
Safely composing security protocols via tagging

Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA project SECSI

February, 25, 2008

−→ joint work with Véronique Cortier, Jérémie Delaitre, Myrto
Arapinis and Steve Kremer

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 1 / 30

Context: cryptographic protocols

Cryptographic protocols

small programs designed to secure
communication (e.g. secrecy)

use cryptographic primitives (e.g.
encryption, signature,)

The network is unsecure!

Communications take place over a public network like the Internet.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 2 / 30

Context: cryptographic protocols

Cryptographic protocols

small programs designed to secure
communication (e.g. secrecy)

use cryptographic primitives (e.g.
encryption, signature,)

The network is unsecure!

Communications take place over a public network like the Internet.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 2 / 30

Cryptographic protocols (formal approach)

Messages are abstracted by terms

pairing 〈m1,m2〉,

symmetric enc(m, k) and public-key encryption enca(m, pub(A)),

signature sign(m, priv(A)).

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 3 / 30

Cryptographic protocols (formal approach)

Messages are abstracted by terms

pairing 〈m1,m2〉,

symmetric enc(m, k) and public-key encryption enca(m, pub(A)),

signature sign(m, priv(A)).

Presence of an idealized attacker

may read, intercept and send messages,

may build new messages following deduction rules
(symbolic manipulation on terms).

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 3 / 30

Cryptographic protocols (formal approach)

Messages are abstracted by terms

pairing 〈m1,m2〉,

symmetric enc(m, k) and public-key encryption enca(m, pub(A)),

signature sign(m, priv(A)).

Presence of an idealized attacker

may read, intercept and send messages,

may build new messages following deduction rules
(symbolic manipulation on terms).

Examples:

m k

enc(m, k)

enc(m, k) k

m

enca(m, pub(a)) priv(a)

m

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 3 / 30

A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 4 / 30

A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉

Question?

Can the attacker learn the secret s?

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 4 / 30

A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉

Answer: Of course, Yes!

〈Alice, enc(s, k)〉

enc(s, k)

〈Bob, k〉

k

s

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 4 / 30

Composition problem (part 2 of this talk)

−→ sessions coming from the same protocol

A→ B : enca(〈A,K ,Na〉, pub(B)), sign(enca(〈A,Na〉, pub(B)), priv(A))
B → A : Na, enc(s,K)

Question?

What about the secrecy of s?

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 5 / 30

Composition problem (part 2 of this talk)

−→ sessions coming from the same protocol

A→ B : enca(〈A,K ,Na〉, pub(B)), sign(enca(〈A,Na〉, pub(B)), priv(A))
B → A : Na, enc(s,K)

Question?

What about the secrecy of s?

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 5 / 30

Composition problem (part 2 of this talk)

−→ sessions coming from the same protocol

A→ B : enca(〈A,K ,Na〉, pub(B)), sign(enca(〈A,Na〉, pub(B)), priv(A))
B → A : Na, enc(s,K)

Attack with 2 sessions:

A→ B : enca(〈A,K ,Na〉, pub(B)), sign(enca(〈A,Na〉, pub(B)), priv(A))
B → A : Na, enc(s1,K)

I(A)→ B : enca(〈A,Ki ,Na〉, pub(B)), sign(enca(〈A,Na〉, pub(B)), priv(A))
B → A : Na, enc(s2,Ki)

Question?

What about the secrecy of s?

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 5 / 30

Composition problem (part 1 of this talk)

Protocol 1

P1 : A→ B : enca(s, pub(B))

Question?

What about the secrecy of s?

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 6 / 30

Composition problem (part 1 of this talk)

−→ sessions coming from different protocols

Protocol 1

P1 : A→ B : enca(s, pub(B))

Protocol 2

P2 : A→ B : enca(Na, pub(B))
B → A : Na

Question?

What about the secrecy of s?

