Trace equivalence via constraint solving

Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune

LSV, CNRS & ENS Cachan & INRIA Saclay Île-de-France, France

Dagstuhl - August 2011

Cryptographic protocols

Cryptographic protocols

- small programs designed to secure communication (*e.g.* secrecy, authentication, anonymity, ...)
- use cryptographic primitives (e.g. encryption, signature,)

The network is unsecure!

Communications take place over a public network like the Internet.

Cryptographic protocols

Cryptographic protocols

- small programs designed to secure communication (*e.g.* secrecy, authentication, anonymity, ...)
- use cryptographic primitives (e.g. encryption, signature,)

Cryptographic protocols

Cryptographic protocols

- small programs designed to secure communication (*e.g.* secrecy, authentication, anonymity, ...)
- use cryptographic primitives (e.g. encryption, signature,)

It becomes more and more important to protect our privacy.

 \longrightarrow studied in [Arapinis, Chothia, Ritter & Ryan,10]

An electronic passport is a passport with an RFID tag embedded in it.

The RFID tag stores:

- the information printed on your passport,
- a JPEG copy of your picture.

 \longrightarrow studied in [Arapinis, Chothia, Ritter & Ryan,10]

An electronic passport is a passport with an RFID tag embedded in it.

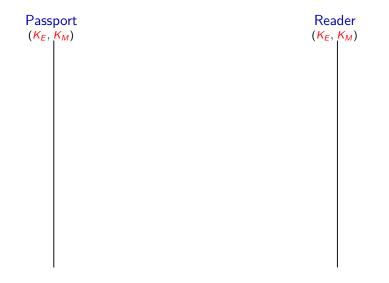
The RFID tag stores:

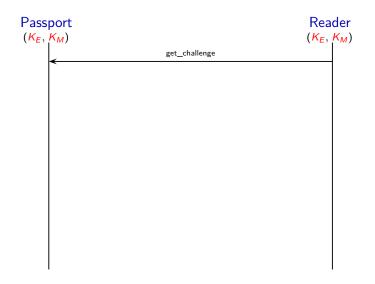
- the information printed on your passport,
- a JPEG copy of your picture.

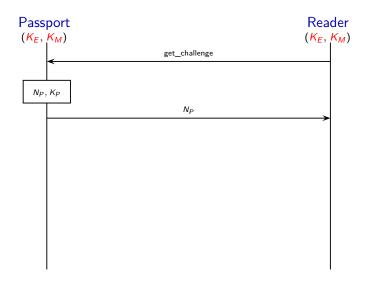
The Basic Access Control (BAC) protocol is a key establishment protocol that has been designed to also ensure unlinkability.

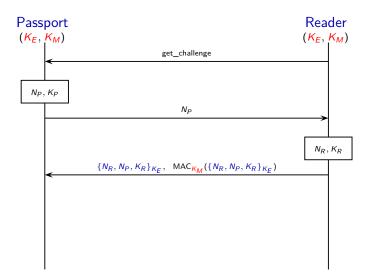
ISO/IEC standard 15408

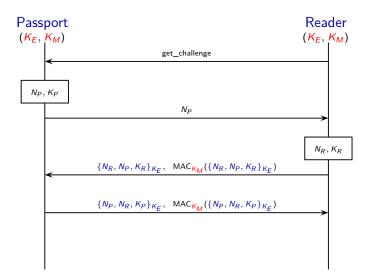
Unlinkability aims to ensure that a user may make multiple uses of a service or resource without others being able to link these uses together.

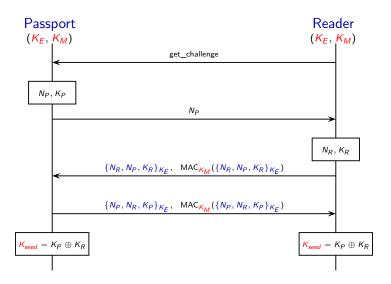












Equivalence based properties

"An observer cannot observe any difference between P and Q"

 \rightarrow unlinkability, anonymity, privacy related properties in e-voting, strong secrecy, ...

Equivalence based properties

"An observer cannot observe any difference between P and Q"

 \rightarrow unlinkability, anonymity, privacy related properties in e-voting, strong secrecy, ...

Example: E-passport protocol (unlinkability)

$$P \mid P \mid !Reader \stackrel{?}{\approx} P \mid P' \mid !Reader$$

Equivalence based properties

"An observer cannot observe any difference between P and Q"

 \rightarrow unlinkability, anonymity, privacy related properties in e-voting, strong secrecy, . . .

