
Safely composing security protocols via tagging

Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA project SECSI

February, 25, 2008

−→ joint work with Véronique Cortier, Jérémie Delaitre, Myrto
Arapinis and Steve Kremer

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 1 / 30



Context: cryptographic protocols

Cryptographic protocols

small programs designed to secure
communication (e.g. secrecy)

use cryptographic primitives (e.g.
encryption, signature, . . . . . . )

The network is unsecure!

Communications take place over a public network like the Internet.
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Cryptographic protocols (formal approach)

Messages are abstracted by terms

pairing 〈m1,m2〉,

symmetric enc(m, k) and public-key encryption enca(m, pub(A)),

signature sign(m, priv(A)).
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Presence of an idealized attacker

may read, intercept and send messages,

may build new messages following deduction rules
(symbolic manipulation on terms).
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signature sign(m, priv(A)).

Presence of an idealized attacker

may read, intercept and send messages,

may build new messages following deduction rules
(symbolic manipulation on terms).

Examples:

m k

enc(m, k)

enc(m, k) k

m

enca(m, pub(a)) priv(a)

m
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A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉
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A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉

Question?

Can the attacker learn the secret s?
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A simple protocol

〈Bob, k〉

〈Alice, enc(s, k)〉

Answer: Of course, Yes!

〈Alice, enc(s, k)〉

enc(s, k)

〈Bob, k〉

k

s

S. Delaune (LSV) Safely composing security protocols February, 25, 2008 4 / 30



Composition problem (part 2 of this talk)

−→ sessions coming from the same protocol

A→ B : enca(〈A,K ,Na〉, pub(B)), sign(enca(〈A,Na〉, pub(B)), priv(A))
B → A : Na, enc(s,K)

Question?

What about the secrecy of s?
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B → A : Na, enc(s2,Ki)

Question?

What about the secrecy of s?
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Composition problem (part 1 of this talk)

Protocol 1

P1 : A→ B : enca(s, pub(B))

Question?

What about the secrecy of s?
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Composition problem (part 1 of this talk)

−→ sessions coming from different protocols

Protocol 1

P1 : A→ B : enca(s, pub(B))

Protocol 2

P2 : A→ B : enca(Na, pub(B))
B → A : Na

Question?

What about the secrecy of s?
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Motivations

Verification of security protocols

Existing tools allow us to verify relatively small protocols and
sometimes only for a bounded number of sessions

Most often, we verify them in isolation
−→ this is not sufficient
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Motivations

Verification of security protocols

Existing tools allow us to verify relatively small protocols and
sometimes only for a bounded number of sessions

Most often, we verify them in isolation
−→ this is not sufficient

Our Goals

1 propose a general and simple transformation that maps a protocol
that is secure for one session into a protocol that is secure for an
unbounded number of sessions;

2 investigate sufficient and rather tight conditions for a protocol to be
safely used in an environment where other protocols may be executed
as well;

−→ protocols may share identities and keys (e.g. public keys, long-term
symmetric keys)
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Outline of the talk

1 Introduction

2 Preliminaries

3 Composition result (1st part)

4 Composition result (2nd part): ongoing work

5 Conclusion
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Deduction capabilities of the attacker

Composition rules

T ⊢ u T ⊢ v

T ⊢ 〈u, v〉

T ⊢ u T ⊢ v
with f ∈ {enc, enca, sign}

T ⊢ f(u, v)

Decomposition rules

u ∈ T
T ⊢ u

T ⊢ 〈u, v〉

T ⊢ u

T ⊢ 〈u, v〉

T ⊢ v

T ⊢ enc(u, v) T ⊢ v

T ⊢ u

T ⊢ enca(u, pub(v)) T ⊢ priv(v)

T ⊢ u

T ⊢ sign(u, priv(v))
(optional)

T ⊢ u

Deducibility relation

A term u is deducible from a set of terms T , denoted by T ⊢ u, if there
exists a prooftree witnessing this fact.
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Protocol – Example: Needham Schroeder protocol (1978)

Needham Schroeder protocol:

A → B : {Na,A}pub(B)

B → A : {Na,Nb}pub(A)

A → B : {Nb}pub(B)

A protocol is a finite set of roles:

Exemple:

role Π(1) corresponding to the 1st participant played by a talking to b:

init
N
→ enca(〈N, a〉, pub(b))

enca(〈N, x〉, pub(a))→ enca(x , pub(b)).
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Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario

rcv(u1)
N1→ snd(v1)

rcv(u2)
N2→ snd(v2)
. . .

rcv(un)
Nn→ snd(vn)

Constraint System

C =



















T0  u1

T0, v1  u2

...

T0, v1, .., vn  s
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Scenario

rcv(u1)
N1→ snd(v1)

rcv(u2)
N2→ snd(v2)
. . .

rcv(un)
Nn→ snd(vn)

Constraint System

C =



















T0  u1

T0, v1  u2

...

T0, v1, .., vn  s

Solution of a constraint system

A substitution σ such that

for every T  u ∈ C, uσ is deducible from Tσ.
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Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a
particular, finite scenario.