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 6 / 30

Motivations

Verification of security protocols

Existing tools allow us to verify relatively small protocols and
sometimes only for a bounded number of sessions

Most often, we verify them in isolation
−→ this is not sufficient

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 7 / 30

Motivations

Verification of security protocols

Existing tools allow us to verify relatively small protocols and
sometimes only for a bounded number of sessions

Most often, we verify them in isolation
−→ this is not sufficient

Our Goals

1 propose a general and simple transformation that maps a protocol
that is secure for one session into a protocol that is secure for an
unbounded number of sessions;

2 investigate sufficient and rather tight conditions for a protocol to be
safely used in an environment where other protocols may be executed
as well;

−→ protocols may share identities and keys (e.g. public keys, long-term
symmetric keys)

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 7 / 30

Outline of the talk

1 Introduction

2 Preliminaries

3 Composition result (1st part)

4 Composition result (2nd part): ongoing work

5 Conclusion

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 8 / 30

Outline of the talk

1 Introduction

2 Preliminaries

3 Composition result (1st part)

4 Composition result (2nd part): ongoing work

5 Conclusion

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 9 / 30

Deduction capabilities of the attacker

Composition rules

T ⊢ u T ⊢ v

T ⊢ 〈u, v〉

T ⊢ u T ⊢ v
with f ∈ {enc, enca, sign}

T ⊢ f(u, v)

Decomposition rules

u ∈ T
T ⊢ u

T ⊢ 〈u, v〉

T ⊢ u

T ⊢ 〈u, v〉

T ⊢ v

T ⊢ enc(u, v) T ⊢ v

T ⊢ u

T ⊢ enca(u, pub(v)) T ⊢ priv(v)

T ⊢ u

T ⊢ sign(u, priv(v))
(optional)

T ⊢ u

Deducibility relation

A term u is deducible from a set of terms T , denoted by T ⊢ u, if there
exists a prooftree witnessing this fact.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 10 / 30

Protocol – Example: Needham Schroeder protocol (1978)

Needham Schroeder protocol:

A → B : {Na,A}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

A protocol is a finite set of roles:

Exemple:

role Π(1) corresponding to the 1st participant played by a talking to b:

init
N
→ enca(〈N, a〉, pub(b))

enca(〈N, x〉, pub(a))→ enca(x , pub(b)).

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 11 / 30

Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario

rcv(u1)
N1→ snd(v1)

rcv(u2)
N2→ snd(v2)
. . .

rcv(un)
Nn→ snd(vn)

Constraint System

C =

T0 u1

T0, v1 u2

...

T0, v1, .., vn s

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 12 / 30

Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario

rcv(u1)
N1→ snd(v1)

rcv(u2)
N2→ snd(v2)
. . .

rcv(un)
Nn→ snd(vn)

Constraint System

C =

T0 u1

T0, v1 u2

...

T0, v1, .., vn s

Solution of a constraint system

A substitution σ such that

for every T u ∈ C, uσ is deducible from Tσ.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 12 / 30

Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario

rcv(u1)
N1→ snd(v1)

rcv(u2)
N2→ snd(v2)
. . .

rcv(un)
Nn→ snd(vn)

Constraint System

C =

T0 u1

T0, v1 u2

...

T0, v1, .., vn s

Well-formed constraint system

monotonicity: intruder never forgets information

origination: a variable first appear in a right hand side.
→ to discard some weird protocols, we also require plaintext origination

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 12 / 30

Procedure due to H. Comon-Lundh

Input: A (well-formed) constraint system
Output: Either ⊥ or a constraint system in solved form
−→ systems in solved form always have a solution

R5 : C ∧ T f (u, v) C ∧ T u ∧ T v
for f ∈ {〈〉, enc, enca, sign}

R4 : C ∧ T u ⊥ if vars(T , u) = ∅ and T 6⊢ u

R1 : C ∧ T u C if T ∪ {x | T ′ x ∈ C,T ′ (T} ⊢ u

R2 : C ∧ T u σ Cσ ∧ Tσ uσ u′ ∈ st(T)

