
A Formal Analysis of Authentication in the TPM

Stéphanie Delaune1, Steve Kremer1, Mark D. Ryan2,
and Graham Steel1

1 LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France
2 School of Computer Science, University of Birmingham, UK

Thursday, September 30th, 2010

S. Delaune (LSV) Analysis of the TPM 30/09/2010 1 / 25



TPM - What is it?

Trusted Platform Module

Hardware chip designed to enable commodity
computers to achieve greater levels of security
than is possible in software alone.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 2 / 25



TPM - What is it?

Trusted Platform Module

Hardware chip designed to enable commodity
computers to achieve greater levels of security
than is possible in software alone.

more than 200 millions currently in existence (mostly in laptops)
−→ already used by some applications (e.g. Disk encryption)

specified by the Trusted Computing Group
−→ more than 700 pages of specification

http://www.trustedcomputinggroup.org

S. Delaune (LSV) Analysis of the TPM 30/09/2010 2 / 25

http://www.trustedcomputinggroup.org


TPM functionality

Secure storage:

TPM stores keys and other sensitive data in its shielded memory

A user can store content that is encrypted by keys only available to
the TPM.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 3 / 25



TPM functionality

Secure storage:

TPM stores keys and other sensitive data in its shielded memory

A user can store content that is encrypted by keys only available to
the TPM.

Platform authentication:

Each TPM chip has a unique and secret key

A platform can obtain keys by which it can authenticate itself reliably.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 3 / 25



TPM functionality

Secure storage:

TPM stores keys and other sensitive data in its shielded memory

A user can store content that is encrypted by keys only available to
the TPM.

Platform authentication:

Each TPM chip has a unique and secret key

A platform can obtain keys by which it can authenticate itself reliably.

TPM contains also some internal memory slots called PCRs.

Platform measurement and reporting: A platform can create reports of its
integrity and configuration state that can be relied on by a remote verifier.
−→ used to ensure that a PC is in a particular configuration before
starting an application.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 3 / 25



Our contributions

−→ formalise some commands and analyse them using an automated tool.

Formalise commands and security properties ...

we model a collection of 4 TPM commands
−→ e.g. CreateWrapKey, LoadKey2, . . .

we identify security properties
−→ injective agreement properties modelled as correspondence
properties

S. Delaune (LSV) Analysis of the TPM 30/09/2010 4 / 25



Our contributions

−→ formalise some commands and analyse them using an automated tool.

Formalise commands and security properties ...

we model a collection of 4 TPM commands
−→ e.g. CreateWrapKey, LoadKey2, . . .

we identify security properties
−→ injective agreement properties modelled as correspondence
properties

... in a way suitable to allow an automated tool to perform the analysis.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 4 / 25



Our contributions

−→ formalise some commands and analyse them using an automated tool.

Formalise commands and security properties ...

we model a collection of 4 TPM commands
−→ e.g. CreateWrapKey, LoadKey2, . . .

we identify security properties
−→ injective agreement properties modelled as correspondence
properties

... in a way suitable to allow an automated tool to perform the analysis.

Analysis (with the ProVerif tool)

we rediscover some known attacks and new variations of them

we propose some fixes

S. Delaune (LSV) Analysis of the TPM 30/09/2010 4 / 25



Outline

1 Introduction

2 An Overview of the TPM

3 Modelling the TPM

4 Analysing the TPM with ProVerif

5 Conclusion

S. Delaune (LSV) Analysis of the TPM 30/09/2010 5 / 25



Outline

1 Introduction

2 An Overview of the TPM

3 Modelling the TPM

4 Analysing the TPM with ProVerif

5 Conclusion

S. Delaune (LSV) Analysis of the TPM 30/09/2010 6 / 25



TPM key hierarchy

Cryptographic key

Keys are arranged in a tree structure and stored in the TPM memory
−→ Storage Root Key created by a special command

Authdata

To each TPM object or resource (e.g. keys) is associated an authdata
value

A shared secret between the user process and the TPM
−→ a password that has to be cited to use the object or resource

authdata is 20 bytes (160 bits)

S. Delaune (LSV) Analysis of the TPM 30/09/2010 7 / 25



Authorisation Sessions

The TPM provides two kinds of authorisation sessions:

1 Object Independent Authorisation Protocol (OIAP)

−→ can manipulate any objects, but works only for certain commands

2 Object Specific Authorisation Protocol (OSAP)

−→ it manipulates a specific object specified when the session is set
up

S. Delaune (LSV) Analysis of the TPM 30/09/2010 8 / 25



OIAP session

USER TPM

kh1 → [auth1, sk1, pk1]
...

khk → [authk, skk, pkk]Start OIAP

S. Delaune (LSV) Analysis of the TPM 30/09/2010 9 / 25



OIAP session

USER TPM

kh1 → [auth1, sk1, pk1]
...

khk → [authk, skk, pkk]Start OIAP

new Ne1sh, Ne1

S. Delaune (LSV) Analysis of the TPM 30/09/2010 9 / 25



OIAP session

USER TPM

kh1 → [auth1, sk1, pk1]
...

khk → [authk, skk, pkk]Start OIAP

new Ne1sh, Ne1

new No1
sh, kh1,No1, . . . , hmac(auth1, 〈Ne1,No1, . . .〉)

new Ne2
Ne2, . . . , hmac(auth1, 〈Ne2,No1, . . .〉)

S. Delaune (LSV) Analysis of the TPM 30/09/2010 9 / 25



OIAP session

USER TPM

kh1 → [auth1, sk1, pk1]
...

khk → [authk, skk, pkk]Start OIAP

new Ne1sh, Ne1

new No1
sh, kh1,No1, . . . , hmac(auth1, 〈Ne1,No1, . . .〉)

new Ne2
Ne2, . . . , hmac(auth1, 〈Ne2,No1, . . .〉)

...
new Nok

sh, khk,Nok, . . . , hmac(authk, 〈Nek,Nok, . . .〉)

...

S. Delaune (LSV) Analysis of the TPM 30/09/2010 9 / 25



OSAP session

USER TPM

new NoOSAP
kh→ [auth, sk, pk]Start OSAP, kh, NoOSAP

S. Delaune (LSV) Analysis of the TPM 30/09/2010 10 / 25



OSAP session

USER TPM

new NoOSAP
kh→ [auth, sk, pk]Start OSAP, kh, NoOSAP

new NeOSAP

new Ne1sh, NeOSAP, Ne1

S. Delaune (LSV) Analysis of the TPM 30/09/2010 10 / 25



OSAP session

USER TPM

new NoOSAP
kh→ [auth, sk, pk]Start OSAP, kh, NoOSAP

new NeOSAP

new Ne1sh, NeOSAP, Ne1

Computation of the OSAP shared secret

ss = hmac(auth, 〈NeOSAP
,NoOSAP〉)

S. Delaune (LSV) Analysis of the TPM 30/09/2010 10 / 25



OSAP session

USER TPM

new NoOSAP
kh→ [auth, sk, pk]Start OSAP, kh, NoOSAP

new NeOSAP

new Ne1sh, NeOSAP, Ne1

Computation of the OSAP shared secret

ss = hmac(auth, 〈NeOSAP
,NoOSAP〉)

new No1
sh,No1, . . . , hmac(ss, 〈Ne1,No1, . . .〉)

new Ne2
Ne2, . . . , hmac(ss, 〈Ne2,No1, . . .〉)

...

S. Delaune (LSV) Analysis of the TPM 30/09/2010 10 / 25



TPM-CreateWrapKey

Goal: Create the key and returns it protected by an encryption.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 11 / 25



TPM-CreateWrapKey

Goal: Create the key and returns it protected by an encryption.

Description: Assuming an OSAP session has been established

USER TPM
[auth, sk, pk]

S. Delaune (LSV) Analysis of the TPM 30/09/2010 11 / 25



TPM-CreateWrapKey

Goal: Create the key and returns it protected by an encryption.

Description: Assuming an OSAP session has been established

USER TPM
[auth, sk, pk]new No1

new newauth sh,No1, cipher, hmac(ss, 〈cwk, cipher,Ne1,No1〉)

where:

cipher = senc(newauth, hash(ss,Ne1))

S. Delaune (LSV) Analysis of the TPM 30/09/2010 11 / 25



TPM-CreateWrapKey

Goal: Create the key and returns it protected by an encryption.

