
Trace equivalence via constraint solving

Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune

LSV, CNRS & ENS Cachan & INRIA Saclay Île-de-France, France

Dagstuhl - August 2011

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 1 / 25

Cryptographic protocols

Cryptographic protocols

small programs designed to secure
communication (e.g. secrecy,
authentication, anonymity, . . .)

use cryptographic primitives (e.g.
encryption, signature,)

The network is unsecure!

Communications take place over a public network like the Internet.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 2 / 25

Cryptographic protocols

Cryptographic protocols

small programs designed to secure
communication (e.g. secrecy,
authentication, anonymity, . . .)

use cryptographic primitives (e.g.
encryption, signature,)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 2 / 25

Cryptographic protocols

Cryptographic protocols

small programs designed to secure
communication (e.g. secrecy,
authentication, anonymity, . . .)

use cryptographic primitives (e.g.
encryption, signature,)

It becomes more and more important to protect our privacy.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 2 / 25

Example: electronic passport

−→ studied in [Arapinis, Chothia, Ritter & Ryan,10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 3 / 25

Example: electronic passport

−→ studied in [Arapinis, Chothia, Ritter & Ryan,10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

the information printed on your passport,

a JPEG copy of your picture.

The Basic Access Control (BAC) protocol is a key establishment protocol
that has been designed to also ensure unlinkability.

ISO/IEC standard 15408

Unlinkability aims to ensure that a user may make multiple uses of a
service or resource without others being able to link these uses together.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 3 / 25

The electronic passport protocol

Passport
(KE , KM)

Reader
(KE , KM)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 / 25

The electronic passport protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 / 25

The electronic passport protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 / 25

The electronic passport protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 / 25

The electronic passport protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

{NP , NR , KP }KE
, MACKM

({NP , NR , KP }KE
)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 / 25

The electronic passport protocol

Passport
(KE , KM)

Reader
(KE , KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

{NP , NR , KP }KE
, MACKM

({NP , NR , KP }KE
)

Kseed = KP ⊕ KR Kseed = KP ⊕ KR

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 4 / 25

Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q”

−→ unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 5 / 25

Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q”

−→ unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

Example: E-passport protocol (unlinkability)

P | P | !Reader
?
≈ P | P ′ | !Reader

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 5 / 25

Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q”

−→ unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

Example: E-passport protocol (unlinkability)

P | P | !Reader
?
≈ P | P ′ | !Reader

What is the attacker able to distinguish?

new k; out({0}k) ≈ new k; out({1}k)

−→ We assume a Dolev-Yao attacker and perfect cryptography

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 5 / 25

Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q”

−→ unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

Example: E-passport protocol (unlinkability)

P | P | !Reader
?
≈ P | P ′ | !Reader

What is the attacker able to distinguish?

if φ then P else Q ≈ if ¬φ then Q else P

−→ He can not observe the result of a test

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 5 / 25

Privacy-type security properties

Equivalence based properties

“An observer cannot observe any
difference between P and Q”

−→ unlinkability, anonymity, privacy
related properties in e-voting, strong
secrecy, . . .

Example: E-passport protocol (unlinkability)

P | P | !Reader
?
≈ P | P ′ | !Reader

What is the attacker able to distinguish?

out(a); (out(b) + out(c)) ≈ out(a); out(b) + out(b); out(c)

−→ We consider trace equivalence (also called may-testing)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 5 / 25

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 6 / 25

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

If MAC check fails

mac_error

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 6 / 25

French electronic passport

−→ the passport must reply to all received messages.

Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

{NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

If MAC check
succeeds

If nonce check fails

nonce_error

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 6 / 25

An attack on the French passport [Chothia & Smirnov, 10]

Attack against unlinkability

An attacker can track a French passport, provided he has eavesdropped a
successful authentication.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 7 / 25

An attack on the French passport [Chothia & Smirnov, 10]

Attack against unlinkability

An attacker can track a French passport, provided he has eavesdropped a
successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport
and records message M.

