Verification of security protocols: from confidentiality to privacy

Stéphanie Delaune

LSV, CNRS & ENS Cachan, France

Tuesday, August 25th, 2015

- 12 academic departments: mathematics, computer science, chemistry, social sciences, ...
- 13 research laboratories

Laboratoire Spécification & Vérification

Verification of critical software and systems

Goal: develop the mathematical and algorithmic foundations to the development of tools for automatically proving correctness and detecting flaws.

Applications: computerized systems, databases, security protocols

LSV in figures

- Founded in 1997
- Around 25 permanents + 15 PhD students
- 5 research teams

Security of Information Systems

• 4 permanents: David Baelde, H. Comon-Lundh, S. Delaune, et J. Goubault-Larrecq.

- 1 engineer + 1 postdoc
- 3 phd students

Cryptographic protocols everywhere !

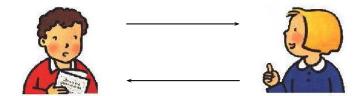
Goal: they aim at securing communications over public/insecure networks

Some security properties

- Secrecy: May an intruder learn some secret message between two honest participants?
- Authentication: Is the agent Alice really talking to Bob?
- Anonymity: Is an attacker able to learn something about the identity of the participants who are communicating?
- Non-repudiation: Alice sends a message to Bob. Alice cannot later deny having sent this message. Bob cannot deny having received the message.

• ...

Protocol: small programs explaining how to exchange messages



Protocol: small programs explaining how to exchange messages

Protocol: small programs explaining how to exchange messages

Cryptographic: make use of cryptographic primitives Examples: symmetric encryption, asymmetric encryption, signature, hashes, ...

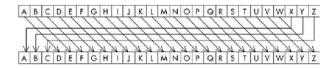
What is a symmetric encryption scheme?

Symmetric encryption

What is a symmetric encryption scheme?

Symmetric encryption

Example: This might be as simple as shifting each letter by a number of places in the alphabet (e.g. Caesar cipher)



Today: DES (1977), AES (2000)

Enigma machine (1918-1945)

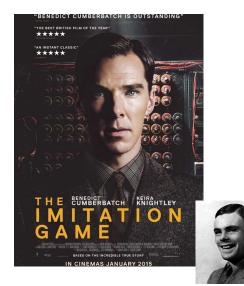
- electro-mechanical rotor cipher machines used by the German to encrypt during Wold War II
- permutations and substitutions

A bit of history

- 1918: invention of the Enigma machine
- 1940: Battle of the Atlantic during which Alan Turing's Bombe was used to test Enigma settings.

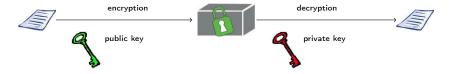
 \longrightarrow Everything about the breaking of the Enigma cipher systems remained secret until the mid-1970s.

Advertisement



What is an asymmetric encryption scheme?

Asymmetric encryption



Asymmetric encryption

Examples:

- 1976: first system published by W. Diffie, and M. Hellman,
- 1977: RSA system published by R. Rivest, A. Shamir, and L. Adleman.
- \rightarrow their security relies on well-known mathematical problems (*e.g.* factorizing large numbers, computing discrete logarithms)

Today: those systems are still in use

What is a signature scheme?

Signature



Example:

The RSA cryptosystem (in fact, most public key cryptosystems) can be used as a signature scheme.

Example: A simplified version of the Denning-Sacco protocol (1981)

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

What about secrecy of s ?

Example: A simplified version of the Denning-Sacco protocol (1981)

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

What about secrecy of *s* ?

Consider a scenario where A starts a session with C who is dishonest.

1. $A \rightarrow C$: aenc(sign(k, priv(A)), pub(C)) C knows the key k

Example: A simplified version of the Denning-Sacco protocol (1981)

$$A \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B \rightarrow A$: senc(s, k)

What about secrecy of *s* ?

Consider a scenario where A starts a session with C who is dishonest.

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
C knows the key k

2.
$$C(A) \rightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k) Attack !

We propose to fix the Denning-Sacco protocol as follows:

Version 1

$$A \rightarrow B$$
 : $\operatorname{aenc}(\langle A, B, \operatorname{sign}(k, \operatorname{priv}(A)) \rangle, \operatorname{pub}(B))$
 $B \rightarrow A$: $\operatorname{senc}(s, k)$

Version 2

$$A \rightarrow B$$
 : aenc(sign($\langle A, B, k \rangle$, priv(A)) \rangle , pub(B))
 $B \rightarrow A$: senc(s, k)

Which version would you prefer to use?

We propose to fix the Denning-Sacco protocol as follows:

Version 1

$$A \rightarrow B$$
 : $\operatorname{aenc}(\langle A, B, \operatorname{sign}(k, \operatorname{priv}(A)) \rangle, \operatorname{pub}(B))$
 $B \rightarrow A$: $\operatorname{senc}(s, k)$

Version 2

$$A \rightarrow B$$
 : aenc(sign($\langle A, B, k \rangle$, priv(A)) \rangle , pub(B))
 $B \rightarrow A$: senc(s, k)

Which version would you prefer to use? Version 2

 \longrightarrow Version 1 is still vulnerable to the aforementioned attack.

What about protocols used in real life ?

Credit Card payment protocol

Serge Humpich case - "Yescard" (1997)

Credit Card payment protocol

Serge Humpich case - "Yescard " (1997)

Step 1: A logical flaw in the protocol allows one to copy a card and to use it without knowing the PIN code.

 \longrightarrow not a real problem, there is still a bank account to withdraw

Credit Card payment protocol

Serge Humpich case - "Yescard" (1997)

Step 1: A logical flaw in the protocol allows one to copy a card and to use it without knowing the PIN code.