Description: Assuming an OSAP session has been established

USER TPM
[auth, sk, pk]new No1

new newauth sh,No1, cipher, hmac(ss, 〈cwk, cipher,Ne1,No1〉)

new Ne2

new SKNe2, pk(SK),wrp, hmac(ss, 〈cwk,wrp, pk(SK),Ne2,No1〉)

where:

cipher = senc(newauth, hash(ss,Ne1))

wrp = wrap(〈SK, newauth, tpmproof〉, pk)

S. Delaune (LSV) Analysis of the TPM 30/09/2010 11 / 25



TPM-CertifyKey

Goal: allow a user to obtain a certificate on a key.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 12 / 25



TPM-CertifyKey

Goal: allow a user to obtain a certificate on a key.

Description: Assuming two OAIP sessions have been established

USER TPM
kh1 → [auth1, sk1, pk1]

kh2 → [auth2, sk2, pk2]
new No1

new No2

new N
N, sh1, kh1,No1, hmac(auth1, 〈cfk,N,Ne1,No1〉)

sh2, kh2,No2, hmac(auth2, 〈cfk,N,Ne2,No2〉)
new Ne′1
new Ne′2

certif, Ne′1, hmac(auth1, 〈cfk,N,Ne′1,No1, certif〉)

Ne′2, hmac(auth2, 〈cfk,N,Ne′2,No2, certif〉)

where:

certif = cert(pk2, sk1)

S. Delaune (LSV) Analysis of the TPM 30/09/2010 12 / 25



Outline

1 Introduction

2 An Overview of the TPM

3 Modelling the TPM

4 Analysing the TPM with ProVerif

5 Conclusion

S. Delaune (LSV) Analysis of the TPM 30/09/2010 13 / 25



The ProVerif tool (B. Blanchet)

Available on line:

http://www.proverif.ens.fr/

Input: processes written in applied pi calculus

Characteristics

unbounded number of sessions

primitives given by an equational theory

security properties: (strong) secrecy, correspondence properties,
equivalence properties

sound but not complete
−→ sometimes, the tool reports some false attacks

S. Delaune (LSV) Analysis of the TPM 30/09/2010 14 / 25

http://www.proverif.ens.fr/


Modelling

How to get rid of non-monotonic global state?

only one command is executed in each OIAP or OSAP session
−→ the TPM imposes this restriction itself for certain command
(e.g. CreateWrapKey)
−→ some tools that provides software-level API’s also implement it

do not allow keys to be deleted from the memory of the TPM
−→ we allow an unbounded number of keys to be loaded

S. Delaune (LSV) Analysis of the TPM 30/09/2010 15 / 25



Modelling

How to get rid of non-monotonic global state?

only one command is executed in each OIAP or OSAP session
−→ the TPM imposes this restriction itself for certain command
(e.g. CreateWrapKey)
−→ some tools that provides software-level API’s also implement it

do not allow keys to be deleted from the memory of the TPM
−→ we allow an unbounded number of keys to be loaded

Modelling the key table

an entry

private functions to model a lookup in the table

S. Delaune (LSV) Analysis of the TPM 30/09/2010 15 / 25



Modelling

How to get rid of non-monotonic global state?

only one command is executed in each OIAP or OSAP session
−→ the TPM imposes this restriction itself for certain command
(e.g. CreateWrapKey)
−→ some tools that provides software-level API’s also implement it

do not allow keys to be deleted from the memory of the TPM
−→ we allow an unbounded number of keys to be loaded

Modelling the key table

an entry handle(auth, sk)

private functions to model a lookup in the table

getAuth(handle(auth, sk)) = auth
getSK(handle(auth, sk)) = sk

S. Delaune (LSV) Analysis of the TPM 30/09/2010 15 / 25



Modelling

How to get rid of non-monotonic global state?

only one command is executed in each OIAP or OSAP session
−→ the TPM imposes this restriction itself for certain command
(e.g. CreateWrapKey)
−→ some tools that provides software-level API’s also implement it

do not allow keys to be deleted from the memory of the TPM
−→ we allow an unbounded number of keys to be loaded

Modelling the key table

an entry handle(auth, sk)

private functions to model a lookup in the table

getAuth(handle(auth, sk)) = auth
getSK(handle(auth, sk)) = sk

−→ false attacks based on the hypothesis that the attacker knows
handle(auth1, sk) and handle(auth2, sk).

