}_{nonce}; \ \dots\} \stackrel{?}{\approx} \{\mathcal{C}'_{mac}; \mathcal{C}'_{nonce}; \dots\}$ when T_0 contains $w_0 \triangleright \langle \{N^0_R, N^0_P, K^0_R\}_{K_E}, \ \max_{K_M}(\{N^0_R, N^0_P, K^0_R\}_{K_E})\rangle$ Is $\theta = \{X_1 \mapsto get_challenge, \ X_2 \mapsto w_0\}$ also a solution on the other side?

What about the constraint system C'_{mac} ?

$$C'_{mac} = \begin{cases} T_0 \stackrel{?}{\vdash} get_challenge \\ ? \\ T_0 \stackrel{?}{\vdash} \langle z_E, z_M \rangle \\ ? \\ z_M \neq mac_{K'_M}(z_E) \\ \hline \Phi' = T_0; N_P; mac_error \end{cases}$$

 $\{\mathcal{C}_{\text{mac}}; \mathcal{C}_{\text{nonce}}; \ldots\} \stackrel{?}{\approx_{s}} \{\mathcal{C}'_{\text{mac}}; \mathcal{C}'_{\text{nonce}}; \ldots\}$

when T_0 contains $w_0 \triangleright \langle \{N_R^0, N_P^0, K_R^0\}_{K_E}, \operatorname{mac}_{K_M}(\{N_R^0, N_P^0, K_R^0\}_{K_E}) \rangle$ Is $\theta = \{X_1 \mapsto get_challenge, X_2 \mapsto w_0\}$ also a solution on the other side?

What about the constraint system C'_{mac} ?

$$\mathcal{C}_{\mathsf{mac}}' = \begin{cases} T_0 \stackrel{?}{\vdash} get_challenge \\ ? \\ T_0 \stackrel{?}{\vdash} \langle z_E, z_M \rangle \\ ? \\ z_M \neq \mathsf{mac}_{\mathsf{K}'_{\mathsf{M}}}(z_E) \\ \hline \Phi' = T_0; N_P; mac_error \end{cases}$$

 $\longrightarrow \theta$ is a solution ...

but the resulting sequence of messages are not in static equivalence.

$$T_0$$
; N_P ; nonce_error $\not\sim T_0$; N_P , mac_error

Attack against unlinkability

An attacker can track a French passport, provided he has once witnessed a successful authentication.

Attack against unlinkability

An attacker can track a French passport, provided he has once witnessed a successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport and records message M.

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

 \implies MAC check failed \implies $K'_M \neq K_M \implies$???? is not Alice

S. Delaune (LSV)

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

 \implies MAC check succeeded \implies $K'_M = K_M \implies$???? is Alice

S. Delaune (LSV)

Step 2: deciding symbolic equivalence

Main idea: We rewrite pairs (Σ, Σ') of sets of constraint systems (extended to keep track of some information) until a trivial failure or a trivial success is found.

Termination

Applying blindly the simplification rules does not terminate but there is a particular strategy S that allows us to ensure termination.

Soundness/Completeness

Let (Σ_0, Σ'_0) be pair of sets of constraint systems, and consider a binary tree obtained by applying our simplification rule following a strategy S.

- soundness: If all leaves of the tree are labeled with (\bot, \bot) or (solved, solved), then $\Sigma_0 \approx_s \Sigma'_0$.
- ② completeness: if $\Sigma_0 \approx_s \Sigma'_0$, then all leaves of the tree are labeled with (\bot, \bot) or (*solved*, *solved*).

APTE- Algorithm for Proving Trace Equivalence

http://projects.lsv.ens-cachan.fr/APTE (Ocaml - 12 KLocs)

 \longrightarrow developed by Vincent Cheval [Cheval, TACAS'14]

APTE- Algorithm for Proving Trace Equivalence

 $\label{eq:http://projects.lsv.ens-cachan.fr/APTE (Ocaml - 12 KLocs) \\ \longrightarrow developed by Vincent Cheval [Cheval, TACAS'14]$

 \rightarrow but a limited practical impact because it scales badly

S. Delaune (LSV)

Verification of security protocols

27th June 2016 67 / 72

Partial order reduction for security protocols

part of the PhD thesis of L. Hirschi

Main objective

to develop POR techniques that are suitable for analysing security protocols (especially testing equivalence)

Partial order reduction for security protocols

part of the PhD thesis of L. Hirschi

Main objective

to develop POR techniques that are suitable for analysing security protocols (especially testing equivalence)

Example: $in(c_1, x_1).out(c_1, ok) | in(c_2, x_2).out(c_2, ok)$

We propose two optimizations:

- compression: we impose a simple strategy on the exploration of the available actions (roughly outputs are performed first and using a fixed arbitrary order)
- reduction: we avoid exploring some redundant traces taking into account the data that are exchanged

Practical impact of our optimizations (in APTE)

Practical impact of our optimizations (in APTE)

Toy example

Denning Sacco protocol

 \rightarrow Each optimisation brings an exponential speedup.

Protocol	reference	with POR
Yahalom (3-party)	4	5
Needham Schroeder (3-party)	4	7
Private Authentication (2-party)	4	7
E-Passport PA (2-party)	4	9
Denning-Sacco (3-party)	5	10
Wide Mouthed Frog (3-party)	6	13

Maximum number of parallel processes verifiable in 20 hours.

 \rightarrow Our optimisations make Apte much more useful in practice for investigating interesting scenarios.

S. Delaune (LSV)

- the algebraic properties of the primitives are abstracted away
 → no guarantee if the protocol relies on an encryption that satisfies some additional properties (*e.g.* RSA, ElGamal)
- Only the specification is analysed and not the implementation
 → most of the passports are actually linkable by a carefull analysis of
 time or message length.

http://www.loria.fr/glondu/epassport/attaque-tailles.html

not all scenario are checked

 → no guarantee if the protocol is used one more time !

To sum up

Cryptographic protocols are:

- difficult to design and analyse;
- particularly vulnerable to logical attacks.

Strong primitives are necessary ...

... but this is not sufficient !

To sum up

Cryptographic protocols are:

- difficult to design and analyse;
- particularly vulnerable to logical attacks.

It is important to ensure that the protocols we are using every day work properly.

We now have automatic and powerful verification tools to analyse:

- classical security goals, *e.g.* secrecy and authentication;
- relatively small protocols;
- protocols that rely on standard cryptographic primitives.

A need of formal methods in verification of security protocols. Regarding confidentiality (or authentication), powerful tool support that are nowdays used by industrials and security agencies.

It remains a lot to do for analysing privacy-type properties:

- formal definitions of some sublte security properties
 → receipt-freeness, coercion-resistance in e-voting
- algorithms (and tools!) for checking automatically trace equivalence for various cryptographic primitives;

 \longrightarrow homomorphic encryption used in e-voting, exclusive-or used in RFID protocols

• more composition results

 \longrightarrow Could we derive some security guarantees of the whole e-passport application from the analysis performed on each subprotocol?