Verification of security protocols

via constraint solving

Stéphanie Delaune

January 5, 2009

Stéphanie Delaune () Security via constraint solving January 5, 2009

Cryptographic protocols

Cryptographic protocols
@Palemm__ @ small programs designed to secure

Internet communication

@ use cryptographic primitives (e.g.
encryption, hash function, ...)

cliquer ici pour accéder a la

signature de votre déclaration

Stéphanie Delaune () Security via constraint solving January 5, 2009 2/ 34

Security properties

Secrecy: May an intruder learn some secret message between two honest
participants 7

Authentication: Is the agent Alice really talking to Bob ?

Stéphanie Delaune ()

Security via constraint solving

January 5, 2009 3/34

Security properties

Secrecy: May an intruder learn some secret message between two honest
participants 7

Authentication: Is the agent Alice really talking to Bob ?

VOTE Privacy: Alice participate to an election.

for May a participant learn something about the
me vote of Alice ?

Receipt-Freeness: Alice participate to an election. Does Alice gain any

information (a receipt) which can be used to prove to a coercer that she
voted in a certain way 7

Fairness: ...

Stéphanie Delaune () Security via constraint solving January 5, 2009 3/34

Cryptographic primitives

Symmetric encryption

encryption decryption

o g

Stéphanie Delaune () Security via constraint solving January 5, 2009 4 /34

Cryptographic primitives

Symmetric encryption

encryption

ﬁ’ decryption

3 3

Asymmetric encryption

encryption ﬁ’ decryption l

ﬂ public key K private key

January 5, 2009 4 /34

Stéphanie Delaune () Security via constraint solving

Verification of cryptographic protocols

Stéphanie Delaune () Security via constraint solving January 5, 2009 5/ 34

Verification of cryptographic protocols

How cryptographic protocols can be attacked?

Breaking encryption

B[

Stéphanie Delaune () Security via constraint solving January 5, 2009 5/ 34

Verification of cryptographic protocols

How cryptographic protocols can be attacked?

Breaking encryption Logical attack

Stéphanie Delaune () Security via constraint solving January 5, 2009

Logical attack — What is it?

transfer 100 euros on
merchant’s bank account

Stéphanie Delaune () Security via constraint solving January 5, 2009

Logical attack — What is it?

transfer 100 euros on
merchant’s bank account

transfer 100 euros on

merchant’s bank account

Stéphanie Delaune () Security via constraint solving January 5, 2009

Logical attack — What is it?

transfer 100 euros on
merchant’s bank account

transfer 100 euros on

merchant’s bank account

transfer 100 euros on

merchant’s bank account

transfer 100 euros on

merchant’s bank account

Stéphanie Delaune () Security via constraint solving January 5, 2009 6 /34

Credit Card Payment Protocol

0123 4567 8901 2345

5 0z/02 ©. 8RElE

Stéphanie Delaune () Security via constraint solving January 5, 2009 7/ 34

Example: credit card payment

@ The client C/ puts his credit card C in the
terminal T.

@ The merchant enters the amount M of the sale.

@ The terminal authenticates the credit card.

@ The client enters his PIN.
If M > €100, then in 20% of cases,

o The terminal contacts the bank B.

o The banks gives its authorisation.

Stéphanie Delaune () Security via constraint solving January 5, 2009 8 /34

More details

the Bank B , the Client C/, the Credit Card C and the Terminal T

Stéphanie Delaune () Security via constraint solving January 5, 2009 9 /34

More details

the Bank B , the Client C/, the Credit Card C and the Terminal T
Bank

@ a private signature key — priv(B)
@ a public key to verify a signature — pub(B)
@ a secret key shared with the credit card — K¢

Stéphanie Delaune () Security via constraint solving January 5, 2009 9 /34

More details

the Bank B , the Client C/, the Credit Card C and the Terminal T
Bank

@ a private signature key — priv(B)
@ a public key to verify a signature — pub(B)
@ a secret key shared with the credit card — K¢

Credit Card
@ some Data: name of the cardholder, expiry date ...
@ a signature of the Data — sign(Data, priv(B))
@ a secret key shared with the bank — K¢g

Stéphanie Delaune () Security via constraint solving January 5, 2009

More details

the Bank B , the Client C/, the Credit Card C and the Terminal T
Bank

@ a private signature key — priv(B)

@ a public key to verify a signature — pub(B)

@ a secret key shared with the credit card — K¢
Credit Card

@ some Data: name of the cardholder, expiry date ...