S. Delaune (LSV) Analysis of the TPM 30/09/2010 15 / 25



Modelling

How to get rid of non-monotonic global state?

only one command is executed in each OIAP or OSAP session
−→ the TPM imposes this restriction itself for certain command
(e.g. CreateWrapKey)
−→ some tools that provides software-level API’s also implement it

do not allow keys to be deleted from the memory of the TPM
−→ we allow an unbounded number of keys to be loaded

Modelling the key table

an entry handle(auth, seed)

private functions to model a lookup in the table

getAuth(handle(auth, seed)) = auth
getSK(handle(auth, seed)) = hsk(auth, seed)

S. Delaune (LSV) Analysis of the TPM 30/09/2010 15 / 25



Modelling Commands

Two processes for each command:

a USER process models a honest user who makes a call to the TPM

a TPM process models the TPM itself

−→ the attacker schedules honest user actions

S. Delaune (LSV) Analysis of the TPM 30/09/2010 16 / 25



Security Properties

secrecy of the private keys stored in the device (if their parent key is
not compromised).

S. Delaune (LSV) Analysis of the TPM 30/09/2010 17 / 25



Security Properties

secrecy of the private keys stored in the device (if their parent key is
not compromised).

[TPM specification Part I, p. 60]

« The design criterion of the protocols is to allow for ownership

authentication, command and parameter authentication and

prevent replay and man in the middle attacks. »

S. Delaune (LSV) Analysis of the TPM 30/09/2010 17 / 25



Security Properties

secrecy of the private keys stored in the device (if their parent key is
not compromised).

[TPM specification Part I, p. 60]

« The design criterion of the protocols is to allow for ownership

authentication, command and parameter authentication and

prevent replay and man in the middle attacks. »

Our interpretation:

authentication of user commands
−→ intuitively ensured by the authorisation hmacs

authentication of the TPM
−→ intuitively ensured by the hmacs returned by the TPM

−→ We formalise these as correspondance properties

S. Delaune (LSV) Analysis of the TPM 30/09/2010 17 / 25



Outline

1 Introduction

2 An Overview of the TPM

3 Modelling the TPM

4 Analysing the TPM with ProVerif

5 Conclusion

S. Delaune (LSV) Analysis of the TPM 30/09/2010 18 / 25



Methodology

We consider four commands:

CreateWrapKey, LoadKey, CertifyKey, and UnBind.

Step 1: each command in isolation

Configuration 1: two honest keys [auth1, sk1, pk1], [auth2, sk2, pk2]

Configuration 2: + an additional honest key [auth2, sk
′

2, pk′2]

Configuration 3: + a dishonest key [authi , ski , pk
i
]

S. Delaune (LSV) Analysis of the TPM 30/09/2010 19 / 25



Methodology

We consider four commands:

CreateWrapKey, LoadKey, CertifyKey, and UnBind.

Step 1: each command in isolation

Configuration 1: two honest keys [auth1, sk1, pk1], [auth2, sk2, pk2]

Configuration 2: + an additional honest key [auth2, sk
′

2, pk′2]

Configuration 3: + a dishonest key [authi , ski , pk
i
]

−→ We propose a fix version of each of this command

Step 2: the four commands together

Configuration 4: an honest key [auth, sk, pk]
+ a dishonest key [authi , ski , pki ]

S. Delaune (LSV) Analysis of the TPM 30/09/2010 19 / 25



CertifyKey command (1)

Configuration 1: [auth1, sk1, pk1], [auth2, sk2, pk2].

Attack: swap the two authorisation hmacs.
−→ TPM sends cert(pk1, sk2) whereas the user asked for cert(pk2, sk1)

Why is this possible ?

−→ the two authorisation hmacs look very similar

hmac(auth1, 〈cfk,N,Ne1,No1〉)
hmac(auth2, 〈cfk,N,Ne2,No2〉)

S. Delaune (LSV) Analysis of the TPM 30/09/2010 20 / 25



CertifyKey command (1)

Configuration 1: [auth1, sk1, pk1], [auth2, sk2, pk2].

Attack: swap the two authorisation hmacs.
−→ TPM sends cert(pk1, sk2) whereas the user asked for cert(pk2, sk1)

Why is this possible ?

−→ the two authorisation hmacs look very similar

hmac(auth1, 〈cfk,N,Ne1,No1〉)
hmac(auth2, 〈cfk,N,Ne2,No2〉)

A possible fix:
hmac(auth1, 〈cfk1,N,Ne1,No1〉)
hmac(auth2, 〈cfk2,N,Ne2,No2〉)

−→ the two correspondence properties hold on Configuration 1

S. Delaune (LSV) Analysis of the TPM 30/09/2010 20 / 25



CertifyKey command (2)

Configuration 2: [auth1, sk1, pk1], [auth2, sk2, pk2], [auth2, sk
′

2, pk′2]

Attack: exchange the key handle [auth2, sk2, pk2] with [auth2, sk
′

2, pk′2].
−→ TPM sends cert(pk′2, sk1) whereas the user asked for cert(pk2, sk1).