Alice’s Passport
(KE ,KM)

Reader
(KE ,KM)

get_challenge

NP , KP

NP

NR , KR

M = {NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 7 / 25

An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K

′
M
)

Attacker

get_challenge

NP , KP

NP

M = {NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 7 / 25

An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K

′
M
)

Attacker

get_challenge

NP , KP

NP

M = {NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

mac_error

=⇒ MAC check failed =⇒ K ′

M
6= KM =⇒ ???? is not Alice

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 7 / 25

An attack on the French passport [Chothia & Smirnov, 10]

Part 2 of the attack.
The attacker replays the message M and checks the error code he receives.

????’s Passport
(K ′

E
,K

′
M
)

Attacker

get_challenge

NP , KP

NP

M = {NR , NP , KR }KE
, MACKM

({NR , NP , KR }KE
)

nonce_error

=⇒ MAC check succeeded =⇒ K ′

M
= KM =⇒ ???? is Alice

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 7 / 25

State of the art in a nutshell

for analysing equivalence-based security properties

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 8 / 25

State of the art in a nutshell

for analysing equivalence-based security properties

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], . . .

−→ this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 8 / 25

State of the art in a nutshell

for analysing equivalence-based security properties

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], . . .

−→ this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

Unbounded number of sessions [Blanchet, Abadi & Fournet, 05]

ProVerif tool [Blanchet, 01] http://www.proverif.ens.fr/

+ unbounded number of sessions; various cryptographic primitives;

– termination is not guaranteed; diff-equivalence (too strong)

−→ ProSwapper extension [Smyth, 10]

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 8 / 25

http://www.proverif.ens.fr/

State of the art in a nutshell

for analysing equivalence-based security properties

Bounded number of sessions
e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], . . .

−→ this allows us to decide trace equivalence between simple processes
with trivial else branches. [Cortier & Delaune, 09]

Unbounded number of sessions [Blanchet, Abadi & Fournet, 05]

ProVerif tool [Blanchet, 01] http://www.proverif.ens.fr/

+ unbounded number of sessions; various cryptographic primitives;

– termination is not guaranteed; diff-equivalence (too strong)

−→ ProSwapper extension [Smyth, 10]

−→ None of these results is able to analyse the e-passport protocol.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 8 / 25

http://www.proverif.ens.fr/

Our contribution

Main result

A procedure for deciding trace equivalence for a large class of processes.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 9 / 25

Our contribution

Main result

A procedure for deciding trace equivalence for a large class of processes.

Our class of processes:

+ non-trivial else branches, private channels, and non-deterministic
choice;

– but no replication, and a fixed set of cryptographic primitives
(signature, encryption, hash function, mac).

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 9 / 25

Our contribution

Main result

A procedure for deciding trace equivalence for a large class of processes.

Our class of processes:

+ non-trivial else branches, private channels, and non-deterministic
choice;

– but no replication, and a fixed set of cryptographic primitives
(signature, encryption, hash function, mac).

Some applications:

unlinkability in RFID protocols (e.g. e-passport protocol);

anonymity/privacy (e.g. private authentication protocols [Abadi &
Fournet, 04]).

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 9 / 25

Outline

1 Introduction

2 From trace equivalence to symbolic equivalence

3 Deciding symbolic equivalence using constraint solving techniques

4 Conclusion

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 10 / 25

Outline

1 Introduction

2 From trace equivalence to symbolic equivalence

3 Deciding symbolic equivalence using constraint solving techniques

4 Conclusion

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 11 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

Φ = T0;

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

Φ = T0;

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
6= MACKM

(zE)

Φ = T0;

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
6= MACKM

(zE)

Φ = T0;mac_error

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
6= MACKM

(zE)

Φ = T0;mac_error

−→ Cmac

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac;

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

Φ = T0;

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac;

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

Φ = T0;

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac;

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
= MACKM

(zE)
〈xR , x ′

P
, yR〉 = dec(zE , KE)

NP

?
6= x ′

P

Φ = T0;

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac;

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
= MACKM

(zE)
〈xR , x ′

P
, yR〉 = dec(zE , KE)

NP

?
6= x ′

P

Φ = T0; nonce_error

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac;

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
= MACKM

(zE)
〈xR , x ′

P
, yR〉 = dec(zE , KE)

NP

?
6= x ′

P

Φ = T0; nonce_error

−→ Cnonce

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac; Cnonce;

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

From processes to constraint systems

Passport P - (KE , KM)

in(= get_challenge); new NP ; new KP ;
in(〈zE , zM〉);
if zM = MACKM

(zE)
then let (xR , x ′

P
, yR) = dec(zE , KE) in

if NP = x ′

P

then let m = {〈NP , xR , KP〉}KE
in

out(〈m, MACKM
(m)〉)

else out(nonce_error)
else out(mac_error)

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out),
we generate the associated constraint systems:

Cmac; Cnonce; ...

