
Formal analysis of protocols based
on TPM state registers

Stéphanie Delaune1, Steve Kremer1, Mark D. Ryan2,
and Graham Steel1

1 LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France
2 School of Computer Science, University of Birmingham, UK

Thursday, June 9th, 2011

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 1 / 33

TPM - What is it?

Trusted Platform Module

Hardware chip designed to enable commodity
computers to achieve greater levels of security
than is possible in software alone.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 2 / 33

TPM - What is it?

Trusted Platform Module

Hardware chip designed to enable commodity
computers to achieve greater levels of security
than is possible in software alone.

more than 200 millions currently in existence (mostly in laptops)
−→ already used by some applications (e.g. Disk encryption)

specified by the Trusted Computing Group
−→ more than 700 pages of specification

http://www.trustedcomputinggroup.org

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 2 / 33

http://www.trustedcomputinggroup.org

TPM functionality

Secure storage:

TPM stores keys and other sensitive data in its shielded memory

A user can store content that is encrypted by keys only available to
the TPM.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 3 / 33

TPM functionality

Secure storage:

TPM stores keys and other sensitive data in its shielded memory

A user can store content that is encrypted by keys only available to
the TPM.

Platform authentication:

Each TPM chip has a unique and secret key

A platform can obtain keys by which it can authenticate itself reliably.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 3 / 33

TPM functionality

Secure storage:

TPM stores keys and other sensitive data in its shielded memory

A user can store content that is encrypted by keys only available to
the TPM.

Platform authentication:

Each TPM chip has a unique and secret key

A platform can obtain keys by which it can authenticate itself reliably.

Platform measurement and reporting:

TPM contains some internal memory slots called PCRs, and some
keys can be locked to a particular PCR value

PCR values can be modified using some specific command (e.g.

command Extend).

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 3 / 33

TPM - How is it used?

Application programming interface:

create new keys (e.g. CreateWrapKey), and load them into the device
(e.g. LoadKey2);

manipulate these keys, and the PCRs
−→ e.g. UnBind allows one to decrypt a ciphertext using a key that is
stored into the TPM and locked to the current PCR value
−→ e.g. Quote allows one to obtain a certificate attesting that a key
is locked to a particular PCR value
−→ e.g. Extend allows one to extend the current value of a PCR with
some data x , i.e. p := SHA1(p||x).

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 4 / 33

TPM - How is it used?

Application programming interface:

create new keys (e.g. CreateWrapKey), and load them into the device
(e.g. LoadKey2);

manipulate these keys, and the PCRs
−→ e.g. UnBind allows one to decrypt a ciphertext using a key that is
stored into the TPM and locked to the current PCR value
−→ e.g. Quote allows one to obtain a certificate attesting that a key
is locked to a particular PCR value
−→ e.g. Extend allows one to extend the current value of a PCR with
some data x , i.e. p := SHA1(p||x).

The TPM provides a root of trust for a variety of protocols: e.g.

Microsoft’s hard drive encryption system “BitLocker”, Direct Anonymous
Attestation protocol, . . .

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 4 / 33

Related Work

Several attempts to formally analyse the TPM itself

using a theorem prover [Lin, 2005];

using ProVerif [Delaune et al., 2010]; or

in some specific models (with no tool support), e.g. [Gürgens et al.,
2007, Coker et al., 2010]

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 5 / 33

Related Work

Several attempts to formally analyse the TPM itself

using a theorem prover [Lin, 2005];

using ProVerif [Delaune et al., 2010]; or

in some specific models (with no tool support), e.g. [Gürgens et al.,
2007, Coker et al., 2010]

−→ These results do not consider TPM state registers.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 5 / 33

Related Work

Several attempts to formally analyse the TPM itself

using a theorem prover [Lin, 2005];

using ProVerif [Delaune et al., 2010]; or

in some specific models (with no tool support), e.g. [Gürgens et al.,
2007, Coker et al., 2010]

−→ These results do not consider TPM state registers.

Modelling state is challenging [Herzog, 2006]

extension of the strand space model to analyse optimistic fair
exchange protocol [Guttman, 2011]

extension of ProVerif to take global state into account [Modersheim,
2010, Arapinis et al., 2011]

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 5 / 33

Related Work

Several attempts to formally analyse the TPM itself

using a theorem prover [Lin, 2005];

using ProVerif [Delaune et al., 2010]; or

in some specific models (with no tool support), e.g. [Gürgens et al.,
2007, Coker et al., 2010]

−→ These results do not consider TPM state registers.

