APTE: an automatic tool for verifying privacy-type

security properties

Stéphanie Delaune

LSV, CNRS & ENS Cachan & INRIA Saclay lle-de-France, France

— tool developed by Vincent CHEVAL

Tuesday, March 18th, 2014

S. Delaune (LSV) APTE 18th March 2014 1/11

Context: cryptographic protocols

Cryptographic protocols

@ small programs designed to secure
communication (e.g. confidentiality,

authentication, . ..)
Paypal @ use cryptographic primitives (e.g.
encryption, signature,)

S. Delaune (LSV) APTE 18th March 2014 2/11

Context: cryptographic protocols

Cryptographic protocols

@ small programs designed to secure
communication (e.g. confidentiality,

authentication, . ..)
Paypal @ use cryptographic primitives (e.g.
encryption, signature,)

It becomes more and more important to protect our privacy.

&ections 20m
Fyquez, votez 8

S. Delaune (LSV) APTE 18th March 2014 2/11

Example: private authentication protocol

A— B: {Naa pUbA}PUbB
B— A: {Nj, Np,pubg}pub,

S. Delaune (LSV) APTE 18th March 2014 3/11

Example: private authentication protocol

A— B: {Naa pUbA}PUbB
B— A: {Nj, Np,pubg}pub,

Is an attacker able to distinguish the two scenarios?

@ the protocol is played between the agents a and b;
@ the protocol is played between the agents a’ and b.

S. Delaune (LSV) APTE 18th March 2014 3/11

Example: private authentication protocol

A— B: {Naa pUbA}PUbB
B— A: {Nj, Np,pubg}pub,

Is an attacker able to distinguish the two scenarios?
@ the protocol is played between the agents a and b;
@ the protocol is played between the agents a’ and b.

Description of the attack:
— the attacker sends { NV, pubs}pub, and observes the answer sent by B.

@ b will answer with a message of the form {N, Ny, pubg}pub,;
@ b will not give any answer.

S. Delaune (LSV) APTE 18th March 2014 3/11

Example: private authentication protocol

A—B: {N,, pUbA}pubB

B — A: {Na, Np,pubg}pus, in case Bis willing to talk to A
{Nb}pubg otherwise

Is an attacker able to distinguish the two scenarios?
@ the protocol is played between the agents a and b;
@ the protocol is played between the agents a’ and b.

Description of the attack:

— the attacker sends { NV, pubs}pub, and observes the answer sent by B.

@ b will answer with a message of the form {N, Ny, pubg}pub,;
@ b will not give any answer.

— a possible fix in red

S. Delaune (LSV) APTE 18th March 2014 3/11

Example continued - more formally

Modelling the protocol

A(a, b) = B(b, a) = newny.in(c,y).
newn,. if mo(adec(y, skp)) = pk(ska)
out(c, {(na, pk(ska)) }pk(sks))- then out(c, {..., np, pk(ska) } pk(ska))-
in(c,z).... else out(c, {np }pk(sk,))

S. Delaune (LSV) APTE 18th March 2014 4 /11

Example continued - more formally

Modelling the protocol

A(a, b) = B(b, a) = newny.in(c,y).
newn,. if mo(adec(y, skp)) = pk(ska)
out(c, {(na, pk(ska)) }pk(sks))- then out(c, {..., np, pk(ska) } pk(ska))-
in(c,z).... else out(c, {np }pk(sk,))

Modelling the property
ClA(a,b) | B(b,a)] ~: CIA(d,b)| B(b,4)]

where C = new sk, new sk 5, new sk,
out(c, pk(ska)).out(c, pk(ska)).out(c, pk(skp))

S. Delaune (LSV) APTE 18th March 2014 4 /11

Example continued - more formally

Modelling the protocol

A(a, b) = B(b, a) = newny.in(c,y).
newn,. if mo(adec(y, skp)) = pk(ska)
out(c, {(na, pk(ska)) }pk(sks))- then out(c, {..., np, pk(ska) } pk(ska))-
in(c,z).... else out(c, {np }pk(sk,))

Modelling the property
ClA(a,b) | B(b,a)] ~: CIA(d,b)| B(b,4)]

where C = new sk, new sk 5, new sk,

out(c, pk(ska)).out(c, pk(ska)).out(c, pk(skp)). _.
Each experiment performed by the attacker on the left leads to a sequence
of messages ®1 which is indistinguishable from the sequence ®, obtained
when performing the same expriment on the right.

S. Delaune (LSV) APTE 18th March 2014 4 /11

Difficulties when checking trace equivalence

— even considering a fixed number of protocol executions.
Main difficulties:

© the attacker can build arbitrary messages (provided that they are
deducible from his knowledge)
—> no hope to test each experiment in turn

@ once the experiment is fixed, we still have to decide whether the
resulting sequence of messages are indistinguishable or not.

S. Delaune (LSV) APTE 18th March 2014 5/11

Difficulties when checking trace equivalence

— even considering a fixed number of protocol executions.
Main difficulties:

© the attacker can build arbitrary messages (provided that they are
deducible from his knowledge)
—> no hope to test each experiment in turn

@ once the experiment is fixed, we still have to decide whether the
resulting sequence of messages are indistinguishable or not.