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 12 / 25

Trace equivalence via constraint solving

To check whether P ≈ P ′, we have to check whether

Σ ≈s Σ′ for all sequence of symbolic actions (e.g. in;in;out).

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 13 / 25

Trace equivalence via constraint solving

To check whether P ≈ P ′, we have to check whether

Σ ≈s Σ′ for all sequence of symbolic actions (e.g. in;in;out).

Symbolic equivalence Σ ≈s Σ
′

for all C ∈ Σ for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ such that:

(σ′, θ) ∈ Sol(C′) and Φσ ∼ Φ′σ′ (static equivalence).

and conversely

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 13 / 25

Trace equivalence via constraint solving

To check whether P ≈ P ′, we have to check whether

Σ ≈s Σ′ for all sequence of symbolic actions (e.g. in;in;out).

Symbolic equivalence Σ ≈s Σ
′

for all C ∈ Σ for all (σ, θ) ∈ Sol(C), there exists C′ ∈ Σ′ such that:

(σ′, θ) ∈ Sol(C′) and Φσ ∼ Φ′σ′ (static equivalence).

and conversely

Going back to the E-passport example
Among others, we have to check whether

{Cmac; Cnonce; . . .}
?

≈s {C′

mac; C
′

nonce; . . .}

where C′

mac, C′

nonce, . . . are the counterparts of Cmac, Cnonce, . . . in which KE

and KM have been replaced by K ′

E
and K ′

M
.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 13 / 25

French passport (1/2)

{Cmac; Cnonce; . . .}
?

≈s {C′

mac; C
′

nonce; . . .}

when T0 contains 〈{NR , NP , KR}KE
, MACKM

({NR , NP , KR}KE
)〉

−→ the answer should be no

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 14 / 25

French passport (1/2)

{Cmac; Cnonce; . . .}
?

≈s {C′

mac; C
′

nonce; . . .}

when T0 contains 〈{NR , NP , KR}KE
, MACKM

({NR , NP , KR}KE
)〉

−→ the answer should be no

Cnonce =

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
= MACKM

(zE)
〈xR , x ′

P
, yR〉 = dec(zE , KE)

NP

?
6= x ′

P

Φ = T0; nonce_error

−→ A solution for Cnonce consists of replaying the message in T0.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 14 / 25

French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

{C′

mac; C′

nonce; . . .}

−→ this computation does not lead to a solution for constraint system
that contains zM = MACK ′

M

(zE).

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 15 / 25

French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

{C′

mac; C′

nonce; . . .}

−→ this computation does not lead to a solution for constraint system
that contains zM = MACK ′

M

(zE).

What about the constraint system C′

mac?

C′

mac =

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
6= MACK ′

M

(zE)

Φ′ = T0;mac_error

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 15 / 25

French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

{C′

mac; C′

nonce; . . .}

−→ this computation does not lead to a solution for constraint system
that contains zM = MACK ′

M

(zE).

What about the constraint system C′

mac?

C′

mac =

T0

?
⊢ get_challenge

T0

?
⊢ 〈zE , zM〉

zM

?
6= MACK ′

M

(zE)

Φ′ = T0;mac_error

−→ this computation leads to a solution for C′

mac but the resulting
sequence of messages Φ and Φ′ are not in static equivalence.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 15 / 25

Related work on symbolic equivalence

Several works have already been done:

for subterm convergent equational theories:
[Baudet,05]; [Chevalier & Rusinowitch,10]

−→ does not lead to a practical algorithm

for a fixed set of cryptographic primitives:
[Dawson & Tiu,10]; [Cheval, Comon-Lundh & Delaune,10]

