Safely composing security protocols via tagging

Stéphanie Delaune
LSV, ENS Cachan & CNRS & INRIA project SECSI

March, 14, 2008

— joint work with Véronique Cortier, Jérémie Delaitre, Myrto
Arapinis and Steve Kremer

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 1/17

Context: cryptographic protocols

Cryptographic protocols

@ small programs designed to secure
communication (e.g. secrecy)

Paismnent @ use cryptographic primitives (e.g.
/&= Internet encryption, signature,)

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 2 /17

Context: cryptographic protocols

Cryptographic protocols

@ small programs designed to secure
communication (e.g. secrecy)

Paiement @ use cryptographic primitives (e.g.
/&) Internet encryption, signature,)

The network is unsecure!
Communications take place over a public network like the Internet.

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 2 /17

Cryptographic protocols (symbolic approach)

Messages are abstracted by terms

@ pairing (my, my),
@ symmetric enc(m,k) and public key encryption enca(m, pub(A)),

@ signature sign(m, priv(A)).

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 3/17

Cryptographic protocols (symbolic approach)

Messages are abstracted by terms
@ pairing (my, my),
@ symmetric enc(m,k) and public key encryption enca(m, pub(A)),

@ signature sign(m, priv(A)).

Presence of an idealized attacker
@ may read, intercept and send messages,

@ may build new messages following deduction rules
(symbolic manipulation on terms).

March, 14, 2008

S. Delaune (LSV) Safely composing security protocols

3/

17

Cryptographic protocols (symbolic approach)

Messages are abstracted by terms
@ pairing (my, my),
@ symmetric enc(m,k) and public key encryption enca(m, pub(A)),

@ signature sign(m, priv(A)).

Presence of an idealized attacker
@ may read, intercept and send messages,

@ may build new messages following deduction rules
(symbolic manipulation on terms).

Examples:
m k enc(m, k) k enca(m, pub(a)) priv(a)
enc(m, k) m m

March, 14, 2008 3/17

S. Delaune (LSV) Safely composing security protocols

Formal verification of security protocols
o Existing tools allow us to verify relatively small protocols and
sometimes only for a bounded number of sessions

@ Most often, we verify them in isolation
— this is not sufficient

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 4 /17

Formal verification of security protocols

o Existing tools allow us to verify relatively small protocols and
sometimes only for a bounded number of sessions

@ Most often, we verify them in isolation
— this is not sufficient

Example:

P1: A— B: enca(s,pub(B))

Question: What about the secrecy of s?)

S. Delaune (LSV) Safely composing security protocols March, 14, 2008

Formal verification of security protocols

o Existing tools allow us to verify relatively small protocols and
sometimes only for a bounded number of sessions

@ Most often, we verify them in isolation
— this is not sufficient

Example:

Py: A— B: enca(s,pub(B)) P,: A— B: enca(N,,pub(B))
B—A: N,

Question: What about the secrecy of s7]

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 4 /17

Formal verification of security protocols
o Existing tools allow us to verify relatively small protocols and
sometimes only for a bounded number of sessions

@ Most often, we verify them in isolation
— this is not sufficient

Our goal

investigate sufficient conditions to ensure that protocols can be safely used
in an environment where:

@ other sessions of the same protocol may be executed;

© other sessions of another protocol may be executed as well.

— protocols may share identities and keys (e.g. public keys, long-term
symmetric keys)

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 4 /17

utline of the talk

@ Introduction
@ Composition result I: “from one session to many”
© Composition result II: “from one protocol to many”

@ Conclusion

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 5 /17

utline of the talk

@ Composition result I: “from one session to many”

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 6 /17

Summary: “from one session to many"

Our goal:

compose different sessions from the same protocol

— well-known fact: an attack may involve an arbitrary number of
sessions

S. Delaune (LSV) Safely composing security protocols March, 14, 2008

7/17

Summary: “from one session to many"

Our goal:
compose different sessions from the same protocol

— well-known fact: an attack may involve an arbitrary number of
sessions

Solution

@ a transformation which maps a protocol P that is secure for a single
session to a protocol P that is secure for an unbounded number of
sessions.