Example: E-passport protocol (unlinkability)

$$P \mid P \mid !Reader \stackrel{?}{\approx} P \mid P' \mid !Reader$$

What is the attacker able to distinguish?

• new k;
$$\operatorname{out}({0 \atop k}) \approx \operatorname{new} k; \operatorname{out}({1 \atop k})$$

 \longrightarrow We assume a Dolev-Yao attacker and perfect cryptography

Equivalence based properties

"An observer cannot observe any difference between P and Q"

 \rightarrow unlinkability, anonymity, privacy related properties in e-voting, strong secrecy, . . .

Example: E-passport protocol (unlinkability)

$$P \mid P \mid !Reader \stackrel{?}{\approx} P \mid P' \mid !Reader$$

What is the attacker able to distinguish?

• if ϕ then P else $Q \approx$ if $\neg \phi$ then Q else P

 \longrightarrow He can not observe the result of a test

Equivalence based properties

"An observer cannot observe any difference between P and Q"

 \rightarrow unlinkability, anonymity, privacy related properties in e-voting, strong secrecy, . . .

Example: E-passport protocol (unlinkability)

$$P \mid P \mid !Reader \stackrel{?}{\approx} P \mid P' \mid !Reader$$

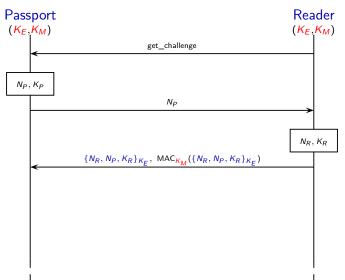
What is the attacker able to distinguish?

• $\operatorname{out}(a)$; $(\operatorname{out}(b) + \operatorname{out}(c)) \approx \operatorname{out}(a)$; $\operatorname{out}(b) + \operatorname{out}(b)$; $\operatorname{out}(c)$

 \rightarrow We consider trace equivalence (also called may-testing)

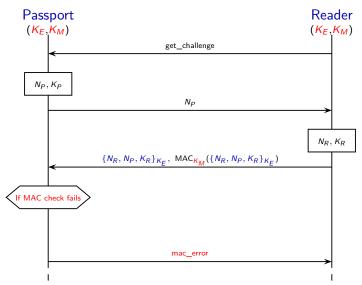
French electronic passport

 \rightarrow the passport must reply to all received messages.



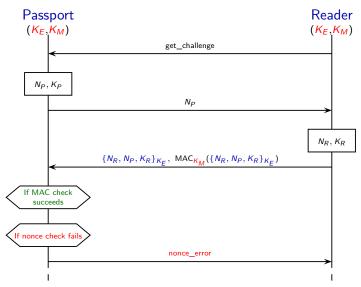
French electronic passport

 \rightarrow the passport must reply to all received messages.



French electronic passport

 \rightarrow the passport must reply to all received messages.



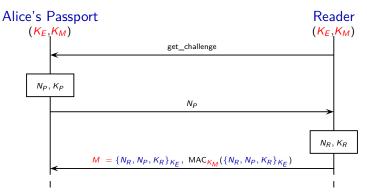
Attack against unlinkability

An attacker can track a French passport, provided he has eavesdropped a successful authentication.

Attack against unlinkability

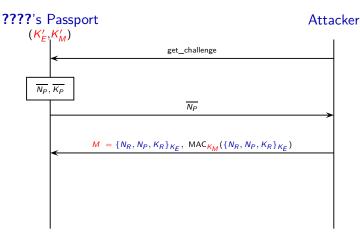
An attacker can track a French passport, provided he has eavesdropped a successful authentication.

Part 1 of the attack. The attacker eavesdropes on Alice using her passport and records message M.



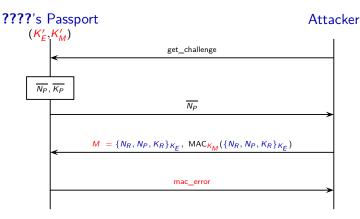
Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.



Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.

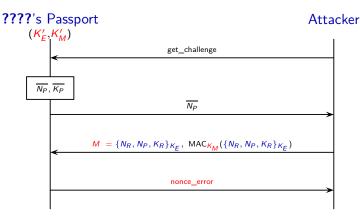


\implies MAC check failed \implies $K'_M \neq K_M \implies$???? is not Alice

S. Delaune (LSV)

Part 2 of the attack.

The attacker replays the message M and checks the error code he receives.