Scenario

rcv(u1)
N1→ snd(v1)

rcv(u2)
N2→ snd(v2)
. . .

rcv(un)
Nn→ snd(vn)

Constraint System

C =



















T0  u1

T0, v1  u2

...

T0, v1, .., vn  s

Well-formed constraint system

monotonicity: intruder never forgets information

origination: a variable first appear in a right hand side.
→ to discard some weird protocols, we also require plaintext origination
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Procedure due to H. Comon-Lundh

Input: A (well-formed) constraint system
Output: Either ⊥ or a constraint system in solved form
−→ systems in solved form always have a solution

R5 : C ∧ T  f (u, v)  C ∧ T  u ∧ T  v
for f ∈ {〈〉, enc, enca, sign}

R4 : C ∧ T  u  ⊥ if vars(T , u) = ∅ and T 6⊢ u

R1 : C ∧ T  u  C if T ∪ {x | T ′  x ∈ C,T ′ ( T} ⊢ u

R2 : C ∧ T  u  σ Cσ ∧ Tσ  uσ u′ ∈ st(T )

R3 : C ∧ T  v  σ Cσ ∧ Tσ  vσ u, u′ ∈ st(T )
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

These simplification rules give us an algorithm to decide satisfiability of a
well-formed constraint system.
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Refinement of the procedure

R′2 : C ∧ T  u  σ Cσ ∧ Tσ  uσ u′ ∈ st(T )

R′3 : C ∧ T  v  σ Cσ ∧ Tσ  vσ u, u′ ∈ st(T )
if σ = mgu(u, u′), u, u′ 6∈ X , u 6= u′

u, u′ are not pairs

Proposition - Cortier et al.,FSTTCS’07

These simplification rules, i.e. R1, R4, R5, R′2 and R′3, still forms a
complete decision procedure.

This result is of independent interest:

we provide a more efficient procedure for solving constraint systems
−→ of course, the theoretical complexity remains the same, i.e. NP
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Condition 1 - Tagging

Condition 1 (well-tagged protocol)

Each protocol is given an identifier (e.g. the protocol’s name). This
identifier has to appear in any encrypted and signed message.

−→ this tagging policy will avoid interaction between two differents
protocols.

Example: P1 is 1-tagged whereas P2 is 2-tagged

Protocol P1

A→ B : enca(〈1, s〉, pub(B))

Protocol P2

A→ B : enca(〈2,Na〉, pub(B))
B → A : Na
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Condition 2 - No critical key in plaintext

Protocol P1

A→ B : enca(〈1, s〉, pub(B))

Protocol P2

B → A : priv(B)

Condition 2 (no critical key in plaintext)

Let KC be the set of critical keys, i.e. constants and long-term keys used
in P1 or P2 and not publicly known.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅.

Example: We have that KC = {priv(B)}.

−→ Condition 2 (no critical key in plaintext) is not satisfied by P2.
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Main result - Composition theorem

Let P1 and P2 be two well-tagged protocols such that

1 P1 is α-tagged and P2 is β-tagged with α 6= β,

2 critical keys do not appear in plaintext position, i.e.

KC ∩ (plaintext(P1) ∪ plaintext(P2)) = ∅

where KC = (ExtNames(P1) ∪ ExtNames(P2)) r T0

Let s be a α-tagged term such that vars(s) ⊆ vars(P1).

Then P1 preserves the secrecy of s for the initial knowledge T0 if and only
if P1 | P2 preserves the secrecy of s for T0.
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Main steps of the proof

Proposition

Let sc be a scenario of Π1 | Π2, T0 the intruder’s knowledge, s the secret.
Let C be the constraint system associated to sc, T0 and s,

C′ be the constraint system associated to sc|Π1
, T0 and s.

We have that C satisfiable implies C′ satisfiable

1 If C satisfiable, there exists a solution θ without any mixing, i.e. terms
in Cθ will be either α-tagged or β-tagged.
−→ refinement of the constraint solving procedure due to H. Comon-Lundh

2 Removing β-tagged terms from a left hand side of a constraint is safe

T0,Tαθ,Tβθ ⊢ uαθ ⇒ T0,Tαθ ⊢ uαθ

−→ proved by induction on the prooftree witnessing T0,Tαθ,Tβθ ⊢ uαθ
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A little bit further ...

In the journal version of the paper (currently under submission)

we add a new primitive: hash function h(m),

we relax the condition “well-tagged” to non-unifiability,

we deal with a class of security properties
−→ we introduce a logic for which the composition result holds
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A little bit further ...

