Trace equivalence via constraint solving

Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune

LSV, CNRS & ENS Cachan & INRIA Saclay fle-de-France, France

Dagstuhl - August 2011

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



Cryptographic protocols

Cryptographic protocols

@ small programs designed to secure
communication (e.g. secrecy,
authentication, anonymity, ... )

Paypal @ use cryptographic primitives (e.g.

encryption, signature, ...... )

The network is unsecure!

Communications take place over a public network like the Internet.

S. Delaune (LSV)

Trace equivalence via constraint solving August 2011 2/25



Cryptographic protocols

Cryptographic protocols

@ small programs designed to secure
communication (e.g. secrecy,
authentication, anonymity, ... )

| Paypal @ use cryptographic primitives (e.g.

encryption, signature, ...... )

S. Delaune (LSV)

Trace equivalence via constraint solving August 2011 2/25



Cryptographic protocols

Cryptographic protocols

@ small programs designed to secure
communication (e.g. secrecy,
authentication, anonymity, ... )

| Paypal @ use cryptographic primitives (e.g.

encryption, signature, ...... )

It becomes more and more important to protect our privacy.

S. Delaune (LSV)

Trace equivalence via constraint solving August 2011 2/25



Example: electronic passport

— studied in [Arapinis, Chothia, Ritter & Ryan,10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

@ the information printed on your passport,

@ a JPEG copy of your picture.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 3/25



Example: electronic passport

— studied in [Arapinis, Chothia, Ritter & Ryan,10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

@ the information printed on your passport,

@ a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol
that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a
service or resource without others being able to link these uses together.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 3/25



The electronic passport protocol

Passport Reader
(KE7 KM) (KE: KIVI)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 /25



The electronic passport protocol

Passport Reader
(KE7 KM) (KE: KIVI)

get_challenge

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 /25



The electronic passport protocol

Passport Reader
(KE7 KM) (KE: KIVI)

get_challenge
Np, Kp

Np

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 /25



The electronic passport protocol

Passport Reader
(KE7 KM) (KE: KIVI)

get_challenge
Np, Kp

Np

{NRr,Np, Kr}kg, MACk, ({Nr,Np, Kr}kg)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 /25



The electronic passport protocol

Passport Reader
(KE7 KM) (KE: KIVI)

get_challenge
Np, Kp

Np

{NRr,Np, Kr}kg, MACk, ({Nr,Np, Kr}kg)

{Np, Ng, Kp}tkg, MACk,, ({Np, Nr, Kp}tk,)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 /25



The electronic passport protocol

Passport Reader
(KE, K/\/l) (KE7 KM)

get_challenge
Np, Kp

Np

{Nr, Np, Kr} kg, MACk, ({Nr,Np, Kr}kg)

{Np, Nr, Kp}kg, MACk,({Np, Nr, Kp}kg)

Kseed = Kp @& Kr Kseed = Kp & Kg

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 /25



Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q"

— unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 5/25



Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q"

— unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

v

Example: E-passport protocol (unlinkability)

?

P | P |'Reader ~ P | P' |!Reader

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q"

— unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

v

Example: E-passport protocol (unlinkability)
?
P | P |'Reader ~ P | P' |!Reader
What is the attacker able to distinguish?

@ new k; out({0}x) ~ new k;out({1}4)

— We assume a Dolev-Yao attacker and perfect cryptography

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q"

— unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

v

Example: E-passport protocol (unlinkability)
?
P | P |'Reader ~ P | P' |!Reader

What is the attacker able to distinguish?

@ if ¢ then P else Q =~ if —¢ then Q else P

—— He can not observe the result of a test

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q"

— unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

v

Example: E-passport protocol (unlinkability)
?
P | P |'Reader ~ P | P' |!Reader
What is the attacker able to distinguish?

@ out(a); (out(b) + out(c)) ~ out(a); out(b) + out(b); out(c)

— We consider trace equivalence (also called may-testing)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



French electronic passport

— the passport must reply to all received messages.

Passport Reader
(KE7KM) (KEvKM)

get_challenge
Np, Kp

Np

{NRr, Np, Kr}kg» MACk, ({Ngr, Np, Kr} k)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



French electronic passpo

— the passport must reply to all received messages.