\implies MAC check succeeded \implies $K'_M = K_M \implies$???? is Alice

S. Delaune (LSV)

Bounded number of sessions

e.g. [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

 \rightarrow this allows us to decide trace equivalence between simple processes with trivial else branches. [Cortier & Delaune, 09]

Bounded number of sessions *e.g.* [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ...

 \rightarrow this allows us to decide trace equivalence between simple processes with trivial else branches. [Cortier & Delaune, 09]

Bounded number of sessions *e.g.* [Baudet, 05], [Dawson & Tiu, 10], [Chevalier & Rusinowitch, 10], ... \rightarrow this allows us to decide trace equivalence between simple processes with trivial else branches. [Cortier & Delaune, 09]

Unbounded number of sessions	[Blanchet, Abadi & Fournet, 05]
ProVerif tool [Blanchet, 01]	http://www.proverif.ens.fr/
 + unbounded number of sessions; various cryptographic primitives; 	
 – termination is not guaranteed; diff-equivalence (too strong) 	
\longrightarrow ProSwapper extension	[Smyth, 10]

 \rightarrow None of these results is able to analyse the e-passport protocol.

Main result

A procedure for deciding trace equivalence for a large class of processes.

Main result

A procedure for deciding trace equivalence for a large class of processes.

Our class of processes:

- + non-trivial else branches, private channels, and non-deterministic choice;
- but no replication, and a fixed set of cryptographic primitives (signature, encryption, hash function, mac).

Main result

A procedure for deciding trace equivalence for a large class of processes.

Our class of processes:

- + non-trivial else branches, private channels, and non-deterministic choice;
- but no replication, and a fixed set of cryptographic primitives (signature, encryption, hash function, mac).

Some applications:

- unlinkability in RFID protocols (e.g. e-passport protocol);
- anonymity/privacy (*e.g.* private authentication protocols [Abadi & Fournet, 04]).

1 Introduction

2 From trace equivalence to symbolic equivalence

3 Deciding symbolic equivalence using constraint solving techniques

1 Introduction

2 From trace equivalence to symbolic equivalence

3 Deciding symbolic equivalence using constraint solving techniques

4 Conclusion

Passport $P - (K_E, K_M)$

```
\begin{split} &\text{in}(=\textit{get\_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{\textit{K}_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, \textit{K}_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, \textit{K}_P \rangle\}_{\textit{K}_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{\textit{K}_M}(m) \rangle) \\ &\text{else out}(\textit{nonce\_error}) \\ &\text{else out}(\textit{mac\_error}) \end{split}
```

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out), we generate the associated constraint systems:

Passport $P - (K_E, K_M)$

$$\begin{array}{l} \operatorname{in}(=\operatorname{get_challenge}); \operatorname{new} N_P; \operatorname{new} K_P; \\ \operatorname{in}(\langle z_E, z_M \rangle); \\ \operatorname{if} z_M = \operatorname{MAC}_{K_M}(z_E) \\ \operatorname{then} \operatorname{let}(x_R, x'_P, y_R) = \operatorname{dec}(z_E, K_E) \text{ in} \\ \operatorname{if} N_P = x'_P \\ \operatorname{then} \operatorname{let} m = \{\langle N_P, x_R, K_P \rangle\}_{K_E} \text{ in} \\ \operatorname{out}(\langle m, \operatorname{MAC}_{K_M}(m) \rangle) \\ \operatorname{else} \operatorname{out}(\operatorname{nonce_error}) \\ \operatorname{else} \operatorname{out}(\operatorname{mac_error}) \end{array}$$

$$T_0 \stackrel{?}{\vdash} get_challenge$$

$$\Phi = T_0;$$

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out), we generate the associated constraint systems:

$$\begin{split} &\text{in}(=\textit{get_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{K_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, K_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, K_P \rangle\}_{K_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce_error}) \\ &\text{else out}(\textit{mac_error}) \end{split}$$

$$T_0 \stackrel{?}{\vdash} get_challenge$$

 $T_0 \stackrel{?}{\vdash} \langle z_E, z_M \rangle$

$$\Phi = T_0;$$

```
\begin{split} &\text{in}(=\textit{get\_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{\textit{K}_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, \textit{K}_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, \textit{K}_P \rangle\}_{\textit{K}_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{\textit{K}_M}(m) \rangle) \\ &\text{else out}(\textit{nonce\_error}) \\ &\text{else out}(\textit{mac\_error}) \end{split}
```