Modelling state is challenging [Herzog, 2006]

extension of the strand space model to analyse optimistic fair
exchange protocol [Guttman, 2011]

extension of ProVerif to take global state into account [Modersheim,
2010, Arapinis et al., 2011]

−→ These results are not suitable to analyse protocols based on TPM
state registers.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 5 / 33

Our contributions

Formal analysis of protocols based on TPM registers using an
automatic tool

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 6 / 33

Our contributions

Formal analysis of protocols based on TPM registers using an
automatic tool

Our approach:
we use Horn clauses and rely on the ProVerif tool;

we solve non-termination issues by providing a transformation that is
sound and complete for the class of k-stable clauses; and

we provide a syntactic criterion to conclude to k-stability.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 6 / 33

Our contributions

Formal analysis of protocols based on TPM registers using an
automatic tool

Our approach:
we use Horn clauses and rely on the ProVerif tool;

we solve non-termination issues by providing a transformation that is
sound and complete for the class of k-stable clauses; and

we provide a syntactic criterion to conclude to k-stability.

Some case studies:

a simplified version of the Micosoft BitLocker protocol

a secure envelope protocol [Ables & Ryan, 2010]

−→ both protocols crucially rely on the use of PCR

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 6 / 33

Outline

1 Overview of the TPM

2 Modelling using Horn clauses

3 Analysing with ProVerif

4 Case studies

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 7 / 33

Outline

1 Overview of the TPM

2 Modelling using Horn clauses

3 Analysing with ProVerif

4 Case studies

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 8 / 33

TPM key hierarchy

Cryptographic key

Keys are arranged in a tree structure and stored in the TPM memory
−→ Storage Root Key created by a special command

Authdata, PCR

In particular, to each TPM key is associated an authdata value and also
some PCR values

authdata is a password shared between the user process and the TPM

PCR values constrain the state of the TPM. The TPM will use the
key only if certain PCRs currently have certain values.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 9 / 33

CertifyKey command

Goal: allow a user to obtain a certificate on a key that is stored in the
device.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 10 / 33

CertifyKey command

Goal: allow a user to obtain a certificate on a key that is stored in the
device.

Description:

USER TPM
current pcr value: pcr

key table:

kh1 → [auth1, sk1, pk1, pcr1]

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 10 / 33

CertifyKey command

Goal: allow a user to obtain a certificate on a key that is stored in the
device.

Description:

USER TPM
current pcr value: pcr

key table:

kh1 → [auth1, sk1, pk1, pcr1]
CertifyKey, kh1

certkey(aik, 〈pk1, pcr1〉)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 10 / 33

UnBind command

Goal: allow a user to retrieve the content of an encryption provided that
the decryption key is stored in the key table of the TPM.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 11 / 33

UnBind command

Goal: allow a user to retrieve the content of an encryption provided that
the decryption key is stored in the key table of the TPM.

Description:

USER TPM
current pcr value: pcr1

key table:

kh1 → [auth1, sk1, pk1, pcr1]

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 11 / 33

UnBind command

Goal: allow a user to retrieve the content of an encryption provided that
the decryption key is stored in the key table of the TPM.

Description:

USER TPM
current pcr value: pcr1

key table:

kh1 → [auth1, sk1, pk1, pcr1]
UnBind, aenc(pk1, data), kh1

data

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 11 / 33

Extend command

Goal: allow a user to update the value stored in one of the platform
configuration register (PCR).

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 12 / 33

Extend command

Goal: allow a user to update the value stored in one of the platform
configuration register (PCR).

Description:

USER TPM
current pcr value: pcr

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 12 / 33

Extend command

Goal: allow a user to update the value stored in one of the platform
configuration register (PCR).

Description:

USER TPM
current pcr value: pcr

Extend, n

current pcr value:

h(〈pcr, n〉)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 12 / 33

Outline

1 Overview of the TPM

2 Modelling using Horn clauses

3 Analysing with ProVerif

4 Case studies

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 13 / 33

An introductory example

Goal: Alice has two secrets s1 and s2. First, she interacts with Bob, and
then Bob can learn one of the secrets (he chooses) but not both.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 14 / 33

An introductory example

Goal: Alice has two secrets s1 and s2. First, she interacts with Bob, and
then Bob can learn one of the secrets (he chooses) but not both.