 \longrightarrow not a real problem, there is still a bank account to withdraw

Step 2: breaking encryption via factorisation of the following (96 digits) number: 213598703592091008239502270499962879705109534182 6417406442524165008583957746445088405009430865999

 \longrightarrow now, the number that is used is made of 232 digits

HTTPS connections

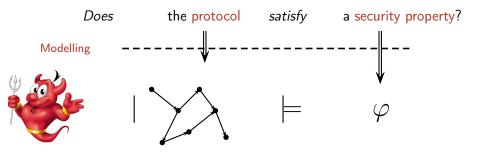
Lots of bugs and attacks, with fixes every month

FREAK attack discovered by Baraghavan et al (Feb. 2015)

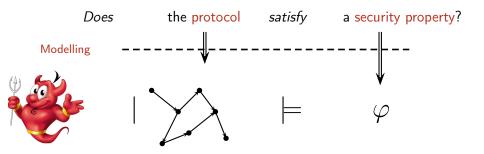
- a logical flaw that allows a man in the middle attacker to downgrade connections from 'strong' RSA to 'export-grade' RSA;
- **2** breaking encryption via factorisation of such a key can be easily done.

 \longrightarrow 'export-grade' were introduced under the pressure of US governments agencies to ensure that they would be able to decrypt all foreign encrypted communication.

This talk: formal methods for protocol verification



This talk: formal methods for protocol verification



Two main tasks

- Modelling cryptographic protocols and their security properties
- Oesigning verification algorithms

Modelling messages and Deciding knowledge (in a simple setting)

 \rightarrow Various models (e.g. [Dolev & Yao, 81]) having some common features

 \rightarrow Various models (e.g. [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms.

 \rightarrow Various models (*e.g.* [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms.

 \rightarrow Various models (e.g. [Dolev & Yao, 81]) having some common features

Messages

They are abstracted by terms.

The attacker

- may read every message sent on the network,
- may intercept and send new messages according to its deduction capabilities.
 - \rightarrow only symbolic manipulations on terms.

Messages as terms

 \longrightarrow It is important to have a tight modelling of messages

 \longrightarrow It is important to have a tight modelling of messages

Terms

They are built over a signature \mathcal{F} , and an infinite set of names \mathcal{N} .

 $egin{array}{cccc} {\mathsf t} & ::= & n & {\mathsf name} \ n \in \mathcal{N} \\ & \mid & {\mathsf f}(t_1,\ldots,t_k) & {\mathsf application} \ {\mathsf of} \ {\mathsf symbol} \ {\mathsf f} \in \mathcal{F} \end{array}$

Names are used to model atomic data

 \longrightarrow e.g. keys, nonces, agent names, . . .

• Function symbols are used to model cryptographic primitives $\rightarrow e.g.$ encryption, signature, ...

A typical signature

Standard primitives

$$\mathcal{F} = \{ \mathsf{senc}, \; \mathsf{aenc}, \; \mathsf{sk}, \; \mathsf{sign}, \; \langle \; \rangle \}$$

Standard primitives

$$\mathcal{F} = \{ \mathsf{senc}, \mathsf{ aenc}, \mathsf{ sk}, \mathsf{ sign}, \langle \rangle \}$$

Going back to the Denning Sacco protocol

These messages can be modelled as follows:

 \bigcirc senc(s, k)

Symbolic manipulation on terms

He may build new messages following deduction rules

Pairing

Symmetric encryption

$\frac{x y}{\langle x, y \rangle}$	$\frac{\langle x, y \rangle}{x} \frac{\langle x, y \rangle}{V}$		$\frac{x - y}{c(x, y)}$	$\frac{\operatorname{senc}(x,y) y}{x}$
Asy	ymmetric encry	ption	Sig	nature
$\frac{x \ y}{aaaa(y, y)}$	$\frac{\operatorname{aenc}(x,y)}{x}$ s		$\frac{1}{\sqrt{1-\frac{1}{2}}}$	
aenc(x, y)	X	sig	n(<i>x</i> , sk()	/)) x

We say that u is deducible from T if there exists a proof tree such that:

- each leaf is labeled by v with $v \in T$;
- **②** for each node labeled by v_0 and having *n* sons labeled by v_1, \ldots, v_n , there exists a deduction rule R such that

$$\frac{v_1 \quad \dots \quad v_n}{v_0} \quad \text{is an instance of R}$$

the root is labeled by u.

We say that u is deducible from T if there exists a proof tree such that:

- each leaf is labeled by v with $v \in T$;
- **②** for each node labeled by v_0 and having *n* sons labeled by v_1, \ldots, v_n , there exists a deduction rule R such that

 $\frac{v_1 \quad \dots \quad v_n}{v_0} \quad \text{ is an instance of } \mathsf{R}$

 \bigcirc the root is labeled by u.

Exercise - Going back to the Denning Sacco protocol Let $T = \{a, b, c, sk(c), aenc(sign(k, sk(a)), c), senc(s, k)\}$. Is *s* deducible from *T* ?

Exercise - Going back to the Denning Sacco protocol

Let $T = \{a, b, c, sk(c), aenc(sign(k, sk(a)), c), senc(s, k)\}$. Is s deducible from T?

Exercise - Going back to the Denning Sacco protocol

Let
$$T = \{a, b, c, sk(c), aenc(sign(k, sk(a)), c), senc(s, k)\}$$
.
Is s deducible from T?

Answer: Of course, Yes !

$$\frac{\operatorname{senc}(\operatorname{sign}(k,\operatorname{sk}(a)),c) \quad \operatorname{sk}(c)}{\operatorname{sign}(k,\operatorname{sk}(a))}$$

$$\frac{\operatorname{senc}(s,k)}{k}$$

25 / 60

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k) Attack !

Exercise (continued)

Let $T_0 = \{a, b, c, sk(c), aenc(sign(k, sk(a)), c)\}$. Is aenc(sign(k, sk(a)), b) deducible from T_0 ?

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k) Attack !

Exercise (continued)

Let $T_0 = \{a, b, c, sk(c), aenc(sign(k, sk(a)), c)\}$. Is aenc(sign(k, sk(a)), b) deducible from T_0 ?

Answer: Of course, Yes !

$$\frac{\operatorname{\mathsf{aenc}}(\operatorname{\mathsf{sign}}(k,\operatorname{\mathsf{sk}}(a)),c) \quad \operatorname{\mathsf{sk}}(c)}{\operatorname{\mathsf{sign}}(k,\operatorname{\mathsf{sk}}(a))} \qquad b$$
$$\overline{\operatorname{\mathsf{aenc}}(\operatorname{\mathsf{sign}}(k,\operatorname{\mathsf{sk}}(a)),b)}$$

The deduction problem

Input: a finite set of terms T (the knowledge of the attacker) and a
 term u (the secret),
Output: Is u deducible from T?