$$T_{0} \stackrel{?}{\vdash} get_challenge$$
$$T_{0} \stackrel{?}{\vdash} \langle z_{E}, z_{M} \rangle$$
$$z_{M} \neq \mathsf{MAC}_{\mathsf{K}_{\mathsf{M}}}(z_{E})$$

$$\Phi = T_0;$$

```
\begin{split} &\text{in}(=\textit{get\_challenge}); \text{new } N_{P}; \text{new } K_{P}; \\ &\text{in}(\langle z_{E}, z_{M} \rangle); \\ &\text{if } z_{M} = \text{MAC}_{K_{M}}(z_{E}) \\ &\text{then let } (x_{R}, x'_{P}, y_{R}) = \text{dec}(z_{E}, K_{E}) \text{ in} \\ &\text{if } N_{P} = x'_{P} \\ &\text{then let } m = \{\langle N_{P}, x_{R}, K_{P} \rangle\}_{K_{E}} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{K_{M}}(m) \rangle) \\ &\text{else out}(\textit{nonce\_error}) \\ &\text{else out}(\textit{mac\_error}) \end{split}
```

$$T_{0} \stackrel{?}{\vdash} get_challenge$$

$$T_{0} \stackrel{?}{\vdash} \langle z_{E}, z_{M} \rangle$$

$$z_{M} \neq \mathsf{MAC}_{K_{M}}(z_{E})$$

$$\Phi = T_0$$
; mac_error

$$\begin{split} &\text{in}(=\textit{get_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{K_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, K_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, K_P \rangle\}_{K_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce_error}) \\ &\text{else out}(\textit{mac_error}) \end{split}$$

$$T_{0} \stackrel{?}{\vdash} get_challenge$$

$$T_{0} \stackrel{?}{\vdash} \langle z_{E}, z_{M} \rangle$$

$$z_{M} \neq MAC_{K_{M}}(z_{E})$$

$$\Phi = T_{0}; mac_error$$

$$\longrightarrow C_{mac}$$

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out), we generate the associated constraint systems:

 $\mathcal{C}_{mac};$

```
\begin{split} &\text{in}(=\textit{get\_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{\mathcal{K}_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, \mathcal{K}_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, \mathcal{K}_P \rangle\}_{\mathcal{K}_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{\mathcal{K}_M}(m) \rangle) \\ &\text{else out}(\textit{nonce\_error}) \\ &\text{else out}(\textit{mac\_error}) \end{split}
```

 $T_0 \stackrel{?}{\vdash} get_challenge$

 $\Phi = T_0;$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

```
\begin{split} &\text{in}(=\textit{get\_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{\mathcal{K}_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, \mathcal{K}_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, \mathcal{K}_P \rangle\}_{\mathcal{K}_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{\mathcal{K}_M}(m) \rangle) \\ &\text{else out}(\textit{nonce\_error}) \\ &\text{else out}(\textit{mac\_error}) \end{split}
```

$$T_0 \stackrel{?}{\vdash} get_challenge$$
$$T_0 \stackrel{?}{\vdash} \langle z_E, z_M \rangle$$

 $\Phi = T_0;$

Once an interleaving of symbolic actions has been fixed (*e.g.* in; in; out), we generate the associated constraint systems:

$$\begin{split} &\text{in}(=\textit{get_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{K_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, K_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, K_P \rangle\}_{K_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce_error}) \\ &\text{else out}(\textit{mac_error}) \end{split}$$

$$T_{0} \stackrel{?}{\vdash} get_challenge$$

$$T_{0} \stackrel{?}{\vdash} \langle z_{E}, z_{M} \rangle$$

$$z_{M} \stackrel{?}{=} MAC_{K_{M}}(z_{E})$$

$$\langle x_{R}, x'_{P}, y_{R} \rangle = dec(z_{E}, K_{E})$$

$$N_{P} \stackrel{?}{\neq} x'_{P}$$

$$\Phi = T_{0};$$

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out), we generate the associated constraint systems:

$$\begin{split} &\text{in}(=\textit{get_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{K_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, K_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, K_P \rangle\}_{K_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce_error}) \\ &\text{else out}(\textit{mac_error}) \end{split}$$

$$T_{0} \stackrel{?}{\vdash} get_challenge$$

$$T_{0} \stackrel{?}{\vdash} \langle z_{E}, z_{M} \rangle$$

$$z_{M} \stackrel{?}{=} MAC_{K_{M}}(z_{E})$$

$$\langle x_{R}, x'_{P}, y_{R} \rangle = dec(z_{E}, K_{E})$$

$$N_{P} \stackrel{?}{\neq} x'_{P}$$

$$\Phi = T_0$$
; nonce_error

Once an interleaving of symbolic actions has been fixed (e.g. in; in; out), we generate the associated constraint systems:

$$\begin{split} &\text{in}(=\textit{get_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{K_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, K_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, K_P \rangle\}_{K_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{K_M}(m) \rangle) \\ &\text{else out}(\textit{nonce_error}) \\ &\text{else out}(\textit{mac_error}) \end{split}$$

$$T_{0} \stackrel{?}{\vdash} get_challenge$$

$$T_{0} \stackrel{?}{\vdash} \langle z_{E}, z_{M} \rangle$$

$$z_{M} \stackrel{?}{=} MAC_{K_{M}}(z_{E})$$

$$\langle x_{R}, x'_{P}, y_{R} \rangle = dec(z_{E}, K_{E})$$

$$N_{P} \stackrel{?}{\neq} x'_{P}$$

$$\Phi = T_{0}; nonce_error$$

$$\longrightarrow C_{nonce}$$

$$\mathcal{C}_{mac}; \mathcal{C}_{nonce};$$

```
\begin{split} &\text{in}(=\textit{get\_challenge}); \text{new } N_P; \text{new } K_P; \\ &\text{in}(\langle z_E, z_M \rangle); \\ &\text{if } z_M = \text{MAC}_{\textit{K}_M}(z_E) \\ &\text{then let } (x_R, x'_P, y_R) = \text{dec}(z_E, \textit{K}_E) \text{ in} \\ &\text{if } N_P = x'_P \\ &\text{then let } m = \{\langle N_P, x_R, \textit{K}_P \rangle\}_{\textit{K}_E} \text{ in} \\ &\text{out}(\langle m, \text{MAC}_{\textit{K}_M}(m) \rangle) \\ &\text{else out}(\textit{nonce\_error}) \\ &\text{else out}(\textit{mac\_error}) \end{split}
```

$$\mathcal{C}_{mac}; \mathcal{C}_{nonce}; \ldots$$

Trace equivalence via constraint solving

To check whether $P \approx P'$, we have to check whether

 $\Sigma \approx_s \Sigma'$ for all sequence of symbolic actions (*e.g.* in;in;out).

Trace equivalence via constraint solving

To check whether $P \approx P'$, we have to check whether

 $\Sigma \approx_s \Sigma'$ for all sequence of symbolic actions (*e.g.* in;in;out).

Symbolic equivalence $\Sigma \approx_s \Sigma'$

• for all $C \in \Sigma$ for all $(\sigma, \theta) \in Sol(C)$, there exists $C' \in \Sigma'$ such that: $(\sigma', \theta) \in Sol(C')$ and $\Phi \sigma \sim \Phi' \sigma'$ (static equivalence).

and conversely

Trace equivalence via constraint solving

To check whether $P \approx P'$, we have to check whether

 $\Sigma \approx_s \Sigma'$ for all sequence of symbolic actions (*e.g.* in;in;out).

Symbolic equivalence $\Sigma \approx_s \Sigma'$

• for all $C \in \Sigma$ for all $(\sigma, \theta) \in Sol(C)$, there exists $C' \in \Sigma'$ such that: $(\sigma', \theta) \in Sol(C')$ and $\Phi \sigma \sim \Phi' \sigma'$ (static equivalence).

and conversely

Going back to the E-passport example Among others, we have to check whether

$$\{\mathcal{C}_{mac}; \mathcal{C}_{nonce}; \ldots\} \approx s^{?} \{\mathcal{C}'_{mac}; \mathcal{C}'_{nonce}; \ldots\}$$

where C'_{mac} , C'_{nonce} , ... are the counterparts of C_{mac} , C_{nonce} , ... in which K_E and K_M have been replaced by K'_E and K'_M .