Description:

1 create and load a key pair (k1, pk(k1)) locked to h(u0, a1) in Bob’s
TPM;

2 create and load a key pair (k2, pk(k2)) locked to h(u0, a2) in Bob’s
TPM;

−→ For sake of simplicity, we assume that the keys are already in Bob’s TPM.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 14 / 33

An introductory example

Goal: Alice has two secrets s1 and s2. First, she interacts with Bob, and
then Bob can learn one of the secrets (he chooses) but not both.

Description:

1 create and load a key pair (k1, pk(k1)) locked to h(u0, a1) in Bob’s
TPM;

2 create and load a key pair (k2, pk(k2)) locked to h(u0, a2) in Bob’s
TPM;

−→ For sake of simplicity, we assume that the keys are already in Bob’s TPM.

3 Bob provides some certificates to Alice (using CertifyKey);

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 14 / 33

An introductory example

Goal: Alice has two secrets s1 and s2. First, she interacts with Bob, and
then Bob can learn one of the secrets (he chooses) but not both.

Description:

1 create and load a key pair (k1, pk(k1)) locked to h(u0, a1) in Bob’s
TPM;

2 create and load a key pair (k2, pk(k2)) locked to h(u0, a2) in Bob’s
TPM;

−→ For sake of simplicity, we assume that the keys are already in Bob’s TPM.

3 Bob provides some certificates to Alice (using CertifyKey);

4 Alice sends aenc(pk(k1), s1) and aenc(pk(k2), s2) to Bob;

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 14 / 33

An introductory example

Goal: Alice has two secrets s1 and s2. First, she interacts with Bob, and
then Bob can learn one of the secrets (he chooses) but not both.

Description:

1 create and load a key pair (k1, pk(k1)) locked to h(u0, a1) in Bob’s
TPM;

2 create and load a key pair (k2, pk(k2)) locked to h(u0, a2) in Bob’s
TPM;

−→ For sake of simplicity, we assume that the keys are already in Bob’s TPM.

3 Bob provides some certificates to Alice (using CertifyKey);

4 Alice sends aenc(pk(k1), s1) and aenc(pk(k2), s2) to Bob;

5 Using Extend and UnBind, Bob can obtain either s1 or s2, but not
both.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 14 / 33

Modelling the attacker

Predicate att

att(u, v) means that there is a reachable state in which the PCR has
value u and the attacker knows v .

Some rules:

att(xp, x) → att(xp, pk(x))

att(xp, x) ∧ att(xp, y) → att(xp, aenc(x , y))

att(xp, aenc(pk(x), y)) ∧ att(xp, x) → att(xp, y)

Initial knowledge:
att(u0, a1)

att(u0, a2)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 15 / 33

Modelling the key table

Predicate key

key(u, sk, pk, v) means that there is a reachable state in which the PCR
has value u, and the key table has an entry for the key pair (sk, pk) locked
to the PCR value v .

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 16 / 33

Modelling the key table

Predicate key

key(u, sk, pk, v) means that there is a reachable state in which the PCR
has value u, and the key table has an entry for the key pair (sk, pk) locked
to the PCR value v .

Some initial facts:

key(u0, k1, pk(k1), h(u0, a1))

key(u0, k2, pk(k2), h(u0, a2))

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 16 / 33

Modelling the key table

Predicate key

key(u, sk, pk, v) means that there is a reachable state in which the PCR
has value u, and the key table has an entry for the key pair (sk, pk) locked
to the PCR value v .

Some initial facts:

key(u0, k1, pk(k1), h(u0, a1))

key(u0, k2, pk(k2), h(u0, a2))

Remarks:

we do not allow keys to be deleted from the memory of the TPM;
−→ we allow an unbounded number of keys to be loaded

the attacker is not allowed to modify the key table (only through the
API).

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 16 / 33

Modelling the TPM commands (1/2)

CertifyKey

key(xp, xsk , xpk , xpcr) → att(xp, certkey(aik, 〈xpk , xpcr 〉))

UnBind

att(xp, aenc(xpk , xdata)) ∧ key(xp, xsk , xpk , xp) → att(xp, xdata)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 17 / 33

Modelling the TPM commands (2/2)

The TPM rule for extending and rebooting the PCR is treated in a
particular way. We have a dedicated set of inheritance rules.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 18 / 33

Modelling the TPM commands (2/2)

The TPM rule for extending and rebooting the PCR is treated in a
particular way. We have a dedicated set of inheritance rules.