60

The deduction problem

Input: a finite set of terms T (the knowledge of the attacker) and a term u (the secret),

Output: Is u deducible from T?

Proposition

The deduction problem is decidable in PTIME.

60

The deduction problem

Input: a finite set of terms T (the knowledge of the attacker) and a term u (the secret),

Output: Is u deducible from T?

Proposition

The deduction problem is decidable in PTIME.

Algorithm

- Saturation of T with terms in St(T ∪ {u}) that are deducible in one step;
- 2 if u is in the saturated set then return Yes else return No.

Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible from \mathcal{T} . \longrightarrow easy to prove

Soundness, completeness, and termination

Soundness If the algorithm returns Yes then u is indeed deducible from \mathcal{T} . \longrightarrow easy to prove

Termination The set of subterms is finite and polynomial, and one-step deducibility can be checked in polynomial time. \longrightarrow easy to prove for the deduction rules under study

Soundness, completeness, and termination

SoundnessIf the algorithm returns Yes then u is indeed deducible
from T. \longrightarrow easy to prove

Termination The set of subterms is finite and polynomial, and one-step deducibility can be checked in polynomial time. \longrightarrow easy to prove for the deduction rules under study

Completeness If the term u is deducible from T, then the algorithm returns Yes. Otherwise, it returns No.

 \longrightarrow this relies on a locality property

Locality lemma

Let T and u be such that $T \vdash u$. There exists a proof tree witnessing this fact for which all the nodes are labeled by some v with $v \in St(T \cup \{u\})$.

Locality lemma

Let T and u be such that $T \vdash u$. There exists a tree witnessing this fact for which all the nodes are labeled by some v with $v \in St(T \cup \{u\})$.

- Let P be a proof tree witnessing the fact that $T \vdash u$ having a minimal size (number of nodes). We show by induction on P that:
 - if P ends with root labeled by v then P only contains terms in $St(T \cup \{v\})$;

Locality lemma

Let T and u be such that $T \vdash u$. There exists a tree witnessing this fact for which all the nodes are labeled by some v with $v \in St(T \cup \{u\})$.

We first split the deduction rules into two categories:

- composition rules: encryption, signature, and pairing
- ecomposition rules: decryption, projections, ...

Let P be a proof tree witnessing the fact that $T \vdash u$ having a minimal size (number of nodes). We show by induction on P that:

- if P ends with root labeled by v then P only contains terms in $St(T \cup \{v\})$;
- if *P* ends with a decomposition rule then *P* only contains terms in *St*(*T*).

\longrightarrow this is left as an exercise

Exercise

Consider the following set of deduction rules:

$$\frac{x \quad \mathsf{sk}(y)}{\mathsf{sign}(x,\mathsf{sk}(y))} \quad \frac{\mathsf{sign}(x,\mathsf{sk}(y)) \quad \mathsf{vk}(y)}{x} \quad \frac{y}{\mathsf{vk}(y)}$$

- Give an example showing that these deduction rules are not local.
- Extend the notion of subterms to restore the locality property, and show that de deduction problem is decidable.

Exercise

Consider the following set of deduction rules:

$$\frac{x \quad \mathsf{sk}(y)}{\mathsf{sign}(x,\mathsf{sk}(y))} \quad \frac{\mathsf{sign}(x,\mathsf{sk}(y)) \quad \mathsf{vk}(y)}{x} \quad \frac{y}{\mathsf{vk}(y)}$$

- Give an example showing that these deduction rules are not local.
- Extend the notion of subterms to restore the locality property, and show that de deduction problem is decidable.

Solution

Exercise

Consider the following set of deduction rules:

<u>x y</u>	$\langle x, y \rangle$	$\langle x, y \rangle$	<u>x y</u>	senc(x, y)	у
$\langle x, y \rangle$	X	y	senc(x, y)	X	

In order to decide whether a term u is deducible from a set of terms T, we propose the following algorithm:

- Starting from T, apply as much as possible the decryption and the projection rules This leads to a set of terms called Decomposition(T).
- Check whether u can be obtained by applying the composition rules on top of terms in Decomposition(T).
- In case of success, the algorithm returns Yes. Otherwise, it returns No.

Questions

What about termination, soundness, and completness?

S. Delaune (LSV)

Verification of security protocols

31 / 60

Modelling messages and Deciding knowledge (in a richer setting)

More cryptographic primitives

We may want to consider a richer term algebra and rely on an equational theory E to take into account the properties of the primitives Exclusive or operator:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 $x \oplus x = 0$
 $x \oplus y = y \oplus x$ $x \oplus 0 = x$

More cryptographic primitives

We may want to consider a richer term algebra and rely on an equational theory E to take into account the properties of the primitives Exclusive or operator:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 $x \oplus x = 0$
 $x \oplus y = y \oplus x$ $x \oplus 0 = x$

Blind signature (used in evoting protocol)

$$\begin{aligned} \mathsf{check}(\mathsf{sign}(x,y),\mathsf{vk}(y)) &= x\\ \mathsf{unblind}(\mathsf{blind}(y,y),y) &= x\\ \mathsf{unblindsign}(\mathsf{sign}(\mathsf{blind}(x,y),z),y) &= \mathsf{sign}(x,z) \end{aligned}$$

More cryptographic primitives

We may want to consider a richer term algebra and rely on an equational theory E to take into account the properties of the primitives Exclusive or operator:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 $x \oplus x = 0$
 $x \oplus y = y \oplus x$ $x \oplus 0 = x$

Blind signature (used in evoting protocol)

$$\begin{aligned} \mathsf{check}(\mathsf{sign}(x,y),\mathsf{vk}(y)) &= x\\ \mathsf{unblind}(\mathsf{blind}(y,y),y) &= x\\ \mathsf{unblindsign}(\mathsf{sign}(\mathsf{blind}(x,y),z),y) &= \mathsf{sign}(x,z) \end{aligned}$$

Homomorphic encryption:

$$sdec(senc(x, y), y) = x$$

$$proj_1(\langle x, y \rangle) = x$$

$$proj_2(\langle x, y \rangle) = y$$

$$enc(\langle x, y \rangle, z) = \langle enc(x, z), enc(y, z) \rangle \\ dec(\langle x, y \rangle, z) = \langle dec(x, z), dec(y, z) \rangle$$

$$egin{array}{rcl} A o B & : & ext{aenc}(ext{sign}(k, ext{priv}(A)), ext{pub}(B)) \ B o A & : & ext{senc}(s, k) \end{array}$$

What function symbols and equations do we need to model this protocol?