French passport (1/2)

$$\{\mathcal{C}_{\mathsf{mac}}; \ \mathcal{C}_{\mathsf{nonce}}; \ \ldots\} \approx s^{?} \{\mathcal{C}'_{\mathsf{mac}}; \mathcal{C}'_{\mathsf{nonce}}; \ldots\}$$

when T_0 contains $\langle \{\overline{N_R}, \overline{N_P}, \overline{K_R}\}_{\kappa_E}, \text{MAC}_{\kappa_M}(\{\overline{N_R}, \overline{N_P}, \overline{K_R}\}_{\kappa_E}) \rangle \longrightarrow \text{the answer should be no}$

French passport (1/2)

$$\{\mathcal{C}_{\text{mac}}; \ \mathcal{C}_{\text{nonce}}; \ \ldots\} \stackrel{?}{\approx}_{s} \{\mathcal{C}'_{\text{mac}}; \mathcal{C}'_{\text{nonce}}; \ldots\}$$

when T_0 contains $\langle \{\overline{N_R}, \overline{N_P}, \overline{K_R}\}_{K_E}, \ \mathsf{MAC}_{K_M}(\{\overline{N_R}, \overline{N_P}, \overline{K_R}\}_{K_E}) \rangle$
 \longrightarrow the answer should be no

$$C_{nonce} = \begin{cases} T_0 \vdash get_challenge \\ ? \\ T_0 \vdash \langle z_E, z_M \rangle \\ z_M \stackrel{?}{=} MAC_{K_M}(z_E) \\ \langle x_R, x'_P, y_R \rangle = dec(z_E, K_E) \\ N_P \stackrel{?}{\neq} x'_P \\ \hline \Phi = T_0; nonce_error \end{cases}$$

 \longrightarrow A solution for \mathcal{C}_{nonce} consists of replaying the message in \mathcal{T}_0 .

French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

 $\{\mathcal{C}'_{mac}; \ \mathcal{C}'_{nonce}; \ \ldots\}$

 \longrightarrow this computation does not lead to a solution for constraint system that contains $z_M = MAC_{K'_M}(z_E)$.

French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

 $\{\mathcal{C}'_{\mathsf{mac}}; \ \mathcal{C}'_{\mathsf{nonce}}; \ \ldots\}$

 \longrightarrow this computation does not lead to a solution for constraint system that contains $z_M = MAC_{K'_M}(z_E)$.

What about the constraint system C'_{mac} ?

$$\mathcal{C}_{mac}' = \begin{cases} T_0 \vdash get_challenge \\ ? \\ T_0 \vdash \langle z_E, z_M \rangle \\ ? \\ z_M \neq \mathsf{MAC}_{K'_M}(z_E) \\ \hline \Phi' = T_0; mac_error \end{cases}$$

French passport (2/2)

If the attacker performed this replay, what will happen in the other side?

 $\{C'_{mac}; C'_{nonce}; \ldots\}$

 \longrightarrow this computation does not lead to a solution for constraint system that contains $z_M = MAC_{K'_M}(z_E)$.

What about the constraint system C'_{mac} ?

$$\mathcal{C}_{\mathsf{mac}}' = \begin{cases} T_0 \vdash get_challenge \\ ? \\ T_0 \vdash \langle z_E, z_M \rangle \\ ? \\ z_M \neq \mathsf{MAC}_{\mathcal{K}_M'}(z_E) \\ \hline \Phi' = T_0; \operatorname{mac_error} \end{cases}$$

 \rightarrow this computation leads to a solution for C'_{mac} but the resulting sequence of messages Φ and Φ' are not in static equivalence.

Several works have already been done:

• for subterm convergent equational theories:

[Baudet,05]; [Chevalier & Rusinowitch,10]

 \longrightarrow does not lead to a practical algorithm

 for a fixed set of cryptographic primitives: [Dawson & Tiu,10]; [Cheval, Comon-Lundh & Delaune,10]
 → those algorithms have been implemented Several works have already been done:

• for subterm convergent equational theories:

[Baudet,05]; [Chevalier & Rusinowitch,10]

 \longrightarrow does not lead to a practical algorithm

 for a fixed set of cryptographic primitives: [Dawson & Tiu,10]; [Cheval, Comon-Lundh & Delaune,10]
 → those algorithms have been implemented

Two main limitations

- positive constraint systems only;
- symbolic equivalence between two constraint systems (and not sets of constraint systems)

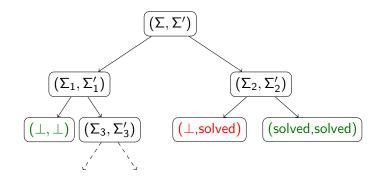
1 Introduction

2 From trace equivalence to symbolic equivalence

3 Deciding symbolic equivalence using constraint solving techniques

4 Conclusion

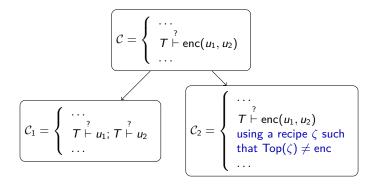
Main idea of our procedure: We rewrite pairs of sets of constraint systems until a trivial failure or a trivial success is found.