Passport
(Ke,Km)

get_challenge

Reader
(Ke,Km)

Np

{NRr, Np, Kr}kg» MACk, ({Ngr, Np, Kr} k)

< If MAC check fails >

mac_error

S. Delaune (LSV)

Trace equivalence via constraint solving

August 2011 6 /25



French electronic passport

— the passport must reply to all received messages.

Passport
(Ke,Km)

get_challenge

Reader
(Ke,Km)

Np

{NRr, Np, Kr}kg» MACk, ({Ngr, Np, Kr} k)

If MAC check
succeeds

If nonce check fails

nonce_error

S. Delaune (LSV)

Trace equivalence via constraint solving

August 2011

6/25



An attack on the French passport [Chothia & Smirnov, 10]

Attack against unlinkability

An attacker can track a French passport, provided he has eavesdropped a
successful authentication.

S. Delaune (LSV)

Trace equivalence via constraint solving August 2011 7/25



An attack on the French passport [Chothia & Smirnov, 10]

Attack against unlinkability

An attacker can track a French passport, provided he has eavesdropped a
successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport
and records message M.

Alice's Passport Reader
(KE7KI\/I) (KEvKM)

get_challenge
Np, Kp

Np

Ng; Kr
M = {Ng, Np, Kr} kg, MACk, ({Ngr, Np, Kr}kg)

S. Delaune (LSV)

Trace equivalence via constraint solving August 2011



An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

?7?7?'s Passport Attacker
(Kg:Ki)

get_challenge

M = {Ng,Np, Kr} kg, MACk, ({Ngr, Np, Kr}kg)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 7/25



An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

?7?7?'s Passport Attacker
(Ke:Kip)

get_challenge

M = {Ng,Np, Kr} kg, MACk, ({Ngr, Np, Kr}kg)

mac_error

= MAC check failed = Ky, # Ky == 77?7 is not Alice

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 7/25



An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

?7?7?'s Passport Attacker
(Ke:Kip)

get_challenge

M = {Ng,Np, Kr} kg, MACk, ({Ngr, Np, Kr}kg)

nonce_error

=> MAC check succeeded = K}, =Ky = 7777 is Alice

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 7/25



State of the art in a nutshell

for analysing equivalence-based security properties

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 8/25



State of the art in a nutshell

for analysing equivalence-based security properties

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

— this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 8/25



State of the art in a nutshell

for analysing equivalence-based security properties

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

— this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

Unbounded number of sessions [Blanchet, Abadi & Fournet, 05]

ProVerif tool  [Blanchet, 01] http://www.proverif.ens.fr/

@ + unbounded number of sessions; various cryptographic primitives;

@ — termination is not guaranteed; diff-equivalence (too strong)

— ProSwapper extension [Smyth, 10]

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 8/25


http://www.proverif.ens.fr/

State of the art in a nutshell

for analysing equivalence-based security properties

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

— this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

Unbounded number of sessions [Blanchet, Abadi & Fournet, 05]

ProVerif tool  [Blanchet, 01] http://www.proverif.ens.fr/

@ + unbounded number of sessions; various cryptographic primitives;

@ — termination is not guaranteed; diff-equivalence (too strong)

— ProSwapper extension [Smyth, 10]

— None of these results is able to analyse the e-passport protocol.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 8/25


http://www.proverif.ens.fr/

A procedure for deciding trace equivalence for a large class of processes.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 9/25



A procedure for deciding trace equivalence for a large class of processes.

Our class of processes:

@ + non-trivial else branches, private channels, and non-deterministic
choice;

@ — but no replication, and a fixed set of cryptographic primitives
(signature, encryption, hash function, mac).

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 9/25



Our contribution
A procedure for deciding trace equivalence for a large class of processes. l

Our class of processes:

@ + non-trivial else branches, private channels, and non-deterministic
choice;

@ — but no replication, and a fixed set of cryptographic primitives
(signature, encryption, hash function, mac).

Some applications:
@ unlinkability in RFID protocols (e.g. e-passport protocol);

@ anonymity/privacy (e.g. private authentication protocols [Abadi &
Fournet, 04]).