What function symbols and equations do we need to model this protocol?
symmetric encryption: senc(·, ·), sdec(·, ·)

 \longrightarrow sdec(senc(x, y), y) = x

$$egin{array}{rcl} A o B & : & ext{aenc}(ext{sign}(k, ext{priv}(A)), ext{pub}(B)) \ B o A & : & ext{senc}(s, k) \end{array}$$

What function symbols and equations do we need to model this protocol?

3 symmetric encryption: $senc(\cdot, \cdot)$, $sdec(\cdot, \cdot)$

 \longrightarrow sdec(senc(x, y), y) = x

2 asymmetric encryption: $aenc(\cdot, \cdot)$, $adec(\cdot, \cdot)$, $pk(\cdot)$

 \rightarrow adec(aenc(x, pk(y)), y) = x

What function symbols and equations do we need to model this protocol?

• symmetric encryption:
$$senc(\cdot, \cdot)$$
, $sdec(\cdot, \cdot)$

 \longrightarrow sdec(senc(x, y), y) = x

2 asymmetric encryption: $aenc(\cdot, \cdot)$, $adec(\cdot, \cdot)$, $pk(\cdot)$

 \longrightarrow adec(aenc(x, pk(y)), y) = x

Signature: sign (\cdot, \cdot) , check (\cdot, \cdot)

 \rightarrow check(sign(x, y), pk(y)) = x

Deduction rules are as follows:

$$\frac{u_1 \cdots u_k}{f(u_1, \ldots, u_k)} \quad f \in \mathcal{F} \qquad \frac{u}{u'} \quad u =_{\mathsf{E}} u'$$

Deduction rules are as follows:

$$\frac{u_1 \cdots u_k}{f(u_1, \dots, u_k)} \quad f \in \mathcal{F} \qquad \frac{u}{u'} \quad u =_{\mathsf{E}} u'$$

Example: Let $E := \operatorname{sdec}(\operatorname{secret}(x, y), y) = x$ and $T = \{\operatorname{senc}(\operatorname{secret}, k), k\}$. We have that $T \vdash \operatorname{secret}$.

 $\frac{\frac{\text{senc}(\text{secret}, k) \quad k}{\text{sdec}(\text{senc}(\text{secret}, k), k)}}{\frac{\text{sdec}(\text{senc}(x, y), y) = x}{\text{sdec}(\text{senc}(x, y), y) = x}}$

We consider a signature \mathcal{F} and an equational theory E.

The deduction problem

Input A sequence $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ of terms and a term uOutput Is u deducible from ϕ ?

We consider a signature \mathcal{F} and an equational theory E.

The deduction problem

Input A sequence $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ of terms and a term uOutput Is u deducible from ϕ ?

Characterization of deduction

- $T \vdash u$ if, and only if, there exists a term R such that $R\phi =_{\mathsf{E}} u$.
- \longrightarrow such a term *R* is a recipe of the term *u*.

We consider a signature \mathcal{F} and an equational theory E.

The deduction problem

Input A sequence $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ of terms and a term uOutput Is u deducible from ϕ ?

Characterization of deduction

 $T \vdash u$ if, and only if, there exists a term R such that $R\phi =_{\mathsf{E}} u$. \longrightarrow such a term R is a recipe of the term u.

Example: Let $\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$ We have that:

We consider a signature ${\mathcal F}$ and an equational theory E.

The deduction problem

Input A sequence $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ of terms and a term uOutput Is u deducible from ϕ ?

Characterization of deduction

 $T \vdash u$ if, and only if, there exists a term R such that $R\phi =_{\mathsf{E}} u$. \longrightarrow such a term R is a recipe of the term u.

Example: Let $\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$ We have that:

• k is deducible from ϕ using $R_1 = \text{check}(\text{adec}(w_4, w_3), w_1)$,

We consider a signature ${\mathcal F}$ and an equational theory E.

The deduction problem

Input A sequence $\phi = \{w_1 \triangleright v_1, \dots, w_n \triangleright v_n\}$ of terms and a term uOutput Is u deducible from ϕ ?

Characterization of deduction

 $T \vdash u$ if, and only if, there exists a term R such that $R\phi =_{\mathsf{E}} u$. \longrightarrow such a term R is a recipe of the term u.

Example: Let $\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$ We have that:

- k is deducible from ϕ using $R_1 = \text{check}(\text{adec}(w_4, w_3), w_1)$,
- s is deducible from ϕ using $R_2 = \text{sdec}(w_5, R_1)$.

Proposition

The deduction problem is decidable for the equational theory modelling the DS protocol (and actually any subterm convergent equational theory).

Algorithm:

- **Q** saturation of ϕ with its deducible subterm; we get ϕ^+
- **2** does there exist a recipe R such that $R\phi^+ = s$ (syntaxic equality)

Proposition

The deduction problem is decidable for the equational theory modelling the DS protocol (and actually any subterm convergent equational theory).

Algorithm:

- **1** saturation of ϕ with its deducible subterm; we get ϕ^+
- **2** does there exist a recipe R such that $R\phi^+ = s$ (syntaxic equality)

Going back to the previous example:

•
$$\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$$

Proposition

The deduction problem is decidable for the equational theory modelling the DS protocol (and actually any subterm convergent equational theory).

Algorithm:

- **1** saturation of ϕ with its deducible subterm; we get ϕ^+
- **2** does there exist a recipe R such that $R\phi^+ = s$ (syntaxic equality)

Going back to the previous example:

•
$$\phi = \{w_1 \triangleright \mathsf{pk}(ska); w_2 \triangleright \mathsf{pk}(skb); w_3 \triangleright skc; w_4 \triangleright \mathsf{aenc}(\mathsf{sign}(k, ska), \mathsf{pk}(skc)); w_5 \triangleright \mathsf{senc}(s, k)\}.$$

Proposition

The deduction problem is decidable for the equational theory modelling the DS protocol (and actually any subterm convergent equational theory).

