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TPM - What is it?

Trusted Platform Module

Hardware chip designed to enable commodity
computers to achieve greater levels of security
than is possible in software alone.
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TPM - What is it?

Trusted Platform Module

Hardware chip designed to enable commodity
computers to achieve greater levels of security
than is possible in software alone.

more than 200 millions currently in existence (mostly in laptops)
−→ already used by some applications (e.g. Disk encryption)

specified by the Trusted Computing Group
−→ more than 700 pages of specification

http://www.trustedcomputinggroup.org
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TPM functionality

Secure storage:

TPM stores keys and other sensitive data in its shielded memory

A user can store content that is encrypted by keys only available to
the TPM.
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Each TPM chip has a unique and secret key

A platform can obtain keys by which it can authenticate itself reliably.
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TPM functionality

Secure storage:

TPM stores keys and other sensitive data in its shielded memory

A user can store content that is encrypted by keys only available to
the TPM.

Platform authentication:

Each TPM chip has a unique and secret key

A platform can obtain keys by which it can authenticate itself reliably.

Platform measurement and reporting:

TPM contains some internal memory slots called PCRs, and some
keys can be locked to a particular PCR value

PCR values can be modified using some specific command (e.g.

command Extend).
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TPM - How is it used?

Application programming interface:

create new keys (e.g. CreateWrapKey), and load them into the device
(e.g. LoadKey2);

manipulate these keys, and the PCRs
−→ e.g. UnBind allows one to decrypt a ciphertext using a key that is
stored into the TPM and locked to the current PCR value
−→ e.g. Quote allows one to obtain a certificate attesting that a key
is locked to a particular PCR value
−→ e.g. Extend allows one to extend the current value of a PCR with
some data x , i.e. p := SHA1(p||x).
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TPM - How is it used?

Application programming interface:

create new keys (e.g. CreateWrapKey), and load them into the device
(e.g. LoadKey2);

manipulate these keys, and the PCRs
−→ e.g. UnBind allows one to decrypt a ciphertext using a key that is
stored into the TPM and locked to the current PCR value
−→ e.g. Quote allows one to obtain a certificate attesting that a key
is locked to a particular PCR value
−→ e.g. Extend allows one to extend the current value of a PCR with
some data x , i.e. p := SHA1(p||x).

The TPM provides a root of trust for a variety of protocols: e.g.

Microsoft’s hard drive encryption system “BitLocker”, Direct Anonymous
Attestation protocol, . . .
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Related Work

Several attempts to formally analyse the TPM itself

using a theorem prover [Lin, 2005];

using ProVerif [Delaune et al., 2010]; or

in some specific models (with no tool support), e.g. [Gürgens et al.,
2007, Coker et al., 2010]
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in some specific models (with no tool support), e.g. [Gürgens et al.,
2007, Coker et al., 2010]

−→ These results do not consider TPM state registers.

Modelling state is challenging [Herzog, 2006]

extension of the strand space model to analyse optimistic fair
exchange protocol [Guttman, 2011]

extension of ProVerif to take global state into account [Modersheim,
2010, Arapinis et al., 2011]
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in some specific models (with no tool support), e.g. [Gürgens et al.,
2007, Coker et al., 2010]

−→ These results do not consider TPM state registers.

Modelling state is challenging [Herzog, 2006]

extension of the strand space model to analyse optimistic fair
exchange protocol [Guttman, 2011]

extension of ProVerif to take global state into account [Modersheim,
2010, Arapinis et al., 2011]

−→ These results are not suitable to analyse protocols based on TPM
state registers.
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Our contributions

Formal analysis of protocols based on TPM registers using an
automatic tool
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Our contributions

Formal analysis of protocols based on TPM registers using an
automatic tool

Our approach:
we use Horn clauses and rely on the ProVerif tool;

we solve non-termination issues by providing a transformation that is
sound and complete for the class of k-stable clauses; and

we provide a syntactic criterion to conclude to k-stability.
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Our contributions

Formal analysis of protocols based on TPM registers using an
automatic tool

Our approach:
we use Horn clauses and rely on the ProVerif tool;

we solve non-termination issues by providing a transformation that is
sound and complete for the class of k-stable clauses; and

we provide a syntactic criterion to conclude to k-stability.