@ a signature of the Data — sign(Data, priv(B))

@ a secret key shared with the bank — K¢g

Terminal
@ the public key of the bank — pub(B)

Stéphanie Delaune () Security via constraint solving January 5, 2009

Payment protocol

the terminal T reads the credit card C:
1. C — T: Data,sign(Data,priv(B))

Stéphanie Delaune () Security via constraint solving January 5, 2009 10 / 34

Payment protocol

the terminal T reads the credit card C:

1. C — T: Data,sign(Data,priv(B))

the terminal T asks the code:

2. T — C(l: code?
3. Cl — C: 1234
4. C — T: ok

Stéphanie Delaune ()

Security via constraint solving

January 5, 2009

Payment protocol

the terminal T reads the credit card C:
1. C — T: Data,sign(Data,priv(B))

the terminal T asks the code:

2. T — C(l: code?
3. Cl — C: 1234
4. C — T: ok

the terminal T requests authorisation the bank B:

5. T — B: auth?

6. B — T : 4528965874123

7. T — (C: 4528965874123

8. C — T : enc(4528965874123, K¢cg)
9. T — B: enc(4528965874123, Kcg)
10. B — T: ok

Stéphanie Delaune () Security via constraint solving January 5, 2009

Attacks on the credit card

Security was initially ensured by:

— h
(S o

-

o the cards were difficult to reproduce, D123 4sL7 8701 23us

5 202 €. 5IEE

@ the protocol and the keys were secret.

Stéphanie Delaune () Security via constraint solving January 5, 2009 11 / 34

Attacks on the credit card

Security was initially ensured by:

@ the cards were difficult to reproduce, 0123 4sb? 8901 2345

=

@ the protocol and the keys were secret.

But there are some flaws:
@ cryptographic flaw: keys of 320 bits are too small,

o logical flaw: no link between the secret code and the authentication of
the card;

o fake cards can be easily build.

— "YesCard" built by Serge Humpich (1997).]

Stéphanie Delaune () Security via constraint solving January 5, 2009 11 / 34

YesCard: How does it work?

Logical Flaw:
1.C — T :Data,sign(Data, priv(B))
2.T — Cl :code?
3.1 — C :1234
4.C — T :ok

Stéphanie Delaune () Security via constraint solving January 5, 2009

YesCard: How does it work?

Logical Flaw:
1.C — T :Data,sign(Data, priv(B))
2.T — Cl :code?
3.1 — C" :0000
4.C" — T :ok

Stéphanie Delaune () Security via constraint solving January 5, 2009

YesCard: How does it work?

Logical Flaw:
1.C — T :Data,sign(Data, priv(B))
2.T — Cl :code?
3.1 — C" :0000
4.C" — T :ok

—— Note that there is someone to debit.

Stéphanie Delaune () Security via constraint solving January 5, 2009

YesCard: How does it work?

Logical Flaw:
1.C — T :Data,sign(Data, priv(B))
2.T — Cl :code?
3.C — C' :0000
4.C" — T :ok

—— Note that there is someone to debit.

YesCard (by Serge Humpich)

1. — T XXX, sign(XXX, priv(B))
2.T — Cl :code?

3./ — C’ :0000

4.C" — T :ok

Stéphanie Delaune () Security via constraint solving January 5, 2009

Needham-Schroeder’s protocol

Stéphanie Delaune () Security via constraint solving January 5, 2009 13 / 34

Needham-Schroeder’s Protocol (1978)

B: {A7 Na}pub(B)
A: {Na7 Nb}pub(A)
B: {Nb}pub(B)

>
Ll

Stéphanie Delaune () Security via constraint solving January 5, 2009 14 / 34

Needham-Schroeder’s Protocol (1978)

B: {Av Na}pub(B)
A: {Naa Nb}pub(A)
B: {Nb}pub(B)