R3 : C ∧ T v σ Cσ ∧ Tσ vσ u, u′ ∈ st(T)
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

These simplification rules give us an algorithm to decide satisfiability of a
well-formed constraint system.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 13 / 30

Procedure due to H. Comon-Lundh

Input: A (well-formed) constraint system
Output: Either ⊥ or a constraint system in solved form
−→ systems in solved form always have a solution

R5 : C ∧ T f (u, v) C ∧ T u ∧ T v
for f ∈ {〈〉, enc, enca, sign}

R4 : C ∧ T u ⊥ if vars(T , u) = ∅ and T 6⊢ u

R1 : C ∧ T u C if T ∪ {x | T ′ x ∈ C,T ′ (T} ⊢ u

R2 : C ∧ T u σ Cσ ∧ Tσ uσ u′ ∈ st(T)

R3 : C ∧ T v σ Cσ ∧ Tσ vσ u, u′ ∈ st(T)
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

These simplification rules give us an algorithm to decide satisfiability of a
well-formed constraint system.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 13 / 30

Procedure due to H. Comon-Lundh

Input: A (well-formed) constraint system
Output: Either ⊥ or a constraint system in solved form
−→ systems in solved form always have a solution

R5 : C ∧ T f (u, v) C ∧ T u ∧ T v
for f ∈ {〈〉, enc, enca, sign}

R4 : C ∧ T u ⊥ if vars(T , u) = ∅ and T 6⊢ u

R1 : C ∧ T u C if T ∪ {x | T ′ x ∈ C,T ′ (T} ⊢ u

R2 : C ∧ T u σ Cσ ∧ Tσ uσ u′ ∈ st(T)

R3 : C ∧ T v σ Cσ ∧ Tσ vσ u, u′ ∈ st(T)
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

These simplification rules give us an algorithm to decide satisfiability of a
well-formed constraint system.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 13 / 30

Refinement of the procedure

R′2 : C ∧ T u σ Cσ ∧ Tσ uσ u′ ∈ st(T)

R′3 : C ∧ T v σ Cσ ∧ Tσ vσ u, u′ ∈ st(T)
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

u, u′ are not pairs

Proposition - Cortier et al.,FSTTCS’07

These simplification rules, i.e. R1, R4, R5, R′2 and R′3, still forms a
complete decision procedure.

This result is of independent interest:

we provide a more efficient procedure for solving constraint systems
−→ of course, the theoretical complexity remains the same, i.e. NP

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 14 / 30

Refinement of the procedure

R′2 : C ∧ T u σ Cσ ∧ Tσ uσ u′ ∈ st(T)

R′3 : C ∧ T v σ Cσ ∧ Tσ vσ u, u′ ∈ st(T)
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

u, u′ are not pairs

Proposition - Cortier et al.,FSTTCS’07

These simplification rules, i.e. R1, R4, R5, R′2 and R′3, still forms a
complete decision procedure.

This result is of independent interest:

we provide a more efficient procedure for solving constraint systems
−→ of course, the theoretical complexity remains the same, i.e. NP

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 14 / 30

Refinement of the procedure

R′2 : C ∧ T u σ Cσ ∧ Tσ uσ u′ ∈ st(T)

R′3 : C ∧ T v σ Cσ ∧ Tσ vσ u, u′ ∈ st(T)
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

u, u′ are not pairs

Proposition - Cortier et al.,FSTTCS’07

These simplification rules, i.e. R1, R4, R5, R′2 and R′3, still forms a
complete decision procedure.

This result is of independent interest:

we provide a more efficient procedure for solving constraint systems
−→ of course, the theoretical complexity remains the same, i.e. NP

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 14 / 30

Outline of the talk

1 Introduction

2 Preliminaries

3 Composition result (1st part)

4 Composition result (2nd part): ongoing work

5 Conclusion

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 15 / 30

Condition 1 - Tagging

Condition 1 (well-tagged protocol)

Each protocol is given an identifier (e.g. the protocol’s name). This
identifier has to appear in any encrypted and signed message.