Some case studies:

a simplified version of the Micosoft BitLocker protocol

a secure envelope protocol [Ables & Ryan, 2010]

−→ both protocols crucially rely on the use of PCR
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Outline

1 Overview of the TPM

2 Modelling using Horn clauses

3 Analysing with ProVerif

4 Case studies
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TPM key hierarchy

Cryptographic key

Keys are arranged in a tree structure and stored in the TPM memory
−→ Storage Root Key created by a special command

Authdata, PCR

In particular, to each TPM key is associated an authdata value and also
some PCR values

authdata is a password shared between the user process and the TPM

PCR values constrain the state of the TPM. The TPM will use the
key only if certain PCRs currently have certain values.
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CertifyKey command

Goal: allow a user to obtain a certificate on a key that is stored in the
device.
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CertifyKey command

Goal: allow a user to obtain a certificate on a key that is stored in the
device.

Description:

USER TPM
current pcr value: pcr

key table:

kh1 → [auth1, sk1, pk1, pcr1]
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CertifyKey command

Goal: allow a user to obtain a certificate on a key that is stored in the
device.

Description:

USER TPM
current pcr value: pcr

key table:

kh1 → [auth1, sk1, pk1, pcr1]
CertifyKey, kh1

certkey(aik, 〈pk1, pcr1〉)
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UnBind command

Goal: allow a user to retrieve the content of an encryption provided that
the decryption key is stored in the key table of the TPM.
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UnBind command

Goal: allow a user to retrieve the content of an encryption provided that
the decryption key is stored in the key table of the TPM.

Description:

USER TPM
current pcr value: pcr1

key table:

kh1 → [auth1, sk1, pk1, pcr1]
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UnBind command

Goal: allow a user to retrieve the content of an encryption provided that
the decryption key is stored in the key table of the TPM.

Description:

USER TPM
current pcr value: pcr1

key table:

kh1 → [auth1, sk1, pk1, pcr1]
UnBind, aenc(pk1, data), kh1

data
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Extend command

Goal: allow a user to update the value stored in one of the platform
configuration register (PCR).

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 12 / 33



Extend command

Goal: allow a user to update the value stored in one of the platform
configuration register (PCR).

Description:

USER TPM
current pcr value: pcr
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Extend command

Goal: allow a user to update the value stored in one of the platform
configuration register (PCR).

Description:

USER TPM
current pcr value: pcr

Extend, n

current pcr value:

h(〈pcr, n〉)
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An introductory example

Goal: Alice has two secrets s1 and s2. First, she interacts with Bob, and
then Bob can learn one of the secrets (he chooses) but not both.
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An introductory example

Goal: Alice has two secrets s1 and s2. First, she interacts with Bob, and
then Bob can learn one of the secrets (he chooses) but not both.

Description:

1 create and load a key pair (k1, pk(k1)) locked to h(u0, a1) in Bob’s
TPM;

2 create and load a key pair (k2, pk(k2)) locked to h(u0, a2) in Bob’s
TPM;

−→ For sake of simplicity, we assume that the keys are already in Bob’s TPM.
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then Bob can learn one of the secrets (he chooses) but not both.

Description:

1 create and load a key pair (k1, pk(k1)) locked to h(u0, a1) in Bob’s
TPM;

2 create and load a key pair (k2, pk(k2)) locked to h(u0, a2) in Bob’s
TPM;

−→ For sake of simplicity, we assume that the keys are already in Bob’s TPM.

3 Bob provides some certificates to Alice (using CertifyKey);

4 Alice sends aenc(pk(k1), s1) and aenc(pk(k2), s2) to Bob;
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An introductory example

Goal: Alice has two secrets s1 and s2. First, she interacts with Bob, and
then Bob can learn one of the secrets (he chooses) but not both.

Description:

1 create and load a key pair (k1, pk(k1)) locked to h(u0, a1) in Bob’s
TPM;

2 create and load a key pair (k2, pk(k2)) locked to h(u0, a2) in Bob’s
TPM;

−→ For sake of simplicity, we assume that the keys are already in Bob’s TPM.

3 Bob provides some certificates to Alice (using CertifyKey);

4 Alice sends aenc(pk(k1), s1) and aenc(pk(k2), s2) to Bob;

5 Using Extend and UnBind, Bob can obtain either s1 or s2, but not
both.
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Modelling the attacker

Predicate att

att(u, v) means that there is a reachable state in which the PCR has
value u and the attacker knows v .