> >
Ll

Stéphanie Delaune () Security via constraint solving January 5, 2009 14 / 34

Needham-Schroeder’s Protocol (1978)

B: {Av Na}pub(B)
A: {Na7 Nb}pub(A)
B: {Nb}pub(B)

> W
L

Stéphanie Delaune () Security via constraint solving January 5, 2009 14 / 34

Needham-Schroeder’s Protocol (1978)

B: {Av Na}pub(B)
A: {Na7 Nb}pub(A)
B: {Nb}pub(B)

> >
Ll

Stéphanie Delaune () Security via constraint solving January 5, 2009 14 / 34

Needham-Schroeder’s Protocol (1978)

B: {Av Na}pub(B)
A: {Na7 Nb}pub(A)
B: {Nb}pub(B)

> >
Ll

Questions
o Is N, secret between A and B 7

@ When B receives { N }pun(8), does this message really comes from A ?

Stéphanie Delaune () Security via constraint solving January 5, 2009 14 / 34

Needham-Schroeder’s Protocol (1978)

B: {Av Na}pub(B)
A: {Na7 Nb}pub(A)
B: {Nb}pub(B)

> >
Ll

Questions
o Is N, secret between A and B 7

@ When B receives { N }pun(8), does this message really comes from A ?

An attack was found 17 years after its publication! [Lowe 96] l

Stéphanie Delaune () Security via constraint solving January 5, 2009 14 / 34

Example: Man in the Middle Attack

o

Agent A Intrus |

@ involving 2 sessions in parallel, A—B : {A Na}tpub()
B — At {Na Np}pub(a)
A — B {Np}pun(B)

@ an honest agent has to initiate a
session with .

Stéphanie Delaune () Security via constraint solving January 5, 2009 15 / 34

Example: Man in the Middle Attack
{A, Na}pub(r) {A, Na}toub(B)

Agent A Intrus |

A—B : {A Natpun()
B — At {Na Np}pub(a)
A — B {Np}pun(B)

Stéphanie Delaune () Security via constraint solving January 5, 2009 15 / 34

Example: Man in the Middle Attack

{A, Na}pub(n) {A, Na}oub(B)
) <« {Na Notoub(a) < {Na Nt pub(ay

Agent A Intrus |

A—B : {A Natpub()
B — A {Na Nbtpup(a)
A — B {Np}pun(B)

Stéphanie Delaune () Security via constraint solving January 5, 2009 15 / 34

Example: Man in the Middle Attack

{A, Na}pub(n) {A, Na}oub(B)
) <« {Na Notoub(a) < {Na Nt pub(ay
{Nb} pub(r) \ {Nb}pub(B)
Agent A Intrus |

A—B : {A Natpub()
B—A : {Naa Nb}pub(A)
A— B : {Np}pun(s)

Stéphanie Delaune () Security via constraint solving January 5, 2009 15 / 34

Example: Man in the Middle Attack

{A, Na}oub(n) {A, Na}oub(B)
; /] < {Nav Nb}pub(A) g < {Naa Nb}pub(A)
E {Nb} pub(r) A {Nb} pub(B)
Agent A Intrus |

A—B : {A Natpub()
B—A : {Naa Nb}pub(A)
A — B {Np}pun(B)

o the intruder knows N,

® When B finishes his session
(apparently with A), A has never
talked with B.

Stéphanie Delaune () Security via constraint solving January 5, 2009 15 / 34

Logical attacks - How to detect them?

Symbolic approach

@ messages are represented by terms rather than bit-strings
< {m}y encryption of the message m with key k,
— (my, my) pairing of messages my and my, ...

@ attacker controls the network and can perform specific actions

Stéphanie Delaune () Security via constraint solving January 5, 2009

Logical attacks - How to detect them?

Symbolic approach

@ messages are represented by terms rather than bit-strings
< {m}y encryption of the message m with key k,
— (my, my) pairing of messages my and my, ...

@ attacker controls the network and can perform specific actions

Relevance of the approach
@ numerous attacks have already been obtained,
@ allows us to perform automatic verification, e.g. AVISPA, Proverif, ...