In the journal version of the paper (currently under submission)

we add a new primitive: hash function h(m),

we relax the condition “well-tagged” to non-unifiability,

we deal with a class of security properties
−→ we introduce a logic for which the composition result holds

ψ := true | P(t1, . . . , tn) | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Yψ | ψ1 Sψ2

| ∃x .ψ | ∀x .ψ

φ := ψ | learn(m) | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x .φ | ∀x .φ

This logic allows us to express:

secrecy of a nonce: ∀x . (� nonce(x))⇒ ¬learn(x)

several notions of authentication, e.g. aliveness:
end(a, b)⇒ � start(b)) ∧ (end(b, a)⇒ � start(a))
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Related Works

The idea of adding an identifier is not novel:

Principle 10 in the prudent engineering paper,
[Abadi & Needham, 1995]

. . .

There are also some formal results about this composition problem:

Protocol independence through disjoint encryption [Guttman & Thayer,00]
−→ asymmetric condition allowing one to deal with protocols with
ticket (e.g. Neuman-Strubblebine protocol)
−→ their condition has to hold on any valid execution of the protocol

Sufficient conditions for composing security protocols [Andova et al.,07]
−→ different kinds of composition (parallel, sequential)
−→ they have to assume typing hypothesis, they can not deal with
protocols with ciphertext forwarding
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Summary

Our Goal

We propose a transformation which maps a protocol P that is secure for a
single session to a protocol P that is secure for an unbounded number of
sessions.

−→ side-effect: we also caracterise a class of protocols for which secrecy
for an unbounded number of sessions is decidable

Main Difficulty

We can not assume that a (static) tag is already shared between the
different participants of one session.
−→ we will use dynamic tags
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Our transformation

Let P be a protocol with ℓ participants as given below:

Ai1 → Aj1 : m1

Ai2 → Aj2 : m2
...

Aik → Ajk : mk
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Aℓ → All : Aℓ,Nℓ

Every particicpant obtain a tag = 〈A1,N1,A2,N2, . . . ,Aℓ,Nℓ〉

Main phase:

Ai1 → Aj1 : m1

Ai2 → Aj2 : m2
...

Aik → Ajk : mk

where the function m is defined by:



















〈u1, u2〉 → 〈u1, u2〉

f (u1, u2) → f (〈tag, u1〉, u2)
when f ∈ {enc, enca, sign}

u → u otherwise
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Example

Consider again the protocol P between A and B

A→ B : enca(〈A,K ,Na〉, pub(B)),
sign(enca(〈A,Na〉, pub(B)), priv(A))

B → A : Na, enc(s,K)

−→ there is an attack involving 2 sessions between A and B.

The protocol P is as follows:

A→ B : A,N1

B → A : B,N2

A→ B : enca(〈tag, 〈A,K ,Na〉〉, pub(B)),
sign(〈tag, enca(〈tag, 〈A,Na〉〉, pub(B))〉, priv(A))

B → A : Na, enc(〈tag, s〉,K)

where tag = 〈A,N1,B,N2〉
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Composition result

Conjecture (almost established)

Under the same kind of hypothesis than the previous composition result
(i.e. no critical key in plaintext, plaintext origination property), we have
that

If P preserves the secrecy of s for a single honest session then P
preserves the secrecy of s for an unbounded number of sessions.

−→ we prove this result by contradiction and we rely on the refinement of
the procedure due to H. Comon-Lundh.

Remark: In each constraint system obtained after several simplification
steps of the procedure, the terms are always uniquely tagged (even if there
are not necessarily tagged as expected by a normal execution (i.e. no
intervention of the attacker)
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Related Works

Another compiler

Synthesizing secure protocols [Cortier et al.,07]
−→ their notion of security for P is very weak (essentially with no
adversary)
−→ their transformation is heavier than ours

Some other decidability classes for an unbounded number of sessions

On the security of ping-pong protocols [Dolev et al.,83]
−→ PTIME decision procedure
−→ the class of protocols they consider is very restrictive

Towards a completeness result ... of security protocols [Lowe,98]

Tagging makes secrecy decidable for unbounded nonces as well

[Rammanujam et al.,03]
−→ notion of secrecy that disallow temporary secrets
−→ no ciphertext forwarding (e.g. Yahalom)
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1 Introduction

2 Preliminaries

3 Composition result (1st part)

4 Composition result (2nd part): ongoing work

5 Conclusion
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How to combine both results ?

−→ by using tags of the form tag = 〈idα,A1,N1, . . . ,Aℓ,Nℓ〉.

Remark: dynamic tagging is not sufficient to compose different protocols.

Protocol 1

A→ B : A,N1

B → A : B,N2

A→ B : enca(〈A,N1,B,N2, s〉,
pub(B))

There is an attack on s:

role B of P2 with the tag 〈A,N1,B,N
′

2〉,

role A of P1 with the tag 〈A,N1,B,N
′

2〉.
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Conclusion

Conclusion: Two composition results

one that can be used to compose protocols that satisfy disjoint
encryption
−→ this can be obtained with static tags

one that is useful to compose sessions of the same protocol (general
class of protocols)
−→ this can be obtained with dynamic tags

Both results are based on a refinement of the procedure due to H. Comon

Yet another composition result: with S. Kremer and M. Ryan

another class of protocols: password based protocols

another notion of security: resistance against guessing attacks

−→ we use another notion of tagging
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