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 9/25



Outline

@ Introduction

9 From trace equivalence to symbolic equivalence

© Deciding symbolic equivalence using constraint solving techniques

@ Conclusion

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 10 / 25



Outline

9 From trace equivalence to symbolic equivalence

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 11 /25



From processes to constraint systems

Passport P - (Ke, Ku)

in(= get__challenge); new Np; new Kp;
in((ze, zm));
if zy = MACKM(ZE)
then let (xg, Xp, yr) = dec(zg, Kg) in
if Np = X,/;
thenlet m = {(Np, xg, Kp)} k. in
out((m, MACk,,(m)))
else out(nonce_error)
else out(mac_error)

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

in(= get__challenge); new Np; new Kp;
in((ze, zm));
if zy = MACKM(ZE)
then let (xg, Xp, yr) = dec(zg, Kg) in
if Np = X,/;,
thenlet m = {(Np, xg, Kp)} k. in o = Ty
out((m, MAC,,(m)))
else out(nonce_error)
else out(mac_error)

?
To F get__challenge

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

in(= get__challenge); new Np; new Kp;
in((ze, zm)); _
if zy = MACy, () To = (ze,2m)
then let (xg, Xp, yr) = dec(zg, Kg) in
if Np = X,/;,
thenlet m = {(Np, xg, Kp)} k. in o = Ty
out((m, MAC,,(m)))
else out(nonce_error)
else out(mac_error)

?
To F get__challenge
?

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

in(= get__challenge); new Np; new Kp; To |i get__challenge
et

in((ze, zm)); :
if zy = MACk,, (zE) To = (ze, zm)
then let (xg, xp, yr) = dec(zg, Kg) in ?
<5 NP _ XF,/; 4V 7& MACKM(ZE)

thenlet m = {(Np, xg, Kp)} k. in ® = To;
out((m, MAC,,(m)))
else out(nonce_error)
else out(mac_error)

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

in(= get__challenge); new Np; new Kp; To |i get__challenge
et

in((ze, zm)); :
if zy = MACk,, (zE) To = (ze, zm)
then let (xg, xp, yr) = dec(zg, Kg) in ?
<5 NP _ XF,/; 4V 7& MACKM(ZE)

thenlet m = {(Np, xg, Kp)} k. in & = Ty; mac_error
out((m, MACiq, (m)))
else out(nonce_error)
else out(mac_error)

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

in(= get__challenge); new Np; new Kp; To |i get__challenge
et

in((ze, zm)); :
if zy = MACk,, (zE) To = (ze, zm)
then let (xg, xp, yr) = dec(zg, Kg) in ?
<5 NP _ XF,/; 4V 7& MACKM(ZE)

thenlet m = {(Np, xg, Kp)} k. in & = Ty; mac_error
out((m, MACiq, (m)))
else out(nonce_error)
else out(mac_error)

— Cmac

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Crmaci

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

?
in(= get__challenge); new Np; new Kp; To - get_challenge

in((zg, zm));
if zy = MACKM(ZE)
then let (xg, Xp, yr) = dec(zg, Kg) in

if Np = X,/;,
thenlet m = {(Np, xg, Kp)} k. in
out({m, MACi, (m))) =T

else out(nonce_error)
else out(mac_error)

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Crmaci

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

?
in(= get_challenge); new Np;new Kp; Tol g7€ t_challenge

in(<ZE,ZM>); To = <ZE’ZM>
if zy = MACKM(ZE)
then let (xg, Xp, yr) = dec(zg, Kg) in

if Np = X,/;,
thenlet m = {(Np, xg, Kp)} k. in
out({m, MACi, (m))) =T

else out(nonce_error)
else out(mac_error)

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Crmaci

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

?
in(= get_challenge); new Np;new Kp; Tol g7€ t_challenge

in((ze, zm)); To & (ze, zm)
if zy = MACKM(ZE) ZMm ~ MACKM(ZE)
then let (xg, Xp, yr) = dec(zg, Kg) in (xR, Xb, yg) = dec(ze, Kg)
if Np = X,/;, ?
thenlet m = {(Np, xg, Kp)} k. in Np # xp
out({m, MACic, (m))) =T

else out(nonce_error)
else out(mac_error)