Algorithm:

- **1** saturation of ϕ with its deducible subterm; we get ϕ^+
- **2** does there exist a recipe R such that $R\phi^+ = s$ (syntaxic equality)

Going back to the previous example:

Some other equational theories

Blind signature

$$check(sign(x, y), vk(y)) = x$$

unblind(blind(y, y), y) = x
unblindsign(sign(blind(x, y), z), y) = sign(x, z)

Decidability can be shown in a similar fashion extending the notion of subterm.

 \longrightarrow sign(m, k) will be considered as a subterm of sign(blind(m, r), k)

Blind signature

$$check(sign(x, y), vk(y)) = x$$

unblind(blind(y, y), y) = x
unblindsign(sign(blind(x, y), z), y) = sign(x, z)

Decidability can be shown in a similar fashion extending the notion of subterm.

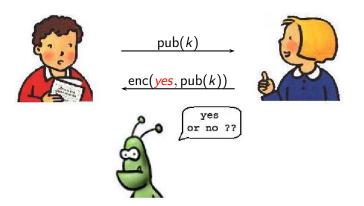
 \longrightarrow sign(m, k) will be considered as a subterm of sign(blind(m, r), k)

Exclusive or

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 $x \oplus x = 0$
 $x \oplus y = y \oplus x$ $x \oplus 0 = x$

The deduction problem can be reduced to the problem of solving systems of linear equations over $\mathbb{Z}/2\mathbb{Z}$.

Deduction is not always sufficient



 \rightarrow The intruder knows the values yes and no !

The real question

Is the intruder able to tell whether Alice sends yes or no?

S. Delaune (LSV)

Verification of security protocols

The static equivalence problem

Input Two frames ϕ and ψ

$$\phi = \{ w_1 \triangleright u_1, \dots, w_\ell \triangleright u_\ell \} \qquad \psi = \{ w_1 \triangleright v_1, \dots, w_\ell \triangleright v_\ell \}$$

Ouput Can the attacker distinguish the two frames, *i.e.* does there exist a test $R_1 \stackrel{?}{=} R_2$ such that:

 $R_1\phi =_E R_2\phi$ but $R_1\psi \neq_E R_2\psi$ (or the converse).

The static equivalence problem

Input Two frames ϕ and ψ

$$\phi = \{w_1 \triangleright u_1, \dots, w_\ell \triangleright u_\ell\} \qquad \psi = \{w_1 \triangleright v_1, \dots, w_\ell \triangleright v_\ell\}$$

Ouput Can the attacker distinguish the two frames, *i.e.* does there exist a test $R_1 \stackrel{?}{=} R_2$ such that:

 $R_1\phi =_E R_2\phi$ but $R_1\psi \neq_E R_2\psi$ (or the converse).

Example: Consider the frames:

•
$$\phi = \{w_1 \triangleright \mathsf{pk}(sks); w_2 \triangleright \mathsf{aenc}(yes, \mathsf{pk}(sks))\}; \text{ and }$$

•
$$\psi = \{w_1 \triangleright \mathsf{pk}(sks); w_2 \triangleright \mathsf{aenc}(no, \mathsf{pk}(sks))\}.$$

They are **not** in static equivalence: $aenc(yes, w_1) \stackrel{?}{=} w_2$.

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \} & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{no}\} \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k)\} & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k)\} \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k\} & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k'\} \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k\} & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k'\} \end{cases}$$

60

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright no \rbrace & \mathsf{X} \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k) \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k) \rbrace \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \end{cases}$$

60

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright no \rbrace & \mathsf{X} \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k) \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k) \rbrace & \checkmark \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace \end{cases}$$

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{no}\} & X \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k)\} & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k)\} & \checkmark \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k\} & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k'\} & X \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k\} & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k'\} \end{cases}$$

60

Consider the equational theories:

- E_{senc} defined by sdec(senc(x, y), y) = x, and
- E_{cipher} which extends E_{senc} by the equation senc(sdec(x, y), y) = x.

Questions

Which of the following pairs of frames are statically equivalent ? Whenever applicable give the distinguishing test.

$$\begin{cases} w_1 \triangleright yes \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright no \rbrace & \mathsf{X} \\ \{w_1 \triangleright \mathsf{senc}(\mathsf{yes}, k) \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(\mathsf{no}, k) \rbrace & \checkmark \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{senc}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace & \mathsf{X} \\ \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k \rbrace & \stackrel{?}{\sim}_{\mathsf{E}_{\mathsf{cipher}}} & \{w_1 \triangleright \mathsf{senc}(n, k), w_2 \triangleright k' \rbrace & \checkmark \end{cases}$$

Proposition

The static equivalence problem is decidable in PTIME for the theory modelling the DS protocol (and actually any subterm convergent equational theory).

Proposition

The static equivalence problem is decidable in PTIME for the theory modelling the DS protocol (and actually any subterm convergent equational theory).

Algorithm:

- **Q** saturation of ϕ/ψ with their deducible subterms ϕ^+/ψ^+
- **a** does there exist a test $R_1 \stackrel{?}{=} R_2$ such that $R_1\phi^+ = R_2\phi^+$ whereas $R_1\psi^+ \neq R_2\psi^+$ (again syntaxic equality) ?

 \longrightarrow actually, we only need to consider small tests

Consider the frames:

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are not in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

Consider the frames:

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are **not** in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

•
$$\phi^+ = \phi \uplus \{$$
 , and
• $\psi^+ = \psi \uplus \{$.

Consider the frames:

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are **not** in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle;$$
, and
• $\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle;$.

Consider the frames:

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are not in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle; w_4 \triangleright yes;$$
, and
• $\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle; w_4 \triangleright no;$.

Consider the frames:

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are **not** in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle; w_4 \triangleright yes; w_5 \triangleright r_1 \}$$
, and
• $\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle; w_4 \triangleright no; w_5 \triangleright r_2 \}$.