−→ this tagging policy will avoid interaction between two differents
protocols.

Example: P1 is 1-tagged whereas P2 is 2-tagged

Protocol P1

A→ B : enca(〈1, s〉, pub(B))

Protocol P2

A→ B : enca(〈2,Na〉, pub(B))
B → A : Na

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 16 / 30

Condition 1 - Tagging

Condition 1 (well-tagged protocol)

Each protocol is given an identifier (e.g. the protocol’s name). This
identifier has to appear in any encrypted and signed message.

−→ this tagging policy will avoid interaction between two differents
protocols.

Example: P1 is 1-tagged whereas P2 is 2-tagged

Protocol P1

A→ B : enca(〈1, s〉, pub(B))

Protocol P2

A→ B : enca(〈2,Na〉, pub(B))
B → A : Na

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 16 / 30

Condition 2 - No critical key in plaintext

Protocol P1

A→ B : enca(〈1, s〉, pub(B))

Protocol P2

B → A : priv(B)

Condition 2 (no critical key in plaintext)

Let KC be the set of critical keys, i.e. constants and long-term keys used
in P1 or P2 and not publicly known.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅.

Example: We have that KC = {priv(B)}.

−→ Condition 2 (no critical key in plaintext) is not satisfied by P2.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 17 / 30

Condition 2 - No critical key in plaintext

Protocol P1

A→ B : enca(〈1, s〉, pub(B))

Protocol P2

B → A : priv(B)

Condition 2 (no critical key in plaintext)

Let KC be the set of critical keys, i.e. constants and long-term keys used
in P1 or P2 and not publicly known.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅.

Example: We have that KC = {priv(B)}.

−→ Condition 2 (no critical key in plaintext) is not satisfied by P2.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 17 / 30

Condition 2 - No critical key in plaintext

Protocol P1

A→ B : enca(〈1, s〉, pub(B))

Protocol P2

B → A : priv(B)

Condition 2 (no critical key in plaintext)

Let KC be the set of critical keys, i.e. constants and long-term keys used
in P1 or P2 and not publicly known.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅.

Example: We have that KC = {priv(B)}.

−→ Condition 2 (no critical key in plaintext) is not satisfied by P2.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 17 / 30

Condition 2 - No critical key in plaintext

Protocol P1

A→ B : enca(〈1, s〉, pub(B))

Protocol P2

B → A : priv(B)

Condition 2 (no critical key in plaintext)

Let KC be the set of critical keys, i.e. constants and long-term keys used
in P1 or P2 and not publicly known.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅.

Example: We have that KC = {priv(B)}.

−→ Condition 2 (no critical key in plaintext) is not satisfied by P2.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 17 / 30

Main result - Composition theorem

Let P1 and P2 be two well-tagged protocols such that

1 P1 is α-tagged and P2 is β-tagged with α 6= β,

2 critical keys do not appear in plaintext position, i.e.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅

where KC = (ExtNames(P1) ∪ ExtNames(P2)) r T0

Let s be a α-tagged term such that vars(s) ⊆ vars(P1).

Then P1 preserves the secrecy of s for the initial knowledge T0 if and only
if P1 | P2 preserves the secrecy of s for T0.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 18 / 30

Main result - Composition theorem

Let P1 and P2 be two well-tagged protocols such that

1 P1 is α-tagged and P2 is β-tagged with α 6= β,

2 critical keys do not appear in plaintext position, i.e.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅

where KC = (ExtNames(P1) ∪ ExtNames(P2)) r T0

Let s be a α-tagged term such that vars(s) ⊆ vars(P1).

Then P1 preserves the secrecy of s for the initial knowledge T0 if and only
if P1 | P2 preserves the secrecy of s for T0.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 18 / 30

Main result - Composition theorem

Let P1 and P2 be two well-tagged protocols such that

1 P1 is α-tagged and P2 is β-tagged with α 6= β,

2 critical keys do not appear in plaintext position, i.e.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅

where KC = (ExtNames(P1) ∪ ExtNames(P2)) r T0

Let s be a α-tagged term such that vars(s) ⊆ vars(P1).