Key table:

key(xp, xsk , xpk , xpcr) ∧ att(xp, xv) → key(h(xp, xv), xsk , xpk , xpcr)

key(xp, xsk , xpk , xpcr) → key(u0, xsk , xpk , xpcr) (optional)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 18 / 33

Modelling the TPM commands (2/2)

The TPM rule for extending and rebooting the PCR is treated in a
particular way. We have a dedicated set of inheritance rules.

Key table:

key(xp, xsk , xpk , xpcr) ∧ att(xp, xv) → key(h(xp, xv), xsk , xpk , xpcr)

key(xp, xsk , xpk , xpcr) → key(u0, xsk , xpk , xpcr) (optional)

Knowledge of the attacker:

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

att(xp, x) → att(u0, x)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 18 / 33

Modelling the protocol

Protocol rules:

Considering our introductory example, the role of Alice can be described by
the following two rules:

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, certkey(aik, 〈xpk , h(u0, a2)〉)) → att(xp, aenc(xpk , s2))

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 19 / 33

Modelling the protocol

Protocol rules:

Considering our introductory example, the role of Alice can be described by
the following two rules:

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, certkey(aik, 〈xpk , h(u0, a2)〉)) → att(xp, aenc(xpk , s2))

Query

Is Bob able to learn both secrets?

Q = {att(x , s1), att(x , s2)}

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 19 / 33

Outline

1 Overview of the TPM

2 Modelling using Horn clauses

3 Analysing with ProVerif

4 Case studies

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 20 / 33

The ProVerif tool (B. Blanchet)

Available on line:

http://www.proverif.ens.fr/

Input: protocols written in Horn clauses

Characteristics

unbounded number of sessions

primitives given by an equational theory

security properties: (strong) secrecy, correspondence properties,
equivalence properties

sound but not complete, termination is not guaranteed
−→ the tool works well in practice

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 21 / 33

http://www.proverif.ens.fr/

Termination problem

The termination problem seems due to the way PCR is modeled:

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

key(xp, xsk , xpk , xpcr) ∧ att(xp, xv) → key(h(xp, xv), xsk , xpk , xpcr)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 22 / 33

Termination problem

The termination problem seems due to the way PCR is modeled:

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

key(xp, xsk , xpk , xpcr) ∧ att(xp, xv) → key(h(xp, xv), xsk , xpk , xpcr)

Main idea
1 Could we bound the length of the PCR, i.e. the number of times a

PCR may be extended between two resets?

2 If the answer is ’yes’, can we compute such a bound?

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 22 / 33

Notion of k-stability

Definition k-stable

A rule R is k-stable if for any substitution θ grounding for R, for any PCR
value u = h(u1, u2) such that lengthpcr(u) > k we have that:

either (Rθ)[h(u1, u2) → u1] = R(θ[h(u1, u2) → u1]),

or (Rθ)[h(u1, u2) → u1] is a tautology.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 23 / 33

Notion of k-stability

Definition k-stable

A rule R is k-stable if for any substitution θ grounding for R, for any PCR
value u = h(u1, u2) such that lengthpcr(u) > k we have that:

either (Rθ)[h(u1, u2) → u1] = R(θ[h(u1, u2) → u1]),

or (Rθ)[h(u1, u2) → u1] is a tautology.

Examples

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 23 / 33

Notion of k-stability

Definition k-stable

A rule R is k-stable if for any substitution θ grounding for R, for any PCR
value u = h(u1, u2) such that lengthpcr(u) > k we have that:

either (Rθ)[h(u1, u2) → u1] = R(θ[h(u1, u2) → u1]),

or (Rθ)[h(u1, u2) → u1] is a tautology.

Examples

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

Proposition

Let R be a finite set of rules and Q be a query such that R and Q are
k-stable. If Q is satisfiable then there exists a k-bounded derivation
witnessing this fact.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 23 / 33

Syntactic criterion to check k-stability

Lemma

Let k ≥ 0 be an integer and R = H → C be a rule such that:

1 for all h(v1, v2) ∈ st(R), lengthpcr(v1, v2) ≤ k;

2 for all h(v1, v2) ∈ st(H), we have that v1 6∈ X ;

3 for all h(v1, v2) ∈ st(C) such that v1 ∈ X , we have that
C [h(v1, v2) → v1] ∈ H .