@ soundness results already exist, e.g. [Micciancio & Warinschi'04]

Stéphanie Delaune () Security via constraint solving January 5, 2009 16 / 34

Outline of the talk

© Introduction
© How to deal with trace properties (e.g. secrecy, authentication, . ..)?
© How to deal with equivalence based properties (e.g. privacy, ...)?

© Conclusion

Stéphanie Delaune () Security via constraint solving January 5, 2009 17 / 34

Outline of the talk

© How to deal with trace properties (e.g. secrecy, authentication, . ..)?

Stéphanie Delaune () Security via constraint solving January 5, 2009 18 / 34

Deduction capabilities of the attacker

Composition rules

THu TrFHv Thru Thkv

with f € {enc, enca,sign}
THE(u,v) THAf(u,v)

Decomposition rules

e T TF(u,v) T+ {u,v) TFenc(u,v) Thv
Thu Thu Thv Thu

T +enca(u, pub(v)) T I priv(v) T I sign(u, priv(v))
ThHu THu

(optional)

Deducibility relation

A term u is deducible from a set of terms T, denoted by T F u, if there
exists a prooftree witnessing this fact.

Stéphanie Delaune () Security via constraint solving January 5, 2009 19 / 34

A simple protocol

(Bob, k)

(Alice, enc(s, k))

Stéphanie Delaune () Security via constraint solving January 5, 2009 20 / 34

A simple protocol

(Bob, k)

(Alice, enc(s, k))

Can the attacker learn the secret s? l

Stéphanie Delaune () Security via constraint solving January 5, 2009 20 / 34

A simple protocol

(Bob, k)

(Alice, enc(s, k))

Answer: Of course, Yes!

(Alice, enc(s, k)) (Bob, k)
enc(s, k) k

Stéphanie Delaune () Security via constraint solving January 5, 2009

Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.

Stéphanie Delaune () Security via constraint solving January 5, 2009 21 /34

Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.

TF {<m1? m2>}pub(A)
T = {m1}pub(a)

Prefix Intruder (e.g. Cipher Block Chaining)

Stéphanie Delaune () Security via constraint solving January 5, 2009 21 /34

Deducibility problem - Some existing results

— depends on the deduction capabilities of the intruder

Dolev-Yao intruder

The deducibility problem is decidable in polynomial time.

TF {<m1? m2>}pub(A)
T = {m1}pub(a)

Taking into account algebraic properties of the cryptographic primitives
(e.g. RSA encrytpion)

Prefix Intruder (e.g. Cipher Block Chaining)

. dec(enc(x, pub(y)), priv(y)) = x
" | enc(dec(x, priv(y)), pub(y)) = x
TEm THEK TEm
———— f € {dec,enc} my =g my
T+ f(m, k) TEFm

Stéphanie Delaune () Security via constraint solving January 5, 2009

Protocol — Example: Needham Schroeder protocol (1978)

Needham Schroeder protocol:

{Na7 A}pub(B)
{Na, Nb}pub(a)
{Nb}pub(B)

Stéphanie Delaune () Security via constraint solving January 5, 2009 22 /34

Protocol — Example: Needham Schroeder protocol (1978)

Needham Schroeder protocol:

B: {Na7A}pub(B)
A {Na, Np}pub(a)
B: {Nb}pub(B)

A
B
A

Ll

A protocol is a finite set of roles:

Exemple:

role M(1) corresponding to the 1%t participant played by a talking to b:

init 2 enca((N, a), pub(b))
enca((N, x), pub(a)) — enca(x, pub(b)).

Stéphanie Delaune () Security via constraint solving

January 5, 2009

22 / 34

Trace properties in presence of an active attacker

Insecurity problem (bounded number of sessions)

Let 7 be an inference system modelling the attacker.

INPUT: a finite set Ry,..., Ry of instances of roles,

a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

Stéphanie Delaune ()

Security via constraint solving

January 5, 2009 23 /34

Trace properties in presence of an active attacker

Insecurity problem (bounded number of sessions)

Let 7 be an inference system modelling the attacker.

INPUT: a finite set Ry,..., Ry of instances of roles,
a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

OUTPUT: Does there exist an interleaving of Ry,..., Rm
runnable from Ty w.r.t. 7 at the end of which
@ the intruder knowledge is T, and

@ s is deducible from T in Z7

Stéphanie Delaune ()

Security via constraint solving

January 5, 2009

Trace properties in presence of an active attacker

Insecurity problem (bounded number of sessions)

Let 7 be an inference system modelling the attacker.