Why is this possible?

−→ the authorisation hmacs do not depend on the key but only on the
authdata.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 21 / 25



CertifyKey command (2)

Configuration 2: [auth1, sk1, pk1], [auth2, sk2, pk2], [auth2, sk
′

2, pk′2]

Attack: exchange the key handle [auth2, sk2, pk2] with [auth2, sk
′

2, pk′2].
−→ TPM sends cert(pk′2, sk1) whereas the user asked for cert(pk2, sk1).

Why is this possible?

−→ the authorisation hmacs do not depend on the key but only on the
authdata.

A possible fix: add the (digest of the) public part of the key.

hmac(auth1, 〈cfk1, pk1,N,Ne1,No1〉)
hmac(auth2, 〈cfk2, pk2,N,Ne2,No2〉)

−→ the two correspondence properties now hold on Configuration 2

S. Delaune (LSV) Analysis of the TPM 30/09/2010 21 / 25



CerifyKey command (3)

Configuration 3: as before + [authi , ski , pk
i
]

Attack: replace the key to be certified by pk
i
.

−→ TPM sends cert(pk
i
, sk1) whereas the user asked for cert(pk2, sk1)

How is this possible?
−→ The two authorisation hmacs are linked together only through the
nonce N (known by the attacker).

Intercept hmac(auth2, 〈cfk2, pk2,N,Ne2,No2〉)

Send hmac(authi, 〈cfk2, pki,N,Ne2,No2〉).

S. Delaune (LSV) Analysis of the TPM 30/09/2010 22 / 25



CerifyKey command (3)

Configuration 3: as before + [authi , ski , pk
i
]

Attack: replace the key to be certified by pk
i
.

−→ TPM sends cert(pk
i
, sk1) whereas the user asked for cert(pk2, sk1)

How is this possible?
−→ The two authorisation hmacs are linked together only through the
nonce N (known by the attacker).

Intercept hmac(auth2, 〈cfk2, pk2,N,Ne2,No2〉)

Send hmac(authi, 〈cfk2, pki,N,Ne2,No2〉).

A possible fix:

hmac(auth1, 〈cfk1, pk1, pk2,N,Ne1,No1〉)
hmac(auth2, 〈cfk2, pk2, pk1,N,Ne2,No2〉)

−→ the two correspondence properties now hold on Configuration 3
S. Delaune (LSV) Analysis of the TPM 30/09/2010 22 / 25



The 4 commands together

Configuration 4: an honest key [auth, sk, pk]
+ a dishonest key [authi , ski , pki ]

−→ we do not need to add more since the user can now create his own
key and the attacker also.

Results:

ProVerif establishes the 8 correspondences properties. It fails to prove the
injective version of one of them (false attack).

S. Delaune (LSV) Analysis of the TPM 30/09/2010 23 / 25



The 4 commands together

Configuration 4: an honest key [auth, sk, pk]
+ a dishonest key [authi , ski , pki ]

−→ we do not need to add more since the user can now create his own
key and the attacker also.

Results:

ProVerif establishes the 8 correspondences properties. It fails to prove the
injective version of one of them (false attack).

All the files for our experiments are available on line at:

http://www.lsv.ens-cachan.fr/~delaune/TPM/.

S. Delaune (LSV) Analysis of the TPM 30/09/2010 23 / 25

http://www.lsv.ens-cachan.fr/~delaune/TPM/


Outline

1 Introduction

2 An Overview of the TPM

3 Modelling the TPM

4 Analysing the TPM with ProVerif

5 Conclusion

S. Delaune (LSV) Analysis of the TPM 30/09/2010 24 / 25



Conclusion

Conclusion

We formalise 4 commands of the TPM and their security properties
−→ injective agreement properties as correspondence properties

Analysis with the ProVerif tool
−→ we rediscovered some attacks
−→ we propose some fixes

We foresee extending our model to deal with:

Key migration commands;

Platform Configuration Registers (PCRs);

. . .

S. Delaune (LSV) Analysis of the TPM 30/09/2010 25 / 25


	Introduction
	An Overview of the TPM
	Modelling the TPM
	Analysing the TPM with ProVerif
	Conclusion