−→ those algorithms have been implemented

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 16 / 25

Related work on symbolic equivalence

Several works have already been done:

for subterm convergent equational theories:
[Baudet,05]; [Chevalier & Rusinowitch,10]

−→ does not lead to a practical algorithm

for a fixed set of cryptographic primitives:
[Dawson & Tiu,10]; [Cheval, Comon-Lundh & Delaune,10]

−→ those algorithms have been implemented

Two main limitations

positive constraint systems only;

symbolic equivalence between two constraint systems (and not sets of
constraint systems)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 16 / 25

Outline

1 Introduction

2 From trace equivalence to symbolic equivalence

3 Deciding symbolic equivalence using constraint solving techniques

4 Conclusion

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 17 / 25

Our procedure in a nutshell

Main idea of our procedure: We rewrite pairs of sets of constraint systems
until a trivial failure or a trivial success is found.

(Σ,Σ′)

(Σ1,Σ′

1) (Σ2,Σ′

2)

(⊥, ⊥) (Σ3,Σ′

3) (solved,solved)(⊥,solved)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 18 / 25

Our simplification rules

We propose a finite set of simplification rules that transform a constraint
system into two constraint system.

Example: the Cons simplification rule

C =

. . .

T
?

⊢ enc(u1, u2)
. . .

C1 =

. . .

T
?

⊢ u1;T
?

⊢ u2

. . .

C2 =

. . .

T
?

⊢ enc(u1, u2)
using a recipe ζ such

that Top(ζ) 6= enc

. . .

−→ We have also an Axiom rule and a Dest rule.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 19 / 25

Step 1: reaching a constraint system in pre-solved form

−→ the Cons, Dest, and Axiom rules allow us to reach a pre-solved
form, i.e. a system of the form

C =

T1

?
⊢ x1

T2

?
⊢ x2

. . .

Tn

?
⊢ xn

+ some disequalities

−→ this is sufficient to decide satisfiability but

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 20 / 25

Step 1: reaching a constraint system in pre-solved form

−→ the Cons, Dest, and Axiom rules allow us to reach a pre-solved
form, i.e. a system of the form

C =

T1

?
⊢ x1

T2

?
⊢ x2

. . .

Tn

?
⊢ xn

+ some disequalities

−→ this is sufficient to decide satisfiability but not sufficient to decide
symbolic equivalence.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 20 / 25

Step 1: reaching a constraint system in pre-solved form

−→ the Cons, Dest, and Axiom rules allow us to reach a pre-solved
form, i.e. a system of the form

C =

T1

?
⊢ x1

T2

?
⊢ x2

. . .

Tn

?
⊢ xn

+ some disequalities

−→ this is sufficient to decide satisfiability but not sufficient to decide
symbolic equivalence. Why?

C =

T0

?
⊢ x

+ y
?
6= enc(x , x)

T0

?
⊢ y

C′ =

T ′

0

?
⊢ x ′

T ′

0

?
⊢ y ′

C and C′ are in pre-solved form but they are not in symbolic equivalence.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 20 / 25

Step 2: dealing with disequations

For these we have some specific rules to:

simplify the disequations; and

“match” the disequations of each constraint system.

C =

T0

?
⊢ x

+ y
?
6= enc(x , x)

T0

?
⊢ y

C′ =

T ′

0

?
⊢ x ′

T ′

0

?
⊢ y ′

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 21 / 25

Step 2: dealing with disequations

For these we have some specific rules to:

simplify the disequations; and

“match” the disequations of each constraint system.

C =

T0

?
⊢ x

+ y
?
6= enc(x , x)

T0

?
⊢ y

C′ =

T ′

0

?
⊢ x ′

T ′

0

?
⊢ y ′

Apply a rule to split each constraint system into two constraint systems:

(C; C′)

(⊥; C′ + y ′ = enc(x ′, x ′)) (C; C′ + y ′ 6= enc(x ′, x ′))

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 21 / 25

Step 3: dealing with static equivalence

−→ The two resulting sequences of messages have to be indistinguishable.

C =

a; pub(b)
?
⊢ x

Φ = a; pub(b); {x}pub(b)

C′ =

a′; pub(b′);
?
⊢ x ′

Φ′ = a′; pub(b′); {x ′}pub(c ′)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 22 / 25

Step 3: dealing with static equivalence

−→ The two resulting sequences of messages have to be indistinguishable.