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Crmaci

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

?
in(= get_challenge); new Np;new Kp; Tol g7€ t_challenge

in((ze, zm)); To & (ze, zm)
if zy = MACKM(ZE) ZMm ~ MACKM(ZE)
then let (xg, Xp, yr) = dec(zg, Kg) in (xR, Xb, yg) = dec(ze, Kg)
if Np = X,/;, ?
thenlet m = {(Np, xg, Kp)} k. in Np # xp
out((m, MACy,,(m))) & = To; nonce_error

else out(nonce_error)
else out(mac_error)

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Crmaci

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

?
in(= get_challenge); new Np;new Kp; Tol g7€ t_challenge

in((ze, zm)); To & (ze, zm)
if zy = MACKM(ZE) ZMm ~ MACKM(ZE)
then let (xg, Xp, yr) = dec(zg, Kg) in (xR, Xb, yg) = dec(ze, Kg)
if Np = X,/;, ?
thenlet m = {(Np, xg, Kp)} k. in Np # xp
out((m, MACy,,(m))) & = To; nonce_error

else out(nonce_error)

—
else out(mac_error) Cronce

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Crmaci Cronce;

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



From processes to constraint systems

Passport P - (Ke, Ku)

in(= get__challenge); new Np; new Kp;
in((ze, zm));
if zy = MACKM(ZE)
then let (xg, Xp, yr) = dec(zg, Kg) in
if Np = X,/;
thenlet m = {(Np, xg, Kp)} k. in
out((m, MACk,,(m)))
else out(nonce_error)
else out(mac_error)

v

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Crmaci Cronce; -

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25



Trace equivalence via constraint solving

To check whether P =~ P’, we have to check whether

Y ~, ¥/ for all sequence of symbolic actions (e.g. in;in;out).

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 13 / 25



Trace equivalence via constraint solving

To check whether P =~ P’, we have to check whether

Y ~, ¥/ for all sequence of symbolic actions (e.g. in;in;out).

Symbolic equivalence ¥ ~, Y’
o for all C € X for all (o,60) € Sol(C), there exists C' € ¥’ such that:
(0/,0) € Sol(C') and o ~ ®'¢’ (static equivalence).

@ and conversely

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 13 / 25



Trace equivalence via constraint solving

To check whether P =~ P’, we have to check whether

Y ~, ¥/ for all sequence of symbolic actions (e.g. in;in;out).

Symbolic equivalence ¥ ~, Y’
o for all C € X for all (o,60) € Sol(C), there exists C' € ¥’ such that:
(0/,0) € Sol(C') and o ~ ®'¢’ (static equivalence).

@ and conversely

Going back to the E-passport example
Among others, we have to check whether

{Cman nonce: - } ~s {Cmacv noncer * - }
c!

where Cl.c, Choncer - - - are the counterparts of Cmac, Chonce, - - - in which K¢
and K have been replaced by K and K},.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 13 / 25



French passport (1/2)

{CmacY nonce; - } ~s {Cmacv nonce * }

when To contains <{NR, NP, KR}K;_:> MACKM({NR, NP>K_R}KE)>
— the answer should be no

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



French passport (1/2)

{CmacY nonce; - } ~s {Cmacv nonce * }

when To contains <{NR, NP, KR}KE, MACKM({NR, NP7K_R}KE)>
— the answer should be no

?
To F get_challenge

?
To |— <ZE72M>
?
4V = MACKM(ZE)
<XR7X;/>»YR> = deC(ZE’ KE)
?
Np 7& X;,

& = Ty; nonce_error

Cnonce =

— A solution for Cponce consists of replaying the message in Tp.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 14 / 25



French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

{Cmac' nonce' ° }

— this computation does not lead to a solution for constraint system
that contains zy = MACy, (zg).

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 15 / 25



French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

{Cmac' nonce' ° }

— this computation does not lead to a solution for constraint system
that contains zy = MACy, (zg).