Then P1 preserves the secrecy of s for the initial knowledge T0 if and only
if P1 | P2 preserves the secrecy of s for T0.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 18 / 30

Main steps of the proof

Proposition

Let sc be a scenario of Π1 | Π2, T0 the intruder’s knowledge, s the secret.
Let C be the constraint system associated to sc, T0 and s,

C′ be the constraint system associated to sc|Π1
, T0 and s.

We have that C satisfiable implies C′ satisfiable

1 If C satisfiable, there exists a solution θ without any mixing, i.e. terms
in Cθ will be either α-tagged or β-tagged.
−→ refinement of the constraint solving procedure due to H. Comon-Lundh

2 Removing β-tagged terms from a left hand side of a constraint is safe

T0,Tαθ,Tβθ ⊢ uαθ ⇒ T0,Tαθ ⊢ uαθ

−→ proved by induction on the prooftree witnessing T0,Tαθ,Tβθ ⊢ uαθ

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 19 / 30

Main steps of the proof

Proposition

Let sc be a scenario of Π1 | Π2, T0 the intruder’s knowledge, s the secret.
Let C be the constraint system associated to sc, T0 and s,

C′ be the constraint system associated to sc|Π1
, T0 and s.

We have that C satisfiable implies C′ satisfiable

1 If C satisfiable, there exists a solution θ without any mixing, i.e. terms
in Cθ will be either α-tagged or β-tagged.
−→ refinement of the constraint solving procedure due to H. Comon-Lundh

2 Removing β-tagged terms from a left hand side of a constraint is safe

T0,Tαθ,Tβθ ⊢ uαθ ⇒ T0,Tαθ ⊢ uαθ

−→ proved by induction on the prooftree witnessing T0,Tαθ,Tβθ ⊢ uαθ

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 19 / 30

Main steps of the proof

Proposition

Let sc be a scenario of Π1 | Π2, T0 the intruder’s knowledge, s the secret.
Let C be the constraint system associated to sc, T0 and s,

C′ be the constraint system associated to sc|Π1
, T0 and s.

We have that C satisfiable implies C′ satisfiable

1 If C satisfiable, there exists a solution θ without any mixing, i.e. terms
in Cθ will be either α-tagged or β-tagged.
−→ refinement of the constraint solving procedure due to H. Comon-Lundh

2 Removing β-tagged terms from a left hand side of a constraint is safe

T0,Tαθ,Tβθ ⊢ uαθ ⇒ T0,Tαθ ⊢ uαθ

−→ proved by induction on the prooftree witnessing T0,Tαθ,Tβθ ⊢ uαθ

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 19 / 30

A little bit further ...

In the journal version of the paper (currently under submission)

we add a new primitive: hash function h(m),

we relax the condition “well-tagged” to non-unifiability,

we deal with a class of security properties
−→ we introduce a logic for which the composition result holds

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 20 / 30

A little bit further ...

In the journal version of the paper (currently under submission)

we add a new primitive: hash function h(m),

we relax the condition “well-tagged” to non-unifiability,

we deal with a class of security properties
−→ we introduce a logic for which the composition result holds

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 20 / 30

A little bit further ...

In the journal version of the paper (currently under submission)

we add a new primitive: hash function h(m),

we relax the condition “well-tagged” to non-unifiability,

we deal with a class of security properties
−→ we introduce a logic for which the composition result holds

ψ := true | P(t1, . . . , tn) | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Yψ | ψ1 Sψ2

| ∃x .ψ | ∀x .ψ

φ := ψ | learn(m) | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x .φ | ∀x .φ

This logic allows us to express:

secrecy of a nonce: ∀x . (� nonce(x))⇒ ¬learn(x)

several notions of authentication, e.g. aliveness:
end(a, b)⇒ � start(b)) ∧ (end(b, a)⇒ � start(a))

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 20 / 30

Related Works

The idea of adding an identifier is not novel:

Principle 10 in the prudent engineering paper,
[Abadi & Needham, 1995]

. . .