Our simplification rules

We propose a finite set of simplification rules that transform a constraint system into two constraint system.

Example: the CONS simplification rule



ightarrow We have also an AxiOM rule and a Dest rule.

S. Delaune (LSV)

Step 1: reaching a constraint system in pre-solved form

 \longrightarrow the CONS, DEST, and AXIOM rules allow us to reach a pre-solved form, $\it i.e.$ a system of the form

$$C = \begin{cases} T_1 \stackrel{?}{\vdash} x_1 \\ T_2 \stackrel{?}{\vdash} x_2 \\ \cdots \\ T_n \stackrel{?}{\vdash} x_n \end{cases}$$
 some disequalities

 \longrightarrow this is sufficient to decide satisfiability but

Step 1: reaching a constraint system in pre-solved form

 \longrightarrow the CONS, DEST, and AXIOM rules allow us to reach a pre-solved form, $\it i.e.$ a system of the form

$$C = \begin{cases} T_1 \stackrel{?}{\vdash} x_1 \\ T_2 \stackrel{?}{\vdash} x_2 \\ \cdots \\ T_n \stackrel{?}{\vdash} x_n \end{cases}$$
 some disequalities

 \longrightarrow this is sufficient to decide satisfiability but not sufficient to decide symbolic equivalence.

Step 1: reaching a constraint system in pre-solved form

 \longrightarrow the CONS, DEST, and AXIOM rules allow us to reach a pre-solved form, $\it i.e.$ a system of the form

$$C = \begin{cases} T_1 \stackrel{?}{\vdash} x_1 \\ T_2 \stackrel{?}{\vdash} x_2 \\ \cdots \\ T_n \stackrel{?}{\vdash} x_n \end{cases}$$
 some disequalities

 \longrightarrow this is sufficient to decide satisfiability but not sufficient to decide symbolic equivalence. Why?

$$\mathcal{C} = \begin{cases} T_0 \stackrel{?}{\vdash} x \\ ? \\ T_0 \stackrel{!}{\vdash} y \end{cases} + y \stackrel{?}{\neq} \operatorname{enc}(x, x) \qquad \qquad \mathcal{C}' = \begin{cases} T_0' \stackrel{?}{\vdash} x' \\ ? \\ T_0' \stackrel{!}{\vdash} y' \end{cases}$$

 ${\mathcal C}$ and ${\mathcal C}'$ are in pre-solved form but they are not in symbolic equivalence.

S. Delaune (LSV)

Step 2: dealing with disequations

For these we have some specific rules to:

- simplify the disequations; and
- "match" the disequations of each constraint system.

$$\mathcal{C} = \begin{cases} T_0 \stackrel{?}{\vdash} x & + \quad y \neq \operatorname{enc}(x, x) \\ T_0 \stackrel{!}{\vdash} y & + \quad y \neq \operatorname{enc}(x, x) \end{cases} \qquad \qquad \mathcal{C}' = \begin{cases} T_0' \stackrel{?}{\vdash} x' \\ T_0' \stackrel{!}{\vdash} y' \\ T_0' \stackrel{!}{\vdash} y' \end{cases}$$

Step 2: dealing with disequations

For these we have some specific rules to:

- simplify the disequations; and
- "match" the disequations of each constraint system.

$$\mathcal{C} = \begin{cases} T_0 \stackrel{?}{\vdash} x \\ ? \\ T_0 \stackrel{!}{\vdash} y \end{cases} + y \stackrel{?}{\neq} \operatorname{enc}(x, x) \qquad \qquad \mathcal{C}' = \begin{cases} T_0' \stackrel{?}{\vdash} x' \\ ? \\ T_0' \stackrel{!}{\vdash} y' \end{cases}$$

Apply a rule to split each constraint system into two constraint systems:

$$(\mathcal{L}; \ \mathcal{C}' + y' = \operatorname{enc}(x', x')) \qquad (\mathcal{C}; \ \mathcal{C}' + y' \neq \operatorname{enc}(x', x'))$$

Step 3: dealing with static equivalence

 \rightarrow The two resulting sequences of messages have to be indistinguishable.

$$\mathcal{C} = \begin{cases} a; \operatorname{pub}(b) \stackrel{?}{\vdash} x \\ \Phi = a; \operatorname{pub}(b); \{x\}_{\operatorname{pub}(b)} \end{cases} \quad \mathcal{C}' = \begin{cases} a'; \operatorname{pub}(b'); \stackrel{?}{\vdash} x' \\ \Phi' = a'; \operatorname{pub}(b'); \{x'\}_{\operatorname{pub}(c')} \end{cases}$$