What about the constraint system C/,.?
To F get__challenge
?
o To - (zg, zm)
mac — ?
zm # MACy;, (zE)

&' = To; mac__error

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

{Cmac' nonce' ° }

— this computation does not lead to a solution for constraint system
that contains zy = MACy, (zg).

What about the constraint system C/

mac
To F get__challenge
?
o To = (ze, zm)
mac — ?
zm # MACy;, (zE)

&' = To; mac__error

— this computation leads to a solution for C/ .. but the resulting
sequence of messages ® and @’ are not in static equivalence.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011



Related work on symbolic equivalence

Several works have already been done:

@ for subterm convergent equational theories:
[Baudet,05]; [Chevalier & Rusinowitch,10]
— does not lead to a practical algorithm

@ for a fixed set of cryptographic primitives:
[Dawson & Tiu,10]; [Cheval, Comon-Lundh & Delaune,10]
— those algorithms have been implemented

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 16 / 25



Related work on symbolic equivalence

Several works have already been done:

@ for subterm convergent equational theories:
[Baudet,05]; [Chevalier & Rusinowitch,10]
— does not lead to a practical algorithm

@ for a fixed set of cryptographic primitives:
[Dawson & Tiu,10]; [Cheval, Comon-Lundh & Delaune,10]
— those algorithms have been implemented

Two main limitations
@ positive constraint systems only;

@ symbolic equivalence between two constraint systems (and not sets of
constraint systems)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 16 / 25



Outline

© Deciding symbolic equivalence using constraint solving techniques

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 17 / 25



Our procedure in a nutshell

Main idea of our procedure: We rewrite pairs of sets of constraint systems
until a trivial failure or a trivial success is found.

[(L, L)} [(23, 2’3)} [(J_,solved)j [(solved,solved)}

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 18 / 25



Our simplification rules

We propose a finite set of simplification rules that transform a constraint
system into two constraint system.

Example: the CONs simplification rule

?
C= T + enc(uz, u2)

A

?

T + enc(uz, u2)
using a recipe ¢ such
that Top(¢) # enc

? ?
Q=9 Tru,Truw C=

—— We have also an AXIOM rule and a DEST rule.

S. Delaune (LSV)

Trace equivalence via constraint solving

August 2011



Step 1: reaching a constraint system in pre-solved form

— the Cons, DEST, and AXIOM rules allow us to reach a pre-solved
form, i.e. a system of the form

?
T1|—X1

?
c={ T2Fx2 4 some disequalities

?
Th b xn

— this is sufficient to decide satisfiability but

S. Delaune (LSV) Trace equivalence via constraint solving August 2011

20 / 25



Step 1: reaching a constraint system in pre-solved form

— the Cons, DEST, and AXIOM rules allow us to reach a pre-solved
form, i.e. a system of the form

?
Tl F X1
?
c={ T2Fx2 4 some disequalities

?
Th b xn

— this is sufficient to decide satisfiability but not sufficient to decide
symbolic equivalence.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011

20 / 25



Step 1: reaching a constraint system in pre-solved form

— the Cons, DEST, and AXIOM rules allow us to reach a pre-solved
form, i.e. a system of the form

?
Tl F X1
?
c={ T2Fx2 4 some disequalities

?
Th b xn

— this is sufficient to decide satisfiability but not sufficient to decide
symbolic equivalence. Why?

? ?
Tol x ? T X!

C= 7 Ty #enc(x, x) ¢’ = °,
Toky ToF Yy

C and C’ are in pre-solved form but they are not in symbolic equivalence. J

S. Delaune (LSV) Trace equivalence via constraint solving August 2011

20 / 25



Step 2: dealing with disequations

For these we have some specific rules to:
@ simplify the disequations; and

@ “match” the disequations of each constraint system.

? ?
Tol x ? T X

C= 7ty #enc(x,x) ¢’ = %,
Toky Ty y

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 21 /25



Step 2: dealing with disequations

For these we have some specific rules to:
@ simplify the disequations; and

@ “match” the disequations of each constraint system.