There are also some formal results about this composition problem:

Protocol independence through disjoint encryption [Guttman & Thayer,00]
−→ asymmetric condition allowing one to deal with protocols with
ticket (e.g. Neuman-Strubblebine protocol)
−→ their condition has to hold on any valid execution of the protocol

Sufficient conditions for composing security protocols [Andova et al.,07]
−→ different kinds of composition (parallel, sequential)
−→ they have to assume typing hypothesis, they can not deal with
protocols with ciphertext forwarding

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 21 / 30

Related Works

The idea of adding an identifier is not novel:

Principle 10 in the prudent engineering paper,
[Abadi & Needham, 1995]

. . .

There are also some formal results about this composition problem:

Protocol independence through disjoint encryption [Guttman & Thayer,00]
−→ asymmetric condition allowing one to deal with protocols with
ticket (e.g. Neuman-Strubblebine protocol)
−→ their condition has to hold on any valid execution of the protocol

Sufficient conditions for composing security protocols [Andova et al.,07]
−→ different kinds of composition (parallel, sequential)
−→ they have to assume typing hypothesis, they can not deal with
protocols with ciphertext forwarding

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 21 / 30

Outline of the talk

1 Introduction

2 Preliminaries

3 Composition result (1st part)

4 Composition result (2nd part): ongoing work

5 Conclusion

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 22 / 30

Summary

Our Goal

We propose a transformation which maps a protocol P that is secure for a
single session to a protocol P that is secure for an unbounded number of
sessions.

−→ side-effect: we also caracterise a class of protocols for which secrecy
for an unbounded number of sessions is decidable

Main Difficulty

We can not assume that a (static) tag is already shared between the
different participants of one session.
−→ we will use dynamic tags

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 23 / 30

Summary

Our Goal

We propose a transformation which maps a protocol P that is secure for a
single session to a protocol P that is secure for an unbounded number of
sessions.

−→ side-effect: we also caracterise a class of protocols for which secrecy
for an unbounded number of sessions is decidable

Main Difficulty

We can not assume that a (static) tag is already shared between the
different participants of one session.
−→ we will use dynamic tags

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 23 / 30

Our transformation

Let P be a protocol with ℓ participants as given below:

Ai1 → Aj1 : m1

Ai2 → Aj2 : m2
...

Aik → Ajk : mk

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 24 / 30

Our transformation

The protocol P (with ℓ participants) is decribed below:

Initialisation phase: broadcast of fresh nonces

A1 → All : A1,N1

A2 → All : A2,N2
...

Aℓ → All : Aℓ,Nℓ

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 24 / 30

Our transformation

The protocol P (with ℓ participants) is decribed below:

Initialisation phase: broadcast of fresh nonces

A1 → All : A1,N1

A2 → All : A2,N2
...

Aℓ → All : Aℓ,Nℓ

Every particicpant obtain a tag = 〈A1,N1,A2,N2, . . . ,Aℓ,Nℓ〉

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 24 / 30

Our transformation

The protocol P (with ℓ participants) is decribed below:

Initialisation phase: broadcast of fresh nonces

A1 → All : A1,N1

A2 → All : A2,N2
...

Aℓ → All : Aℓ,Nℓ

Every particicpant obtain a tag = 〈A1,N1,A2,N2, . . . ,Aℓ,Nℓ〉

Main phase:

Ai1 → Aj1 : m1

Ai2 → Aj2 : m2
...