Running example: fix version
— consider the experiment where the attacker sends { N, pk(ska)} pk(sk,)
The resulting sequences of messages are:

Q@ &1 = pk(ska), pk(ska), pk(skp), {n, np, pk(skp)}pk(sk,)
Q & = pk(5k3)7 pk(Ska’)7 pk(Skb)7 {nb}pk(skb)-
where sk,, sk, skp, and np are unknown.

S. Delaune (LSV) APTE 18th March 2014 5/11

Algorithms for checking trace equivalence

trace equivalence is undecidable in general

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

— this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

S. Delaune (LSV) APTE 18th March 2014 6 /11

http://www.proverif.ens.fr/

Algorithms for checking trace equivalence

trace equivalence is undecidable in general

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

— this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

Unbounded number of sessions [Blanchet, Abadi & Fournet, 05]

ProVerif tool [Blanchet, 01] http://www.proverif.ens.fr/

@ + unbounded number of sessions; various cryptographic primitives;

@ — termination is not guaranteed; diff-equivalence (too strong)

S. Delaune (LSV) APTE 18th March 2014 6 /11

http://www.proverif.ens.fr/

Algorithms for checking trace equivalence

trace equivalence is undecidable in general

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

— this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

Unbounded number of sessions [Blanchet, Abadi & Fournet, 05]

ProVerif tool [Blanchet, 01] http://www.proverif.ens.fr/

@ + unbounded number of sessions; various cryptographic primitives;

@ — termination is not guaranteed; diff-equivalence (too strong)

— None of these results is able to analyse the private authentication
protocol.

S. Delaune (LSV) APTE 18th March 2014 6 /11

http://www.proverif.ens.fr/

Our contribution

—— V. Cheval, H. Comon-Lundh, and S. Delaune CCS 2011

A procedure for deciding trace equivalence for a large class of processes
implemented in a tool called APTE

S. Delaune (LSV) APTE 18th March 2014 7/11

Our contribution

—— V. Cheval, H. Comon-Lundh, and S. Delaune CCS 2011

A procedure for deciding trace equivalence for a large class of processes
implemented in a tool called APTE

Our class of processes:

@ -+ non-trivial else branches, private channels, and non-deterministic
choice;

@ — but no replication, and a fixed set of cryptographic primitives
(signature, encryption, hash function, mac).

S. Delaune (LSV) APTE 18th March 2014 7/11

Our contribution

—— V. Cheval, H. Comon-Lundh, and S. Delaune CCS 2011

A procedure for deciding trace equivalence for a large class of processes
implemented in a tool called APTE

Our class of processes:

@ -+ non-trivial else branches, private channels, and non-deterministic
choice;

@ — but no replication, and a fixed set of cryptographic primitives
(signature, encryption, hash function, mac).
Some applications
@ unlinkability in RFID protocols (e.g. e-passport protocol)

@ anonymity (e.g. private authentication protocol)

S. Delaune (LSV) APTE 18th March 2014 7/11

Our procedure in a nutshell

Two main steps:

© A symbolic exploration of all the possible traces

The infinite number of possible traces (i.e. experiment) are
represented by a finite set of symbolic traces.
— this set is still huge (exponential) !

@ A decision procedure for deciding (symbolic) equivalence between sets

of symbolic traces.
— this algorithm works quite well

S. Delaune (LSV) APTE 18th March 2014 8 /11

APTE- Algorithm for Proving Trace Equivalence

http://projects.lsv.ens-cachan.fr/APTE
— developed by Vincent CHEVAL

>
T
g
sm
hel

(OR ARCHIVES: Vincent Cheval P

—— written in Ocaml, around 12 KLocs

S. Delaune (LSV) APTE 18th March 2014 9/11

http://projects.lsv.ens-cachan.fr/APTE

Demo

S. Delaune (LSV) APTE 18th March 2014 10 / 11

Conclusion

APTE is an automatic tool for analysing privacy type properties expressed
using trace equivalence

Case studies:
@ private authentication protocol
@ several protocols from the e-passport application

@ some classical protocols from the literature (e.g. Needham-Schroeder,
Wide Mouthed Frog protocol, .. .)

— This is the only automatic tool that is able to analyse the BAC
protocol (e-passport)

S. Delaune (LSV) APTE 18th March 2014 1 /11

Conclusion

APTE is an automatic tool for analysing privacy type properties expressed
using trace equivalence

Case studies:
@ private authentication protocol
@ several protocols from the e-passport application

@ some classical protocols from the literature (e.g. Needham-Schroeder,
Wide Mouthed Frog protocol, .. .)

— This is the only automatic tool that is able to analyse the BAC
protocol (e-passport)
Main limitations:

@ APTE can only handle standard cryptographic primitives
— e-voting protocols are out of reach of APTE
@ APTE can only consider a bounded number of sessions (and actually a
very small number)

S. Delaune (LSV) APTE 18th March 2014 1 /11