? ?
Tol x ? T X

C= 7ty #enc(x,x) ¢’ = %,
Toky Ty y

Apply a rule to split each constraint system into two constraint systems:

c;ch

[(J_; C'+y' = enc(xﬂx'))} [(C; C'+y # enc(x’,x’))}

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 21 /25



Step 3: dealing with static equivalence

— The two resulting sequences of messages have to be indistinguishable.

? ?
Cc — ) a pub(b)F x ¢ =] &;pub(b);F X
¢ =3 pUb(b); {X}pub(b) ' =4 pUb(b/); {X/}pub(c/)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 22 /25



Step 3: dealing with static equivalence

— The two resulting sequences of messages have to be indistinguishable.

? ?
Cc — ) a pub(b)F x ¢ =] &;pub(b);F X
¢ =3 pUb(b); {X}pub(b) ' =4 pUb(b/); {X/}pub(c/)

— Rules EQ and DED-SUBTERM.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 22 /25



Step 3: dealing with static equivalence

— The two resulting sequences of messages have to be indistinguishable.

? ?
Cc — ) a pub(b)F x ¢ =] &;pub(b);F X

¢ =3 pUb(b); {X}pub(b) ' =4 pUb(b/); {X/}pub(c/)
— Rules EQ and DED-SUBTERM.

Applying DED-SUBTERM on (C,C’) will generate (C1;Cj) (on one branch):

?

a; pub(b), {x}pub(p) - x

?

a, PUb( ) {X}pub(b F pUb(b)

ce. ,
a’; pUb(b/) {X/}pub(c’) l_ x!
a'; pUb( ) {X/}pub(c’) I_ pUb( )

August 2011 22 /25

Trace equivalence via constraint solving

S. Delaune (LSV)



Main results on our algorithm

Termination

Applying blindly the simplification rules does not terminate but there is a
particular strategy S that allows us to ensure termination.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 23 /25



Main results on our algorithm

Termination

Applying blindly the simplification rules does not terminate but there is a

particular strategy S that allows us to ensure termination.

Soundness/Completeness

Let (Xo, X§) be pair of sets of constraint systems, and consider a binary

tree obtained by applying our simplification rule following a strategy S.
© soundness: If all leaves of the tree are labeled with (L, L) or

(solved, solved), then Xy ~25 Xj.

@ completeness: if Xy ~5 X, then all leaves of the tree are labeled with
(L, L) or (solved, solved),.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 23 /25



Main results on our algorithm

Termination

Applying blindly the simplification rules does not terminate but there is a

particular strategy S that allows us to ensure termination.

Soundness/Completeness

Let (Xo, X§) be pair of sets of constraint systems, and consider a binary

tree obtained by applying our simplification rule following a strategy S.
© soundness: If all leaves of the tree are labeled with (L, L) or

(solved, solved), then Xy ~25 Xj.

@ completeness: if Xy ~5 X, then all leaves of the tree are labeled with
(L, L) or (solved, solved),.

Given two sets ¥, 26 of constraint systems, it is decidable whether
Zo s 26

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 23 /25



Outline

@ Conclusion

S. Delaune (LSV) ce equivalence via constraint solving August 2011 24 / 25



Conclusion

The problem whether A and B are trace equivalent is decidable.

— useful to decide privacy-type security properties

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 25 /25



Conclusion

The problem whether A and B are trace equivalent is decidable.

— useful to decide privacy-type security properties
To go further

© an efficient implementation
—> it seems necessary to come with some optimisations to reduce the
search space (e.g. the number of interleavings)

© more primitives
— this will allow us to analyse a larger class of protocols (e.g
e-voting protocols, . ..)

© modularity issues (combination/composition)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 25 /25



The problem whether A and B are trace equivalent is decidable. l

— useful to decide privacy-type security properties

To go further

© an efficient implementation
—> it seems necessary to come with some optimisations to reduce the
search space (e.g. the number of interleavings)

© more primitives
— this will allow us to analyse a larger class of protocols (e.g
e-voting protocols, . ..)

© modularity issues (combination/composition)

VIP project Jan. 2012 - Dec 2015.

— A postdoc position and a PhD position are available.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 25 /25



	Introduction
	From trace equivalence to symbolic equivalence
	Deciding symbolic equivalence using constraint solving techniques
	Conclusion