Aik → Ajk : mk

where the function m is defined by:

〈u1, u2〉 → 〈u1, u2〉

f (u1, u2) → f (〈tag, u1〉, u2)
when f ∈ {enc, enca, sign}

u → u otherwise

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 24 / 30

Example

Consider again the protocol P between A and B

A→ B : enca(〈A,K ,Na〉, pub(B)),
sign(enca(〈A,Na〉, pub(B)), priv(A))

B → A : Na, enc(s,K)

−→ there is an attack involving 2 sessions between A and B.

The protocol P is as follows:

A→ B : A,N1

B → A : B,N2

A→ B : enca(〈tag, 〈A,K ,Na〉〉, pub(B)),
sign(〈tag, enca(〈tag, 〈A,Na〉〉, pub(B))〉, priv(A))

B → A : Na, enc(〈tag, s〉,K)

where tag = 〈A,N1,B,N2〉

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 25 / 30

Example

Consider again the protocol P between A and B

A→ B : enca(〈A,K ,Na〉, pub(B)),
sign(enca(〈A,Na〉, pub(B)), priv(A))

B → A : Na, enc(s,K)

−→ there is an attack involving 2 sessions between A and B.

The protocol P is as follows:

A→ B : A,N1

B → A : B,N2

A→ B : enca(〈tag, 〈A,K ,Na〉〉, pub(B)),
sign(〈tag, enca(〈tag, 〈A,Na〉〉, pub(B))〉, priv(A))

B → A : Na, enc(〈tag, s〉,K)

where tag = 〈A,N1,B,N2〉

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 25 / 30

Composition result

Conjecture (almost established)

Under the same kind of hypothesis than the previous composition result
(i.e. no critical key in plaintext, plaintext origination property), we have
that

If P preserves the secrecy of s for a single honest session then P
preserves the secrecy of s for an unbounded number of sessions.

−→ we prove this result by contradiction and we rely on the refinement of
the procedure due to H. Comon-Lundh.

Remark: In each constraint system obtained after several simplification
steps of the procedure, the terms are always uniquely tagged (even if there
are not necessarily tagged as expected by a normal execution (i.e. no
intervention of the attacker)

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 26 / 30

Composition result

Conjecture (almost established)

Under the same kind of hypothesis than the previous composition result
(i.e. no critical key in plaintext, plaintext origination property), we have
that

If P preserves the secrecy of s for a single honest session then P
preserves the secrecy of s for an unbounded number of sessions.

−→ we prove this result by contradiction and we rely on the refinement of
the procedure due to H. Comon-Lundh.

Remark: In each constraint system obtained after several simplification
steps of the procedure, the terms are always uniquely tagged (even if there
are not necessarily tagged as expected by a normal execution (i.e. no
intervention of the attacker)

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 26 / 30

Composition result

Conjecture (almost established)

Under the same kind of hypothesis than the previous composition result
(i.e. no critical key in plaintext, plaintext origination property), we have
that

If P preserves the secrecy of s for a single honest session then P
preserves the secrecy of s for an unbounded number of sessions.

−→ we prove this result by contradiction and we rely on the refinement of
the procedure due to H. Comon-Lundh.

Remark: In each constraint system obtained after several simplification
steps of the procedure, the terms are always uniquely tagged (even if there
are not necessarily tagged as expected by a normal execution (i.e. no
intervention of the attacker)

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 26 / 30

Related Works

Another compiler

Synthesizing secure protocols [Cortier et al.,07]
−→ their notion of security for P is very weak (essentially with no
adversary)
−→ their transformation is heavier than ours

Some other decidability classes for an unbounded number of sessions

On the security of ping-pong protocols [Dolev et al.,83]
−→ PTIME decision procedure
−→ the class of protocols they consider is very restrictive

Towards a completeness result ... of security protocols [Lowe,98]

Tagging makes secrecy decidable for unbounded nonces as well

[Rammanujam et al.,03]
−→ notion of secrecy that disallow temporary secrets
−→ no ciphertext forwarding (e.g. Yahalom)

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 27 / 30

Related Works

Another compiler

Synthesizing secure protocols [Cortier et al.,07]
−→ their notion of security for P is very weak (essentially with no
adversary)
−→ their transformation is heavier than ours