Some rules:

att(xp, x) → att(xp, pk(x))

att(xp, x) ∧ att(xp, y) → att(xp, aenc(x , y))

att(xp, aenc(pk(x), y)) ∧ att(xp, x) → att(xp, y)

Initial knowledge:
att(u0, a1)

att(u0, a2)
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Modelling the key table

Predicate key

key(u, sk, pk, v) means that there is a reachable state in which the PCR
has value u, and the key table has an entry for the key pair (sk, pk) locked
to the PCR value v .

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 16 / 33



Modelling the key table

Predicate key

key(u, sk, pk, v) means that there is a reachable state in which the PCR
has value u, and the key table has an entry for the key pair (sk, pk) locked
to the PCR value v .

Some initial facts:

key(u0, k1, pk(k1), h(u0, a1))

key(u0, k2, pk(k2), h(u0, a2))
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Modelling the key table

Predicate key

key(u, sk, pk, v) means that there is a reachable state in which the PCR
has value u, and the key table has an entry for the key pair (sk, pk) locked
to the PCR value v .

Some initial facts:

key(u0, k1, pk(k1), h(u0, a1))

key(u0, k2, pk(k2), h(u0, a2))

Remarks:

we do not allow keys to be deleted from the memory of the TPM;
−→ we allow an unbounded number of keys to be loaded

the attacker is not allowed to modify the key table (only through the
API).

S. Delaune (LSV) Formal analysis of protocols based on TPM 9/06/2010 16 / 33



Modelling the TPM commands (1/2)

CertifyKey

key(xp, xsk , xpk , xpcr ) → att(xp, certkey(aik, 〈xpk , xpcr 〉))

UnBind

att(xp, aenc(xpk , xdata)) ∧ key(xp, xsk , xpk , xp) → att(xp, xdata)
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Modelling the TPM commands (2/2)

The TPM rule for extending and rebooting the PCR is treated in a
particular way. We have a dedicated set of inheritance rules.
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Modelling the TPM commands (2/2)

The TPM rule for extending and rebooting the PCR is treated in a
particular way. We have a dedicated set of inheritance rules.

Key table:

key(xp, xsk , xpk , xpcr ) ∧ att(xp, xv ) → key(h(xp, xv ), xsk , xpk , xpcr )

key(xp, xsk , xpk , xpcr ) → key(u0, xsk , xpk , xpcr ) (optional)
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Modelling the TPM commands (2/2)

The TPM rule for extending and rebooting the PCR is treated in a
particular way. We have a dedicated set of inheritance rules.

Key table:

key(xp, xsk , xpk , xpcr ) ∧ att(xp, xv ) → key(h(xp, xv ), xsk , xpk , xpcr )

key(xp, xsk , xpk , xpcr ) → key(u0, xsk , xpk , xpcr ) (optional)

Knowledge of the attacker:

att(xp, xv ) ∧ att(xp, x) → att(h(xp, xv ), x)

att(xp, x) → att(u0, x)
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Modelling the protocol

Protocol rules:

Considering our introductory example, the role of Alice can be described by
the following two rules:

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, certkey(aik, 〈xpk , h(u0, a2)〉)) → att(xp, aenc(xpk , s2))
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Modelling the protocol

Protocol rules:

Considering our introductory example, the role of Alice can be described by
the following two rules:

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, certkey(aik, 〈xpk , h(u0, a2)〉)) → att(xp, aenc(xpk , s2))

Query

Is Bob able to learn both secrets?