Then, we have that the rule R is k-stable.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 24 / 33

Syntactic criterion to check k-stability

Lemma

Let k ≥ 0 be an integer and R = H → C be a rule such that:

1 for all h(v1, v2) ∈ st(R), lengthpcr(v1, v2) ≤ k;

2 for all h(v1, v2) ∈ st(H), we have that v1 6∈ X ;

3 for all h(v1, v2) ∈ st(C) such that v1 ∈ X , we have that
C [h(v1, v2) → v1] ∈ H .

Then, we have that the rule R is k-stable.

Examples

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 24 / 33

Syntactic criterion to check k-stability

Lemma

Let k ≥ 0 be an integer and R = H → C be a rule such that:

1 for all h(v1, v2) ∈ st(R), lengthpcr(v1, v2) ≤ k;

2 for all h(v1, v2) ∈ st(H), we have that v1 6∈ X ;

3 for all h(v1, v2) ∈ st(C) such that v1 ∈ X , we have that
C [h(v1, v2) → v1] ∈ H .

Then, we have that the rule R is k-stable.

Examples

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, xv) ∧ att(xp, x) → att(h(xp, xv), x)

−→ Going back to our running example, it is sufficient to consider
1-bounded derivation when checking satisfiability of a query.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 24 / 33

Our transformation

Goal: A set of k-stable rules can be transformed into another “equivalent”
set of rules that is more suitable for analysis with ProVerif.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 25 / 33

Our transformation

Goal: A set of k-stable rules can be transformed into another “equivalent”
set of rules that is more suitable for analysis with ProVerif.

Transformation: we replace each rule R by the set of rules:

{R[x 7→ u] | x ∈ X , p(x , t1, . . . , tℓ) ∈ R, u ∈ Uk}

where Uk = { u0,

h(u0, x1),
. . . ,

h(...h(u0, x1), ..., xk)}.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 25 / 33

Our transformation

Goal: A set of k-stable rules can be transformed into another “equivalent”
set of rules that is more suitable for analysis with ProVerif.

Transformation: we replace each rule R by the set of rules:

{R[x 7→ u] | x ∈ X , p(x , t1, . . . , tℓ) ∈ R, u ∈ Uk}

where Uk = { u0,

h(u0, x1),
. . . ,

h(...h(u0, x1), ..., xk)}.

This transformation effectively bounds the PCR length of possible PCR
values that may appear as the first argument of a predicate.

Theorem

If the initial set of rules is k-stable, then the initial and transformed set of
rules are equivalent w.r.t. satisfiability of queries.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 25 / 33

Outline

1 Overview of the TPM

2 Modelling using Horn clauses

3 Analysing with ProVerif

4 Case studies

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 26 / 33

TPM commands

TPM’s commands – We consider the following commands.

Read

Quote

CreateWrapKey

LoadKey2

CertifyKey

UnBind

Seal

UnSeal

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 27 / 33

TPM commands

TPM’s commands – We consider the following commands.

Read

Quote

CreateWrapKey

LoadKey2

CertifyKey

UnBind

Seal

UnSeal

Simplifications and/or abstractions

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 27 / 33

TPM commands

TPM’s commands – We consider the following commands.

Read

Quote

CreateWrapKey

LoadKey2

CertifyKey

UnBind

Seal

UnSeal

Simplifications and/or abstractions

1 we do not consider authdata;
−→ this is equivalent to giving all the authdata to the attacker

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 27 / 33

TPM commands

TPM’s commands – We consider the following commands.

Read

Quote

CreateWrapKey

LoadKey2

CertifyKey

UnBind

Seal

UnSeal

Simplifications and/or abstractions

1 we do not consider authdata;
−→ this is equivalent to giving all the authdata to the attacker

2 the key AIK (attestation identity key) is initially and permanently
loaded in the TPM;
−→ In reality, we have to create it (MakeIdentity) and to load it
(ActivateIdentity)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 27 / 33

TPM commands

TPM’s commands – We consider the following commands.

Read

Quote

CreateWrapKey

LoadKey2

CertifyKey

UnBind

Seal

UnSeal

Simplifications and/or abstractions

1 we do not consider authdata;
−→ this is equivalent to giving all the authdata to the attacker

2 the key AIK (attestation identity key) is initially and permanently
loaded in the TPM;
−→ In reality, we have to create it (MakeIdentity) and to load it
(ActivateIdentity)

3 we only consider one PCR, instead of 24.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 27 / 33

A simplified version of the Bitlocker protocol (1/2)

Goal: protect the data that are stored on your disk.
−→ your data are encrypted using VEK, which is in turn encrypted with
VMK.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 28 / 33

A simplified version of the Bitlocker protocol (1/2)

Goal: protect the data that are stored on your disk.
−→ your data are encrypted using VEK, which is in turn encrypted with
VMK.