Consider the frames:

•
$$\phi = \{w_1 \triangleright \operatorname{aenc}(\langle yes, r_1 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}; \text{ and}$$

• $\psi = \{w_1 \triangleright \operatorname{aenc}(\langle no, r_2 \rangle, \operatorname{pk}(sks)); w_2 \triangleright sks\}.$

They are **not** in static equivalence: $\text{proj}_1(\text{adec}(w_1, w_2)) \stackrel{?}{=} yes$.

Applying the algorithm on these frames, we get:

•
$$\phi^+ = \phi \uplus \{ w_3 \triangleright \langle yes, r_1 \rangle; w_4 \triangleright yes; w_5 \triangleright r_1 \}$$
, and
• $\psi^+ = \psi \uplus \{ w_3 \triangleright \langle no, r_2 \rangle; w_4 \triangleright no; w_5 \triangleright r_2 \}$.

 \longrightarrow Conclusion: ϕ^+ and ψ^+ are not in static equivalence: $w_4 \stackrel{?}{=} yes$.

Some other equational theories

Blind signature

$$check(sign(x, y), vk(y)) = x$$

unblind(blind(x, y), y) = x
unblindsign(sign(blind(x, y), z), y) = sign(x, z)

This can be done in a similar fashion extending a bit the notion of subterm \rightarrow again sign(m, k) will be considered as a subterm of sign(blind(m, r), k).

Some other equational theories

Blind signature

$$\begin{array}{rcl} \mathsf{check}(\mathsf{sign}(x,y),\mathsf{vk}(y)) &=& x\\ \mathsf{unblind}(\mathsf{blind}(x,y),y) &=& x\\ \mathsf{unblindsign}(\mathsf{sign}(\mathsf{blind}(x,y),z),y) &=& \mathsf{sign}(x,z) \end{array}$$

This can be done in a similar fashion extending a bit the notion of subterm \rightarrow again sign(m, k) will be considered as a subterm of sign(blind(m, r), k).

Exclusive or

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 $x \oplus x = 0$
 $x \oplus y = y \oplus x$ $x \oplus 0 = x$

The static equivalence problem can be reduced in PTIME to the problem of deciding whether two systems of linear equations have the same set of solutions overs $\mathbb{Z}/2\mathbb{Z}$.

Existing decidability/complexity results and tools

Theory E	Deduction	Static Equivalence
subterm convergent	PTIME	
blind sign., addition,	decidable	
homo. encryption	[Abadi & Cortier, TCS'06]	
ACU	NP-complete	PTIME
Exclusive Or Abelian Group	PTIME	PTIME
ACUNh/AGh	PTIME	decidable
	[D., IPL'05;Cortier & D., JAR'12]	

 \rightarrow A combination result for disjoint theories [Cortier & D., JAR'12] \rightarrow Automatic tools for checking static equivalence: YAPA M. Baudet (2006); KISS S. Ciobaca (2010); and FAST B. Conchinha (2011) Modelling protocols and security properties

Applied pi calculus

[Abadi & Fournet, 01]

basic programming language with constructs for concurrency and communication

 \rightarrow based on the π -calculus [Milner *et al.*, 92], and in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Applied pi calculus

[Abadi & Fournet, 01]

basic programming language with constructs for concurrency and communication

 \rightarrow based on the π -calculus [Milner *et al.*, 92], and in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Some advantages:

- allows us to model cryptographic primitives
- both reachability and equivalence-based specification of properties

Protocols as processes - syntax and semantics

Syntax :
$$P, Q$$
 := 0null process $in(c, x).P$ input $out(c, u).P$ output $if u = v$ then P else Qconditional $P \mid Q$ parallel composition $!P$ replicationnew $n.P$ fresh name generation

Protocols as processes - syntax and semantics

Syntax :
$$P, Q$$
:=0null process $in(c, x).P$ input $out(c, u).P$ outputif $u = v$ then P else Qconditional $P \mid Q$ parallel composition $!P$ replicationnew $n.P$ fresh name generation

Semantics \rightarrow :

Comm	$out(c,M).P \mid in(c,x).Q \to P \mid Q\{M/x\}$
Then	if $M = N$ then P else $Q \rightarrow P$ when $M =_{E} N$
Else	if $M = N$ then P else $Q \rightarrow Q$ when $M \neq_{E} N$

closed by structural equivalence (\equiv) and application of evaluation contexts.

$$egin{array}{rcl} A o B & : & ext{aenc}(ext{sign}(k, ext{priv}(A)), ext{pub}(B)) \ B o A & : & ext{senc}(s, k) \end{array}$$

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

Alice and Bob as processes:

 $P_A(sk_a, pk_b) = \operatorname{new} k.\operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b)).$ in(c, x_a). let $y_a = \operatorname{sdec}(x_a, k)$ in...

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \frac{\text{new } k. \operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b))}{\operatorname{in}(c, x_a). \operatorname{let} y_a = \operatorname{sdec}(x_a, k) \operatorname{in}...}$$

$$P_B(sk_b, pk_a) = in(c, x_b). \text{ let } y_b = check(adec(x_b, sk_b), pk_a) \text{ in } new \ s.out(c, senc(s, y_b))$$

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \frac{\text{new } k. \operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b))}{\operatorname{in}(c, x_a). \operatorname{let} y_a = \operatorname{sdec}(x_a, k) \operatorname{in}...}$$

$$P_B(sk_b, pk_a) = in(c, x_b). \text{ let } y_b = check(adec(x_b, sk_b), pk_a) \text{ in } new \ s.out(c, senc(s, y_b))$$

One possible scenario:

 $P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) | P_B(sk_b, \text{pk}(sk_a)))$

$$A
ightarrow B$$
 : aenc(sign(k, priv(A)), pub(B))
 $B
ightarrow A$: senc(s, k)

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \frac{\text{new } k. \operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b))}{\operatorname{in}(c, x_a). \operatorname{let} y_a = \operatorname{sdec}(x_a, k) \operatorname{in}...}$$

$$P_B(sk_b, pk_a) = in(c, x_b). \text{ let } y_b = check(adec(x_b, sk_b), pk_a) \text{ in} \\ new \ s.out(c, senc(s, y_b))$$