Some other decidability classes for an unbounded number of sessions

On the security of ping-pong protocols [Dolev et al.,83]
−→ PTIME decision procedure
−→ the class of protocols they consider is very restrictive

Towards a completeness result ... of security protocols [Lowe,98]

Tagging makes secrecy decidable for unbounded nonces as well

[Rammanujam et al.,03]
−→ notion of secrecy that disallow temporary secrets
−→ no ciphertext forwarding (e.g. Yahalom)

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 27 / 30

Outline of the talk

1 Introduction

2 Preliminaries

3 Composition result (1st part)

4 Composition result (2nd part): ongoing work

5 Conclusion

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 28 / 30

How to combine both results ?

−→ by using tags of the form tag = 〈idα,A1,N1, . . . ,Aℓ,Nℓ〉.

Remark: dynamic tagging is not sufficient to compose different protocols.

Protocol 1

A→ B : A,N1

B → A : B,N2

A→ B : enca(〈A,N1,B,N2, s〉,
pub(B))

There is an attack on s:

role B of P2 with the tag 〈A,N1,B,N
′

2〉,

role A of P1 with the tag 〈A,N1,B,N
′

2〉.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 29 / 30

How to combine both results ?

−→ by using tags of the form tag = 〈idα,A1,N1, . . . ,Aℓ,Nℓ〉.

Remark: dynamic tagging is not sufficient to compose different protocols.

Protocol 1

A→ B : A,N1

B → A : B,N2

A→ B : enca(〈A,N1,B,N2, s〉,
pub(B))

Protocol 2

A→ B : A,N ′1
B → A : B,N ′2
A→ B : enca(〈A,N ′1,B,N

′

2,Na〉,
pub(B))

B → A : Na

There is an attack on s:

role B of P2 with the tag 〈A,N1,B,N
′

2〉,

role A of P1 with the tag 〈A,N1,B,N
′

2〉.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 29 / 30

How to combine both results ?

−→ by using tags of the form tag = 〈idα,A1,N1, . . . ,Aℓ,Nℓ〉.

Remark: dynamic tagging is not sufficient to compose different protocols.

Protocol 1

A→ B : A,N1

B → A : B,N2

A→ B : enca(〈A,N1,B,N2, s〉,
pub(B))

Protocol 2

A→ B : A,N ′1
B → A : B,N ′2
A→ B : enca(〈A,N ′1,B,N

′

2,Na〉,
pub(B))

B → A : Na

There is an attack on s:

role B of P2 with the tag 〈A,N1,B,N
′

2〉,

role A of P1 with the tag 〈A,N1,B,N
′

2〉.

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 29 / 30

Conclusion

Conclusion: Two composition results

one that can be used to compose protocols that satisfy disjoint
encryption
−→ this can be obtained with static tags

one that is useful to compose sessions of the same protocol (general
class of protocols)
−→ this can be obtained with dynamic tags

Both results are based on a refinement of the procedure due to H. Comon

Yet another composition result: with S. Kremer and M. Ryan

another class of protocols: password based protocols

another notion of security: resistance against guessing attacks

−→ we use another notion of tagging

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 30 / 30

Conclusion

Conclusion: Two composition results

one that can be used to compose protocols that satisfy disjoint
encryption
−→ this can be obtained with static tags

one that is useful to compose sessions of the same protocol (general
class of protocols)
−→ this can be obtained with dynamic tags

Both results are based on a refinement of the procedure due to H. Comon

Yet another composition result: with S. Kremer and M. Ryan

another class of protocols: password based protocols

another notion of security: resistance against guessing attacks

−→ we use another notion of tagging

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 30 / 30

	Introduction
	Preliminaries
	Composition result (1eserved @d = *math text inlined[fg]math text inlinedfgst part)
	Composition result (2eserved @d = *math text inlined[fg]math text inlinedfgnd part): ongoing work
	Conclusion