Description of the set-up phase:

A new key pair (sk,pk) is generated and loaded in Alice’s TPM
−→ using CreateWrapKey and LoadKey2;

VMK is encrypted under the key pk locked to h(h(u0, bios), loader)
−→ using Seal

seal(pk, vmk, tpmproof, h(h(u0, bios), loader))

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 28 / 33

A simplified version of the Bitlocker protocol (1/2)

Goal: protect the data that are stored on your disk.
−→ your data are encrypted using VEK, which is in turn encrypted with
VMK.

Description of the set-up phase:

A new key pair (sk,pk) is generated and loaded in Alice’s TPM
−→ using CreateWrapKey and LoadKey2;

VMK is encrypted under the key pk locked to h(h(u0, bios), loader)
−→ using Seal

seal(pk, vmk, tpmproof, h(h(u0, bios), loader))

Description of the retrieval phase:

a trust chain is built: Pre-BIOS → BIOS → loader

retrieve VMK using Unseal

prevent unauthorised retrievals, by extending “deny” into the PCR

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 28 / 33

Modelling - Bitlocker protocol (2/2)

Alice’s role setting up the drive encryption in a trusted state:

key(xp, xsk , pk(xsk), nil) → att(xp, seal(pk(xsk), vmk[xp], tpmproof,
h(h(u0, bios), loader)))

PCR reboot rules:

att(xp, x) → att(h(h(h(u0, bios), loader), deny), x)
att(xp, x) → att(h(h(u0, bios), loader_rogue), x)
att(xp, x) → att(h(u0, bios_rogue), x)

Results of our analysis: att(xp, vmk[x])

the rules are 3-stable

ProVerif quickly concludes that the protocol is safe (using the set of
rules obtained by applying our transformation).

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 29 / 33

Envelope protocol (1/3) [Ables & Ryan, 10]

Goal: provide some data (secret) to Bob in such a way that Bob can either
access the data or revoke his right to access the data.
−→ Now, we consider the fact that the TPM can be rebooted.

Description

1 Sealing the envelope:

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 30 / 33

Envelope protocol (1/3) [Ables & Ryan, 10]

Goal: provide some data (secret) to Bob in such a way that Bob can either
access the data or revoke his right to access the data.
−→ Now, we consider the fact that the TPM can be rebooted.

Description
1 Sealing the envelope:

Alice Bob’s TPM

create nonce n reboot TPM

encrypted session
Extend (n)

create bind key (sk, pk(sk))
locked to h(h(u0, n), obtain)

pk(sk) and certificate

aenc(pk(sk), secret)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 30 / 33

Envelope protocol (1/3) [Ables & Ryan, 10]

Goal: provide some data (secret) to Bob in such a way that Bob can either
access the data or revoke his right to access the data.
−→ Now, we consider the fact that the TPM can be rebooted.

Description

1 Sealing the envelope:

2 Opening the envelope:
−→ use Extend to extend obtain into the PCR,
−→ use UnBind to decrypt the ciphertext aenc(pk(sk), secret);

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 30 / 33

Envelope protocol (1/3) [Ables & Ryan, 10]

Goal: provide some data (secret) to Bob in such a way that Bob can either
access the data or revoke his right to access the data.
−→ Now, we consider the fact that the TPM can be rebooted.

Description

1 Sealing the envelope:

2 Opening the envelope:
−→ use Extend to extend obtain into the PCR,
−→ use UnBind to decrypt the ciphertext aenc(pk(sk), secret);

3 Returning the envelope:
−→ use Extend to extend deny into the PCR,
−→ use Quote to obtain a signature attesting that the current value
of the PCR is h(h(u0, n), deny). This certificate can be used as a
proof that Bob will never have access to secret.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 30 / 33

Envelope protocol (2/3)

Alice’s role

att(xp, x) → att(h(xp, n[xp]), x)

key(xp, xsk , xpk , xpcr) → key(h(xp, n[xp]), xsk , xpk , xpcr)

att(xp, certkey(aik, pk(sk), h(h(u0, n[y]), obtain)))
→ att(xp, aenc(pk(sk), secret[y]))

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 31 / 33

Envelope protocol (2/3)

Alice’s role

att(xp, x) → att(h(xp, n[xp]), x)

key(xp, xsk , xpk , xpcr) → key(h(xp, n[xp]), xsk , xpk , xpcr)

att(xp, certkey(aik, pk(sk), h(h(u0, n[y]), obtain)))
→ att(xp, aenc(pk(sk), secret[y]))

Query

att(xp, secret[y]), and

att(xp, certpcr(aik, h(h(u0, n[y]), deny), x)).