Q = {att(x , s1), att(x , s2)}
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Outline

1 Overview of the TPM

2 Modelling using Horn clauses

3 Analysing with ProVerif

4 Case studies
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The ProVerif tool (B. Blanchet)

Available on line:

http://www.proverif.ens.fr/

Input: protocols written in Horn clauses

Characteristics

unbounded number of sessions

primitives given by an equational theory

security properties: (strong) secrecy, correspondence properties,
equivalence properties

sound but not complete, termination is not guaranteed
−→ the tool works well in practice
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Termination problem

The termination problem seems due to the way PCR is modeled:

att(xp, xv ) ∧ att(xp, x) → att(h(xp, xv ), x)

key(xp, xsk , xpk , xpcr ) ∧ att(xp, xv ) → key(h(xp, xv ), xsk , xpk , xpcr )
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Termination problem

The termination problem seems due to the way PCR is modeled:

att(xp, xv ) ∧ att(xp, x) → att(h(xp, xv ), x)

key(xp, xsk , xpk , xpcr ) ∧ att(xp, xv ) → key(h(xp, xv ), xsk , xpk , xpcr )

Main idea
1 Could we bound the length of the PCR, i.e. the number of times a

PCR may be extended between two resets?

2 If the answer is ’yes’, can we compute such a bound?
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Notion of k-stability

Definition k-stable

A rule R is k-stable if for any substitution θ grounding for R, for any PCR
value u = h(u1, u2) such that lengthpcr(u) > k we have that:

either (Rθ)[h(u1, u2) → u1] = R(θ[h(u1, u2) → u1]),

or (Rθ)[h(u1, u2) → u1] is a tautology.
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Examples
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Notion of k-stability

Definition k-stable

A rule R is k-stable if for any substitution θ grounding for R, for any PCR
value u = h(u1, u2) such that lengthpcr(u) > k we have that:

either (Rθ)[h(u1, u2) → u1] = R(θ[h(u1, u2) → u1]),

or (Rθ)[h(u1, u2) → u1] is a tautology.

Examples

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, xv ) ∧ att(xp, x) → att(h(xp, xv ), x)

Proposition

Let R be a finite set of rules and Q be a query such that R and Q are
k-stable. If Q is satisfiable then there exists a k-bounded derivation
witnessing this fact.
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Syntactic criterion to check k-stability

Lemma

Let k ≥ 0 be an integer and R = H → C be a rule such that:

1 for all h(v1, v2) ∈ st(R), lengthpcr(v1, v2) ≤ k;

2 for all h(v1, v2) ∈ st(H), we have that v1 6∈ X ;

3 for all h(v1, v2) ∈ st(C) such that v1 ∈ X , we have that
C [h(v1, v2) → v1] ∈ H .

Then, we have that the rule R is k-stable.
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Syntactic criterion to check k-stability

Lemma

Let k ≥ 0 be an integer and R = H → C be a rule such that:

1 for all h(v1, v2) ∈ st(R), lengthpcr(v1, v2) ≤ k;

2 for all h(v1, v2) ∈ st(H), we have that v1 6∈ X ;

3 for all h(v1, v2) ∈ st(C) such that v1 ∈ X , we have that
C [h(v1, v2) → v1] ∈ H .

Then, we have that the rule R is k-stable.

Examples

att(xp, certkey(aik, 〈xpk , h(u0, a1)〉)) → att(xp, aenc(xpk , s1))

att(xp, xv ) ∧ att(xp, x) → att(h(xp, xv ), x)

−→ Going back to our running example, it is sufficient to consider
1-bounded derivation when checking satisfiability of a query.
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Our transformation

Goal: A set of k-stable rules can be transformed into another “equivalent”
set of rules that is more suitable for analysis with ProVerif.
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Our transformation

Goal: A set of k-stable rules can be transformed into another “equivalent”
set of rules that is more suitable for analysis with ProVerif.

Transformation: we replace each rule R by the set of rules:

{R[x 7→ u] | x ∈ X , p(x , t1, . . . , tℓ) ∈ R, u ∈ Uk}

where Uk = { u0,

h(u0, x1),
. . . ,

h(...h(u0, x1), ..., xk)}.
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Our transformation

Goal: A set of k-stable rules can be transformed into another “equivalent”
set of rules that is more suitable for analysis with ProVerif.

Transformation: we replace each rule R by the set of rules:

{R[x 7→ u] | x ∈ X , p(x , t1, . . . , tℓ) ∈ R, u ∈ Uk}

where Uk = { u0,

h(u0, x1),
. . . ,

h(...h(u0, x1), ..., xk)}.

This transformation effectively bounds the PCR length of possible PCR
values that may appear as the first argument of a predicate.

Theorem

If the initial set of rules is k-stable, then the initial and transformed set of
rules are equivalent w.r.t. satisfiability of queries.
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TPM commands

TPM’s commands – We consider the following commands.