Step 3: dealing with static equivalence

 \longrightarrow The two resulting sequences of messages have to be indistinguishable.

$$\mathcal{C} = \begin{cases} a; \operatorname{pub}(b) \stackrel{?}{\vdash} x \\ \Phi = a; \operatorname{pub}(b); \{x\}_{\operatorname{pub}(b)} \end{cases} \quad \mathcal{C}' = \begin{cases} a'; \operatorname{pub}(b'); \stackrel{?}{\vdash} x' \\ \Phi' = a'; \operatorname{pub}(b'); \{x'\}_{\operatorname{pub}(c')} \end{cases}$$

 \longrightarrow Rules Eq and DED-SUBTERM.

Step 3: dealing with static equivalence

 \longrightarrow The two resulting sequences of messages have to be indistinguishable.

$$\mathcal{C} = \begin{cases} a; \operatorname{pub}(b) \stackrel{?}{\vdash} x \\ \Phi = a; \operatorname{pub}(b); \{x\}_{\operatorname{pub}(b)} \end{cases} \quad \mathcal{C}' = \begin{cases} a'; \operatorname{pub}(b'); \stackrel{?}{\vdash} x' \\ \Phi' = a'; \operatorname{pub}(b'); \{x'\}_{\operatorname{pub}(c')} \end{cases}$$

 \longrightarrow Rules Eq and DED-SUBTERM.

Applying DED-SUBTERM on $(\mathcal{C}, \mathcal{C}')$ will generate $(\mathcal{C}_1; \mathcal{C}'_1)$ (on one branch):

Termination

Applying blindly the simplification rules does not terminate but there is a particular strategy S that allows us to ensure termination.

Termination

Applying blindly the simplification rules does not terminate but there is a particular strategy S that allows us to ensure termination.

Soundness/Completeness

Let (Σ_0, Σ'_0) be pair of sets of constraint systems, and consider a binary tree obtained by applying our simplification rule following a strategy S.

- soundness: If all leaves of the tree are labeled with (\bot, \bot) or (solved, solved), then $\Sigma_0 \approx_s \Sigma'_0$.
- ② completeness: if $\Sigma_0 \approx_s \Sigma'_0$, then all leaves of the tree are labeled with (\bot, \bot) or (*solved*, *solved*),.

Termination

Applying blindly the simplification rules does not terminate but there is a particular strategy S that allows us to ensure termination.

Soundness/Completeness

Let (Σ_0, Σ'_0) be pair of sets of constraint systems, and consider a binary tree obtained by applying our simplification rule following a strategy S.

- soundness: If all leaves of the tree are labeled with (\bot, \bot) or (solved, solved), then $\Sigma_0 \approx_s \Sigma'_0$.
- ② completeness: if $\Sigma_0 \approx_s \Sigma'_0$, then all leaves of the tree are labeled with (\bot, \bot) or (*solved*, *solved*),.

Theorem

Given two sets $\Sigma_0,\,\Sigma_0'$ of constraint systems, it is decidable whether $\Sigma_0\approx_s\Sigma_0'$

1 Introduction

2) From trace equivalence to symbolic equivalence

3 Deciding symbolic equivalence using constraint solving techniques

Main result

The problem whether A and B are trace equivalent is decidable.

 \longrightarrow useful to decide privacy-type security properties

Main result

The problem whether A and B are trace equivalent is decidable.

 \longrightarrow useful to decide privacy-type security properties

To go further

an efficient implementation

 \rightarrow it seems necessary to come with some optimisations to reduce the search space (*e.g.* the number of interleavings)

2 more primitives

 \longrightarrow this will allow us to analyse a larger class of protocols (e.g e-voting protocols, \dots)

Modularity issues (combination/composition)

Main result

The problem whether A and B are trace equivalent is decidable.

 \longrightarrow useful to decide privacy-type security properties

To go further

an efficient implementation

 \rightarrow it seems necessary to come with some optimisations to reduce the search space (*e.g.* the number of interleavings)

more primitives

 \longrightarrow this will allow us to analyse a larger class of protocols (e.g e-voting protocols, \dots)

Modularity issues (combination/composition)

VIP project

Jan. 2012 - Dec 2015.

 \longrightarrow A postdoc position and a PhD position are available.