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 31 / 33

Envelope protocol (2/3)

Alice’s role

att(xp, x) → att(h(xp, n[xp]), x)

key(xp, xsk , xpk , xpcr) → key(h(xp, n[xp]), xsk , xpk , xpcr)

att(xp, certkey(aik, pk(sk), h(h(u0, n[y]), obtain)))
→ att(xp, aenc(pk(sk), secret[y]))

Query

att(xp, secret[y]), and

att(xp, certpcr(aik, h(h(u0, n[y]), deny), x)).

All the rules are 2-stable and ProVerif terminates on the set of rules
obtained after applying our transformation.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 31 / 33

Envelope protocol (2/3)

Alice’s role

att(xp, x) → att(h(xp, n[xp]), x)

key(xp, xsk , xpk , xpcr) → key(h(xp, n[xp]), xsk , xpk , xpcr)

att(xp, certkey(aik, pk(sk), h(h(u0, n[y]), obtain)))
→ att(xp, aenc(pk(sk), secret[y]))

Query

att(xp, secret[y]), and

att(xp, certpcr(aik, h(h(u0, n[y]), deny), x)).

All the rules are 2-stable and ProVerif terminates on the set of rules
obtained after applying our transformation.
−→ false attack due to the nonce abstraction.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 31 / 33

Envelope protocol (3/3)

−→ Add freshness by adding an additional boot parameter to the att and
key predicates.

att(xb, xp, x) → att(xb, h(xp, n[xb]), x)
...

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 32 / 33

Envelope protocol (3/3)

−→ Add freshness by adding an additional boot parameter to the att and
key predicates.

att(xb, xp, x) → att(xb, h(xp, n[xb]), x)
...

PCR reboot rules:

att(xb, xp, x) → att(b(xb, xp), u0, x)
key(xb, xp, srk, pk(srk), nil) → key(b(xb, xp), u0, srk, pk(srk), nil)
key(xb, xp, aik, pk(aik), nil) → key(b(xb, xp), u0, aik, pk(aik), nil)

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 32 / 33

Envelope protocol (3/3)

−→ Add freshness by adding an additional boot parameter to the att and
key predicates.

att(xb, xp, x) → att(xb, h(xp, n[xb]), x)
...

PCR reboot rules:

att(xb, xp, x) → att(b(xb, xp), u0, x)
key(xb, xp, srk, pk(srk), nil) → key(b(xb, xp), u0, srk, pk(srk), nil)
key(xb, xp, aik, pk(aik), nil) → key(b(xb, xp), u0, aik, pk(aik), nil)

Result of our analysis:

−→ Due to the boot parameter, ProVerif encounters termination problems.

−→ ProVerif confirms that the protocol is secure (around 30 min) for 1
reboot.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 32 / 33

Conclusion

Formal Horn clauses-based framework for modelling protocols of the TPM
that use PCRs.

Our method:

1 model everything using Horn clauses;

2 show that the set of clauses needed are k-stable, and apply our
attack-preserving transformation;

3 launch ProVerif (or another tool) on the resulting set of clauses.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 33 / 33

Conclusion

Formal Horn clauses-based framework for modelling protocols of the TPM
that use PCRs.

Our method:

1 model everything using Horn clauses;

2 show that the set of clauses needed are k-stable, and apply our
attack-preserving transformation;

3 launch ProVerif (or another tool) on the resulting set of clauses.

Case studies:

1 A simplified version of the Microsoft Bitlocker protocol
−→ rules are 3-stable, ProVerif quickly conludes on the resulting set of rules, the

VMK remains secret for unbounded reboots and PCR extends

2 The envelope protocol [Ables & Ryan, 10]
−→ add freshness through the boot parameter to avoid a false attack, rules are

2-stable, ProVerif concludes for one reboot.

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 33 / 33

	Overview of the TPM
	Modelling using Horn clauses
	Analysing with ProVerif
	Case studies