INPUT: a finite set Ry,..., Ry of instances of roles,
a finite set Ty of terms (initial intruder knowledge),
a term s (the secret)

OUTPUT: Does there exist an interleaving of Ry,..., Rm
runnable from Ty w.r.t. 7 at the end of which
@ the intruder knowledge is T, and

@ s is deducible from T in Z7

Security properties (trace properties): e.g. secrecy, some kinds of
authentication properties,

Stéphanie Delaune ()

Security via constraint solving

January 5, 2009

Secrecy via constraint system

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario

rev(ur) M snd(v1)

rev(uz) M snd(v»)

n

rev(un) N snd(v,)

Stéphanie Delaune () Security via constraint solving January 5, 2009

Secrecy via constraint system

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario Constraint System
N
rev(r) ™ snd(w) Tolk uy
rev(uz) My snd(v») c— To, vi Ik up
rev(un) N snd(v,) To,vi,.,vples

Stéphanie Delaune () Security via constraint solving January 5, 2009

Secrecy via constraint system

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario Constraint System
N
rev(r) ™ snd(w) Tolk uy
rev(uz) My snd(v») c— To, vi Ik up
rev(un) N snd(v,) To,vi,.,vples

Solution of a constraint system

A substitution o such that
for every T |- u € C, uo is deducible from To.

Stéphanie Delaune () Security via constraint solving January 5, 2009

Secrecy via constraint system

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario Constraint System
N
rev(r) ™ snd(w) Tolk uy
rev(uz) My snd(v») c— To, vi Ik up
rev(un) N snd(v,) To,vi,.,vples

Well-formed constraint system

@ monotonicity: intruder never forgets information

@ origination: a variable first appear in a right hand side.

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

init — {a,na}pub(,)
{navxnb}pub(a) - {an}pub(l)

{Ya YnaYoub(b) — {¥ia» b} pub(ys)

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {2, Na}pub()

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {2, na}pub(ry & {¥as Yn, }pub(b)

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {2, na}pub(ry & {¥as Yn, }pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya)

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’nb}pub(ya) I {na?xnb}pub(a)

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {aa na}pub(l) I {yaayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’ nb}pub(ya)7 {an}pub(l)

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution a:{ya'—> sy Yna /™ 5 Xnp }

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution o ={yar>a, ¥n, = Na, Xp, — }

Stéphanie Delaune () Security via constraint solving January 5, 2009

Running example: Needham-Schroeder’s protocol

Ra(a,) and Rg(b) (running in parallel)

1 init — {a,na}pub(,)
3 {na,an}pub(a) - {an}pub(l)

2 {Ya, Ynatoub() — {¥na» Mb}publ(ya)

Constraints System

To, {a, na}pub(l) I {}/aayna}pub(b)
To, {aa na}pub(l): {yna’ nb}pub(ya) I {na? an}pub(a)
To, {aa na}pub(l): {yna’nb}pub(ya)a {an}pub(l) = np

Solution o ={yat>a, Yn, — Na, Xp, — Np}

Stéphanie Delaune () Security via constraint solving January 5, 2009

Some existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)

Stéphanie Delaune () Security via constraint solving January 5, 2009 26 / 34

Some existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)
Few generic results

@ procedure to solve constraint systems for a class of intruder
< e.g. any intruder who can be described by a subterm convergent
rewiting system

@ combination result for disjoint intruder models.

Stéphanie Delaune () Security via constraint solving January 5, 2009 26 / 34

Some existing results

Many theoretical results for different intruder models

@ to take into account algebraic properties of cryptographic primitives
(exclusive or, cipher block chaining, ...)

@ to take into account the fact that some data are poorly-chosen (e.g.
passwords)
Few generic results

@ procedure to solve constraint systems for a class of intruder
< e.g. any intruder who can be described by a subterm convergent
rewiting system

@ combination result for disjoint intruder models.