Read

Quote

CreateWrapKey

LoadKey2

CertifyKey

UnBind

Seal

UnSeal
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Simplifications and/or abstractions

1 we do not consider authdata;
−→ this is equivalent to giving all the authdata to the attacker

2 the key AIK (attestation identity key) is initially and permanently
loaded in the TPM;
−→ In reality, we have to create it (MakeIdentity) and to load it
(ActivateIdentity)
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TPM’s commands – We consider the following commands.
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Quote

CreateWrapKey

LoadKey2

CertifyKey

UnBind

Seal

UnSeal

Simplifications and/or abstractions

1 we do not consider authdata;
−→ this is equivalent to giving all the authdata to the attacker

2 the key AIK (attestation identity key) is initially and permanently
loaded in the TPM;
−→ In reality, we have to create it (MakeIdentity) and to load it
(ActivateIdentity)

3 we only consider one PCR, instead of 24.
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A simplified version of the Bitlocker protocol (1/2)

Goal: protect the data that are stored on your disk.
−→ your data are encrypted using VEK, which is in turn encrypted with
VMK.
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A simplified version of the Bitlocker protocol (1/2)

Goal: protect the data that are stored on your disk.
−→ your data are encrypted using VEK, which is in turn encrypted with
VMK.

Description of the set-up phase:

A new key pair (sk,pk) is generated and loaded in Alice’s TPM
−→ using CreateWrapKey and LoadKey2;

VMK is encrypted under the key pk locked to h(h(u0, bios), loader)
−→ using Seal

seal(pk, vmk, tpmproof, h(h(u0, bios), loader))
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A simplified version of the Bitlocker protocol (1/2)

Goal: protect the data that are stored on your disk.
−→ your data are encrypted using VEK, which is in turn encrypted with
VMK.

Description of the set-up phase:

A new key pair (sk,pk) is generated and loaded in Alice’s TPM
−→ using CreateWrapKey and LoadKey2;

VMK is encrypted under the key pk locked to h(h(u0, bios), loader)
−→ using Seal

seal(pk, vmk, tpmproof, h(h(u0, bios), loader))

Description of the retrieval phase:

a trust chain is built: Pre-BIOS → BIOS → loader

retrieve VMK using Unseal

prevent unauthorised retrievals, by extending “deny” into the PCR
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Modelling - Bitlocker protocol (2/2)

Alice’s role setting up the drive encryption in a trusted state:

key(xp, xsk , pk(xsk), nil) → att(xp, seal(pk(xsk), vmk[xp], tpmproof,
h(h(u0, bios), loader)))

PCR reboot rules:

att(xp, x) → att(h(h(h(u0, bios), loader), deny), x)
att(xp, x) → att(h(h(u0, bios), loader_rogue), x)
att(xp, x) → att(h(u0, bios_rogue), x)

Results of our analysis: att(xp, vmk[x ])

the rules are 3-stable

ProVerif quickly concludes that the protocol is safe (using the set of
rules obtained by applying our transformation).
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Envelope protocol (1/3) [Ables & Ryan, 10]

Goal: provide some data (secret) to Bob in such a way that Bob can either
access the data or revoke his right to access the data.
−→ Now, we consider the fact that the TPM can be rebooted.

Description

1 Sealing the envelope:
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Goal: provide some data (secret) to Bob in such a way that Bob can either
access the data or revoke his right to access the data.
−→ Now, we consider the fact that the TPM can be rebooted.

Description
1 Sealing the envelope:

Alice Bob’s TPM

create nonce n reboot TPM

encrypted session
Extend (n)

create bind key (sk, pk(sk))
locked to h(h(u0, n), obtain)

pk(sk) and certificate

aenc(pk(sk), secret)
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Envelope protocol (1/3) [Ables & Ryan, 10]

Goal: provide some data (secret) to Bob in such a way that Bob can either
access the data or revoke his right to access the data.
−→ Now, we consider the fact that the TPM can be rebooted.

Description

1 Sealing the envelope:

2 Opening the envelope:
−→ use Extend to extend obtain into the PCR,
−→ use UnBind to decrypt the ciphertext aenc(pk(sk), secret);
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Goal: provide some data (secret) to Bob in such a way that Bob can either
access the data or revoke his right to access the data.
−→ Now, we consider the fact that the TPM can be rebooted.