One possible scenario:

$$P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) \mid P_B(sk_b, \text{pk}(sk_a)))$$

$$\rightarrow \text{ new } sk_a, sk_b, \frac{k}{k} \cdot (in(c, x_a)) \text{ let } y_a = \text{sdec}(x_a, k) \text{ in } \dots \\ | \text{ let } y_b = k \text{ in } \text{new } s.\text{out}(c, \text{senc}(s, y_b))$$

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \frac{\text{new } k. \operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b))}{\operatorname{in}(c, x_a). \operatorname{let} y_a = \operatorname{sdec}(x_a, k) \operatorname{in}...}$$

$$P_B(sk_b, pk_a) = in(c, x_b). \text{ let } y_b = check(adec(x_b, sk_b), pk_a) \text{ in} \\ new \ s.out(c, senc(s, y_b))$$

One possible scenario:

$$P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) | P_B(sk_b, \text{pk}(sk_a)))$$

$$\rightarrow \text{ new } sk_a, sk_b, \frac{k}{k} (\inf(c, x_a). \text{ let } y_a = \text{sdec}(x_a, k) \text{ in } \dots \\ | \text{ let } y_b = k \text{ in } \text{new } s.\text{out}(c, \text{senc}(s, y_b))$$

$$\rightarrow \quad \mathsf{new} \ sk_a, sk_b, \frac{k}{s}, \frac{s}{s} (\ \mathsf{let} \ y_a = \mathsf{sdec}(\mathsf{senc}(s, k), k) \ \mathsf{in} \ \dots \mid 0)$$

Alice and Bob as processes:

$$P_A(sk_a, pk_b) = \frac{\text{new } k. \operatorname{out}(c, \operatorname{aenc}(\operatorname{sign}(k, sk_a), pk_b))}{\operatorname{in}(c, x_a). \operatorname{let} y_a = \operatorname{sdec}(x_a, k) \operatorname{in}...}$$

$$P_B(sk_b, pk_a) = in(c, x_b). \text{ let } y_b = check(adec(x_b, sk_b), pk_a) \text{ in} \\ new \ s.out(c, senc(s, y_b))$$

One possible scenario:

$$P_{\text{DS}} = \text{new } sk_a, sk_b.(P_A(sk_a, \text{pk}(sk_b)) \mid P_B(sk_b, \text{pk}(sk_a)))$$

$$\rightarrow \text{ new } sk_a, sk_b, \frac{k}{k} (in(c, x_a). \text{ let } y_a = \text{sdec}(x_a, k) \text{ in } \dots \\ | \text{ let } y_b = k \text{ in } \text{new } s. \text{out}(c, \text{senc}(s, y_b))$$

 $\rightarrow \text{ new } sk_a, sk_b, k, s. (\text{ let } y_a = \text{sdec}(\text{senc}(s, k), k) \text{ in } \dots \mid 0)$

→ this simply models a normal execution between two honest participants S. Delaune (LSV) Verification of security protocols 25th August 2015 49 / 60

Confidentiality for process P w.r.t. secret s

For all processes A such that $A \mid P \rightarrow^* Q$, we have that Q is not of the form C[out(c, s), Q'] with c public.

Confidentiality for process P w.r.t. secret s

For all processes A such that $A \mid P \rightarrow^* Q$, we have that Q is not of the form C[out(c, s), Q'] with c public.

Some difficulties:

- we have to consider all the possible executions in presence of an arbitrary adversary (modelled as a process)
- we have to consider realistic initial configurations
 - \longrightarrow replications to model an unbounded number of sessions,
 - \longrightarrow reveal public keys and private keys to model dishonest agents,
 - $\longrightarrow P_A/P_B$ may play with other (and perhaps) dishonest agents, ...

Going back to the Denning Sacco protocol

The aforementioned attack

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k)

The "minimal" initial configuration to retrieve the attack is:

new sk_a .new sk_b .(out(c, pk(sk_b)) | $P_A(sk_a, pk(sk_c))$ | $P_B(sk_b, pk(sk_a))$)

Going back to the Denning Sacco protocol

$$egin{array}{rcl} A o B & : & ext{aenc}(ext{sign}(k, ext{priv}(A)), ext{pub}(B)) \ B o A & : & ext{senc}(s, k) \end{array}$$

The aforementioned attack

1.
$$A \rightarrow C$$
: aenc(sign(k, priv(A)), pub(C))
2. $C(A) \rightarrow B$: aenc(sign(k, priv(A)), pub(B))
3. $B \rightarrow A$: senc(s, k)

The "minimal" initial configuration to retrieve the attack is:

new sk_a .new sk_b .(out(c, pk(sk_b)) | $P_A(sk_a, pk(sk_c))$ | $P_B(sk_b, pk(sk_a))$)

Exercise: Exhibit the process A (the behaviour of the attacker) that witnesses the aforementioned attack.

This can be expressed as a correspondence property:

if B finishes a session, thinking he has talked to A then A has also finished a session, thinking she has talked to B (+ possibly agreement on some values).

Enriched syntax for processes:

P, Q := 0 null process in(c,x).P input ... event $p(u_1, ..., u_n).P$ event

Authentication properties with agreement on some values:

$$\forall x.\mathsf{EndB}(a,b,x) \Rightarrow \mathsf{EndA}(a,b,x)$$

confidentiality for an unbounded number of sessions

• undecidable in general [Even & Goldreich, 83; Durgin *et al*, 99]

More details

- some decidability results for some restricted fragment, e.g. one variable per protocol's rule [Comon & Cortier, 03]
- ProVerif: A tool that does not correspond to any decidability result but works well in practice. [Blanchet, 01]

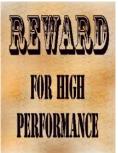
More details

confidentiality for a bounded number of sessions

- a decidability result (NP-complete) [Rusinowitch & Turuani, 01; Millen & Shmatikov, 01]
- result extended to deal with various cryptographic primitives.
- \rightarrow various automatic tools, e.g. AVISPA platform [Armando *et al.*, 05] More details about this tomorrow !

Would you be able to find the attack on the well-known Needham-Schroeder protocol?

$$\begin{array}{ll} A \rightarrow B : & \{A, N_a\}_{\mathsf{pub}(B)} \\ B \rightarrow A : & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A \rightarrow B : & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$



To help you:

http://www.lsv.ens-cachan.fr/~delaune/VTSA/proverif.pdf

Questions ?