Some tools
@ AVISPA tool (Atse, OFMCQ)

Stéphanie Delaune () Security via constraint solving January 5, 2009 26 / 34

Outline of the talk

© How to deal with equivalence based properties (e.g. privacy, ...)?

Stéphanie Delaune () Security via constraint solving January 5, 2009 27 / 34

Motivation: Electronic voting

Advantages:

. '\ LY
o Convenient, v

o Efficient facilities for tallying votes.

Drawbacks:
@ Risk of large-scale and undetectable fraud,

@ Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards
and sell them on the Internet that would allow for
multiple votes" Avi Rubin

Possible issue: formal methods
abstract analysis of the protocol against formally-stated properties

Stéphanie Delaune () Security via constraint solving January 5, 2009

Expected properties

Privacy: the fact that a particular voter voted in a particular way is not
revealed to anyone

Receipt-freeness: a voter cannot prove that she
voted in a certain way (this is important to pro-
tect voters from coercion)

Coercion-resistance: same as receipt-freeness, but the coercer interacts
with the voter during the protocol, e.g. by preparing messages

Stéphanie Delaune () Security via constraint solving January 5, 2009 20 / 34

How to model such security properties?

Formalisation of Privacy
— consider 2 honest voters and swap their votes

A voting protocol respects privacy if

SIVa{?/v} | Ve{®/v}] = S[Va{®/v} | V&{?/.}]-

Stéphanie Delaune () Security via constraint solving January 5, 2009 30 / 34

How to model such security properties?

Formalisation of Privacy
— consider 2 honest voters and swap their votes

A voting protocol respects privacy if

SIVa{?/v} | Ve{®/v}] = S[Va{®/v} | V&{?/.}]-

Formalisation of Receipt-freeness and Coercion-resistance in term of
equivalence.

Stéphanie Delaune () Security via constraint solving January 5, 2009

Constraint solving

In terms of constraint system, the main ingredient to decide ~:

C1 ~ Cy: equivalence of (well-formed) constraint systems J

What does it mean?

© this does not mean that C; and C, have the same set of (first-order)

solutions.
© Given a solution o, let A, = {\L, ..., \X} be the witnesses of the fact
that o is a solution of
Tk
C:= :
Tg I+ up

Cl ~ Cg iff {Ao | o c 50/(61)} = {Aa ‘ (RS SOI(CQ)}

Stéphanie Delaune () Security via constraint solving January 5, 2009

Existing results

A lot of results in the passive case
@ to take into account algebraic properties (exclusive or, .. .)
@ combination result for disjoint equational theories,

@ YAPA tool that works for subterm convergent theories and more

Active case: very few results
@ decision procedure for subterm convergent theories (not implemented)
@ ProVerif tool

Stéphanie Delaune () Security via constraint solving January 5, 2009 32 /34

Ongoing work

Motivation: verification of privacy type proeprties in e-voting protocols

Passive case:
—— to deal with more complex cryptographic primitives, those that are
frequently used in e-voting protocols

@ blind signature (already done in the passive case)
@ trapdoor bit commitment

@ reencryption mechanism

Active case:
design a procedure to decide equivalence of constraint systems in presence
of blind signature.

— this will allow us to decide privacy in e-voting protocols, e.g. protocol
due to Fujioka, Okamoto and Ohta.

Stéphanie Delaune () Security via constraint solving January 5, 2009 33 /34

Conclusion

Verification via constraint solving
— a useful approach to verify security protocols

@ can be adapted to other cryptographic primitives;
o useful for trace properties but also equivalence based properties;
@ can be adapted to deal with regular constraints, e.g. u € L;

@ limits: only a bounded number of sessions

Stéphanie Delaune () Security via constraint solving January 5, 2009

Conclusion

Verification via constraint solving
— a useful approach to verify security protocols

@ can be adapted to other cryptographic primitives;
o useful for trace properties but also equivalence based properties;
@ can be adapted to deal with regular constraints, e.g. u € L;

@ limits: only a bounded number of sessions

Questions?

Stéphanie Delaune () Security via constraint solving January 5, 2009

	Introduction
	How to deal with trace properties (e.g. secrecy, authentication, …)?
	How to deal with equivalence based properties (e.g. privacy, …)?
	Conclusion