Description

1 Sealing the envelope:

2 Opening the envelope:
−→ use Extend to extend obtain into the PCR,
−→ use UnBind to decrypt the ciphertext aenc(pk(sk), secret);

3 Returning the envelope:
−→ use Extend to extend deny into the PCR,
−→ use Quote to obtain a signature attesting that the current value
of the PCR is h(h(u0, n), deny). This certificate can be used as a
proof that Bob will never have access to secret.
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Envelope protocol (2/3)

Alice’s role

att(xp, x) → att(h(xp, n[xp]), x)

key(xp, xsk , xpk , xpcr ) → key(h(xp, n[xp]), xsk , xpk , xpcr )

att(xp, certkey(aik, pk(sk), h(h(u0, n[y ]), obtain)))
→ att(xp, aenc(pk(sk), secret[y ]))
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Query

att(xp, secret[y ]), and

att(xp, certpcr(aik, h(h(u0, n[y ]), deny), x)).
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att(xp, secret[y ]), and
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All the rules are 2-stable and ProVerif terminates on the set of rules
obtained after applying our transformation.
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Envelope protocol (2/3)

Alice’s role

att(xp, x) → att(h(xp, n[xp]), x)

key(xp, xsk , xpk , xpcr ) → key(h(xp, n[xp]), xsk , xpk , xpcr )

att(xp, certkey(aik, pk(sk), h(h(u0, n[y ]), obtain)))
→ att(xp, aenc(pk(sk), secret[y ]))

Query

att(xp, secret[y ]), and

att(xp, certpcr(aik, h(h(u0, n[y ]), deny), x)).

All the rules are 2-stable and ProVerif terminates on the set of rules
obtained after applying our transformation.
−→ false attack due to the nonce abstraction.
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Envelope protocol (3/3)

−→ Add freshness by adding an additional boot parameter to the att and
key predicates.

att(xb, xp, x) → att(xb, h(xp, n[xb]), x)
...
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Envelope protocol (3/3)

−→ Add freshness by adding an additional boot parameter to the att and
key predicates.

att(xb, xp, x) → att(xb, h(xp, n[xb]), x)
...

PCR reboot rules:

att(xb, xp, x) → att(b(xb, xp), u0, x)
key(xb, xp, srk, pk(srk), nil) → key(b(xb, xp), u0, srk, pk(srk), nil)
key(xb, xp, aik, pk(aik), nil) → key(b(xb, xp), u0, aik, pk(aik), nil)
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Envelope protocol (3/3)

−→ Add freshness by adding an additional boot parameter to the att and
key predicates.

att(xb, xp, x) → att(xb, h(xp, n[xb]), x)
...

PCR reboot rules:

att(xb, xp, x) → att(b(xb, xp), u0, x)
key(xb, xp, srk, pk(srk), nil) → key(b(xb, xp), u0, srk, pk(srk), nil)
key(xb, xp, aik, pk(aik), nil) → key(b(xb, xp), u0, aik, pk(aik), nil)

Result of our analysis:

−→ Due to the boot parameter, ProVerif encounters termination problems.

−→ ProVerif confirms that the protocol is secure (around 30 min) for 1
reboot.
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Conclusion

Formal Horn clauses-based framework for modelling protocols of the TPM
that use PCRs.

Our method:

1 model everything using Horn clauses;

2 show that the set of clauses needed are k-stable, and apply our
attack-preserving transformation;

3 launch ProVerif (or another tool) on the resulting set of clauses.
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Conclusion

Formal Horn clauses-based framework for modelling protocols of the TPM
that use PCRs.

Our method:

1 model everything using Horn clauses;

2 show that the set of clauses needed are k-stable, and apply our
attack-preserving transformation;

3 launch ProVerif (or another tool) on the resulting set of clauses.

Case studies:

1 A simplified version of the Microsoft Bitlocker protocol
−→ rules are 3-stable, ProVerif quickly conludes on the resulting set of rules, the

VMK remains secret for unbounded reboots and PCR extends

2 The envelope protocol [Ables & Ryan, 10]
−→ add freshness through the boot parameter to avoid a false attack, rules are

2-stable, ProVerif concludes for one reboot.
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