See you tomorrow !

Undecidability

Post Correspondence Problem

Input A sequence of tiles $(u_0, v_0) (u_1, v_1) \dots (u_n, v_n)$ with $u_i, v_i \in \{a, b\}^*$. Output Does there exist $k \ge 1$, and $1 \le i_1, \dots, i_k \le n$ such that $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$

Post Correspondence Problem

Input A sequence of tiles $(u_0, v_0) (u_1, v_1) \dots (u_n, v_n)$ with $u_i, v_i \in \{a, b\}^*$. Output Does there exist $k \ge 1$, and $1 \le i_1, \dots, i_k \le n$ such that $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$

Example:

u_1	<i>u</i> ₂	Uз	И4	v_1	<i>v</i> ₂	V3	<i>V</i> 4	
aba	bbb	aab	bb	а	ааа	abab	babba	

A solution is 1431. Indeed, we have that:

 $u_1.u_4.u_3.u_1 = aba.bb.aab.aba = a.babba.abab.a = v_1.v_4.v_3.v_1$ No solution if we remove the tile (u_4, v_4) .

60

Post Correspondence Problem

Input A sequence of tiles $(u_0, v_0) (u_1, v_1) \dots (u_n, v_n)$ with $u_i, v_i \in \{a, b\}^*$. Output Does there exist $k \ge 1$, and $1 \le i_1, \dots, i_k \le n$ such that $u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$

Example:

u_1	u_2	Uз	U4	V_1	<i>v</i> ₂	V3	V4
aba	bbb	aab	bb	а	ааа	abab	babba

A solution is 1431. Indeed, we have that:

 $u_1.u_4.u_3.u_1 = aba.bb.aab.aba = a.babba.abab.a = v_1.v_4.v_3.v_1$ No solution if we remove the tile (u_4, v_4) .

Proposition: The PCP is undecidable.

S. Delaune (LSV)

Undecidability proof

Reduction from PCP

We built a protocol that admits an attack (s is revealed) if, and only if, PCP has a solution.

We built a protocol that admits an attack (s is revealed) if, and only if, PCP has a solution.

We encode words and concatenation using pairs

- *babba* is encoded as $\langle \langle \langle b, a \rangle, b \rangle, b \rangle, a \rangle$,
- $x \cdot (babba)$ is encoded as $\langle \langle \langle \langle x, b \rangle, a \rangle, b \rangle, b \rangle, a \rangle$

We built a protocol that admits an attack (s is revealed) if, and only if, PCP has a solution.

We encode words and concatenation using pairs

- *babba* is encoded as $\langle \langle \langle b, a \rangle, b \rangle, b \rangle, a \rangle$,
- $x \cdot (babba)$ is encoded as $\langle \langle \langle \langle x, b \rangle, a \rangle, b \rangle, b \rangle, a \rangle$

Initialisation: out(senc($\langle u_1, v_1 \rangle, k$)) ... out(senc($\langle u_n, v_n \rangle, k$))

We built a protocol that admits an attack (s is revealed) if, and only if, PCP has a solution.

We encode words and concatenation using pairs

- *babba* is encoded as $\langle \langle \langle b, a \rangle, b \rangle, b \rangle, a \rangle$,
- $x \cdot (babba)$ is encoded as $\langle \langle \langle \langle x, b \rangle, a \rangle, b \rangle, b \rangle, a \rangle$

Initialisation: $out(senc(\langle u_1, v_1 \rangle, k)) \dots out(senc(\langle u_n, v_n \rangle, k))$ Building words

• ! in(senc($\langle x, y \rangle, k$)).out(senc($\langle x \cdot u_1, y \cdot v_1 \rangle, k$))

• . . .

• ! in(senc(
$$\langle x, y \rangle, k$$
)).out(senc($\langle x \cdot u_1, y \cdot v_1 \rangle, k$))

We built a protocol that admits an attack (s is revealed) if, and only if, PCP has a solution.

We encode words and concatenation using pairs

- babba is encoded as ((((b, a), b), b), a),
- $x \cdot (babba)$ is encoded as $\langle \langle \langle \langle x, b \rangle, a \rangle, b \rangle, b \rangle, a \rangle$

Initialisation: $out(senc(\langle u_1, v_1 \rangle, k)) \dots out(senc(\langle u_n, v_n \rangle, k))$ Building words

• ! in(senc($\langle x, y \rangle, k$)).out(senc($\langle x \cdot u_1, y \cdot v_1 \rangle, k$))

• . . .

• ! in(senc($\langle x, y \rangle, k$)).out(senc($\langle x \cdot u_1, y \cdot v_1 \rangle, k$))

Revealing the secret s: $in(senc(\langle z, z \rangle, k)).out(s)$

ProVerif

ProVerif is a verifier for cryptographic protocols that may prove that a protocol is secure or exhibit attacks.

- Online demo available at: http://proverif.rocq.inria.fr/
- Sources available on Bruno Blanchet's webpage

Advantages

- fully automatic, and quite efficient
- A rich process algebra: replication, else branches,
- Handles many cryptographic primitives
- Proves various security properties: secrecy, correspondences, equivalences

ProVerif

ProVerif is a verifier for cryptographic protocols that may prove that a protocol is secure or exhibit attacks.

- Online demo available at: http://proverif.rocq.inria.fr/
- Sources available on Bruno Blanchet's webpage

Advantages

- fully automatic, and quite efficient
- A rich process algebra: replication, else branches,
- Handles many cryptographic primitives
- Proves various security properties: secrecy, correspondences, equivalences

No miracle

Termination is not guaranteed and sometimes the tool is not able to conclude.

 \longrightarrow still, ProVerif works well in practice.

Protocol	Result	ms
Needham-Schroeder shared key	Attack	52
Needham-Schroeder shared key corrected	Secure	109
Denning-Sacco	Attack	6
Denning-Sacco corrected	Secure	7
Otway-Rees	Secure	10
Otway-Rees, variant of Paulson98	Attack	12
Yahalom	Secure	10
Simpler Yahalom	Secure	11
Main mode of Skeme	Secure	23

Pentium III, 1 GHz.