C =

a; pub(b)
?
⊢ x

Φ = a; pub(b); {x}pub(b)

C′ =

a′; pub(b′);
?
⊢ x ′

Φ′ = a′; pub(b′); {x ′}pub(c ′)

−→ Rules Eq and Ded-subterm.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 22 / 25

Step 3: dealing with static equivalence

−→ The two resulting sequences of messages have to be indistinguishable.

C =

a; pub(b)
?
⊢ x

Φ = a; pub(b); {x}pub(b)

C′ =

a′; pub(b′);
?
⊢ x ′

Φ′ = a′; pub(b′); {x ′}pub(c ′)

−→ Rules Eq and Ded-subterm.

Applying Ded-subterm on (C, C′) will generate (C1; C
′

1) (on one branch):

. . .

a; pub(b), {x}pub(b)

?
⊢ x

a; pub(b); {x}pub(b)

?
⊢ pub(b)

. . .

a′; pub(b′), {x ′}pub(c ′)

?
⊢ x ′

a′; pub(b′); {x ′}pub(c ′)

?
⊢ pub(c ′)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 22 / 25

Main results on our algorithm

Termination
Applying blindly the simplification rules does not terminate but there is a
particular strategy S that allows us to ensure termination.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 23 / 25

Main results on our algorithm

Termination
Applying blindly the simplification rules does not terminate but there is a
particular strategy S that allows us to ensure termination.

Soundness/Completeness
Let (Σ0,Σ′

0) be pair of sets of constraint systems, and consider a binary
tree obtained by applying our simplification rule following a strategy S.

1 soundness: If all leaves of the tree are labeled with (⊥, ⊥) or
(solved , solved), then Σ0 ≈s Σ′

0.

2 completeness: if Σ0 ≈s Σ′

0, then all leaves of the tree are labeled with
(⊥, ⊥) or (solved , solved),.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 23 / 25

Main results on our algorithm

Termination
Applying blindly the simplification rules does not terminate but there is a
particular strategy S that allows us to ensure termination.

Soundness/Completeness
Let (Σ0,Σ′

0) be pair of sets of constraint systems, and consider a binary
tree obtained by applying our simplification rule following a strategy S.

1 soundness: If all leaves of the tree are labeled with (⊥, ⊥) or
(solved , solved), then Σ0 ≈s Σ′

0.

2 completeness: if Σ0 ≈s Σ′

0, then all leaves of the tree are labeled with
(⊥, ⊥) or (solved , solved),.

Theorem

Given two sets Σ0, Σ′

0 of constraint systems, it is decidable whether
Σ0 ≈s Σ′

0

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 23 / 25

Outline

1 Introduction

2 From trace equivalence to symbolic equivalence

3 Deciding symbolic equivalence using constraint solving techniques

4 Conclusion

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 24 / 25

Conclusion

Main result

The problem whether A and B are trace equivalent is decidable.

−→ useful to decide privacy-type security properties

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 25 / 25

Conclusion

Main result

The problem whether A and B are trace equivalent is decidable.

−→ useful to decide privacy-type security properties

To go further

1 an efficient implementation
−→ it seems necessary to come with some optimisations to reduce the
search space (e.g. the number of interleavings)

2 more primitives
−→ this will allow us to analyse a larger class of protocols (e.g
e-voting protocols, . . .)

3 modularity issues (combination/composition)

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 25 / 25

Conclusion

Main result

The problem whether A and B are trace equivalent is decidable.

−→ useful to decide privacy-type security properties

To go further

1 an efficient implementation
−→ it seems necessary to come with some optimisations to reduce the
search space (e.g. the number of interleavings)

2 more primitives
−→ this will allow us to analyse a larger class of protocols (e.g
e-voting protocols, . . .)

3 modularity issues (combination/composition)

VIP project Jan. 2012 - Dec 2015.

−→ A postdoc position and a PhD position are available.

S. Delaune (LSV) Trace equivalence via constraint solving August 2011 25 / 25

	Introduction
	From trace equivalence to symbolic equivalence
	Deciding symbolic equivalence using constraint solving techniques
	Conclusion