@ side-effect: an effective strategy to design secure protocols

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 7 /17

Our transformation

Let P be a protocol with ¢ participants as given below:

A,'1 — Ajl Lo
A,‘2 — Aj2 oMy
A

i = Ajet o mi

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 8 /17

Our transformation

The protocol P (with ¢ participants) is decribed below:

Initialisation phase: broadcast of fresh nonces

Al — All : AlaNl
A2 — All : A2, N2

Ay — All . Ay, N,

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 8 /17

Our transformation

The protocol P (with ¢ participants) is decribed below:
Initialisation phase: broadcast of fresh nonces

Al — All : AlaNl
A2 — All : A2, N2

A — All © Ag, N,
Every particicpant obtain a tag = (A, Ny, Ax, No, ..., Ag, Ny)

S. Delaune (LSV)

Safely composing security protocols

March, 14, 2008 8 /17

Our transformation

The protocol P (with ¢ participants) is decribed below:

Initialisation phase: broadcast of fresh nonces

Al — All : AlaNl
A2 — All : A2, N2

Ay — All . Ap, Ny
Every particicpant obtain a tag = (A, Ny, Ax, No, ..., Ag, Ny)
Main phase:
where the function m is defined by:
A, — A, o Ty — o
A:: N Aj: : m2 (U]_, U2> - <u17 U2>
flu,wr) — f((tag, 0r), 02)
when f € {enc,enca,sign}
T — u otherwise

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 8 /17

Composition result “from one session to many”

Let P be a protocol with no critical long-term keys in plaintext position.

If P preserves the secrecy of s for a single honest session of each role then
P preserves the secrecy of s for an unbounded number of sessions.

@ critical long-term keys do not appear in plaintext
—— this can be easily checked on the finite specification of the protcol
— often satisfied since it is considered as a prudent practice
@ single honest session of each role
— i.e. one an instance of each role (in general 2 or 3);
— participants engaged in this session are honest.

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 9 /17

Composition result “from one session to many”

Let P be a protocol with no critical long-term keys in plaintext position.

If P preserves the secrecy of s for a single honest session of each role then
P preserves the secrecy of s for an unbounded number of sessions.

@ critical long-term keys do not appear in plaintext
—— this can be easily checked on the finite specification of the protcol
— often satisfied since it is considered as a prudent practice
@ single honest session of each role
— i.e. one an instance of each role (in general 2 or 3);
— participants engaged in this session are honest.

Exemple: Needham-Schroeder public key protocol
— the Lowe’s famous man-in-the-middle attack is prevented

S. Delaune (LSV) Safely composing security protocols March, 14, 2008

Related work

Computational models

Several compilers already exist in the area of cryptographic design, e.g.

@ Scalable protocols for authenticated group key exchange

[Katz & Yung, 03]

Symbolic models

® Synthesizing secure protocols [Cortier et al., 07]

@ How to guarantee secrecy for cryptographic protocols
[Beauquier & Gauche, 07]

— the transformations make heavy use of cryptography

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 10 / 17

© Composition result II: “from one protocol to many”

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 11 /17

Summary: “from one protocol to many”

Our goal:
compose sessions coming from different protocols

Solution
we propose sufficient and rather tight conditions for a protocol to be safely
used in an environment where other protocols may be executed as well;

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 12 /17

Summary: “from one protocol to many”

Our goal:
compose sessions coming from different protocols

Solution

we propose sufficient and rather tight conditions for a protocol to be safely
used in an environment where other protocols may be executed as well;

Example: (given in introduction)
Py: A— B: enca(s,pub(B)) P,: A— B: enca(N,,pub(B))
B—A: N,

— protocols may share identities and keys (e.g. public keys, long-term
symmetric keys)

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 12 /17

Main condition - Tagging

Well-tagged protocol

Each protocol is given an identifier (e.g. the protocol’s name). This
identifier has to appear in any encrypted and signed message.

— this tagging policy will avoid interaction between two differents
protocols.

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 13/

Main condition - Tagging

Well-tagged protocol

Each protocol is given an identifier (e.g. the protocol’s name). This
identifier has to appear in any encrypted and signed message.

— this tagging policy will avoid interaction between two differents
protocols.

Example: P; is 1-tagged whereas P, is 2-tagged

Protocol P; Protocol P,
A — B :enca((1,s), pub(B)) A — B :enca((2,N,), pub(B))
B—A:N,;

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 13 /17

Composition result “from one protocol to many”

Let Py and P, be two well-tagged protocols such that

@ no critical long-term keys appear in plaintext position neither in Py
nor in P,

o Py is a-tagged and P, is B-tagged with o # (5.
If Py preserves the secrecy of s then Py | P, preserves the secrecy of s.

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 14 /17

Composition result “from one protocol to many”

Let Py and P, be two well-tagged protocols such that

@ no critical long-term keys appear in plaintext position neither in Py
nor in P,

o Py is a-tagged and P, is B-tagged with o # (5.
If Py preserves the secrecy of s then Py | P, preserves the secrecy of s.

Extensions that have been already done:

© well-tagged condition can be relaxed: disjoint encryption is actually
sufficient;

@ composition result holds for a class of security properties (secrecy,
authentication, ...)

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 14 /17

Related work

The idea of adding an identifier is not novel:

Principle 10 in the prudent engineering paper
[Abadi & Needham, 95]

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 15 / 17

Related work

The idea of adding an identifier is not novel:

Principle 10 in the prudent engineering paper
[Abadi & Needham, 95]

There are also some formal results about this problem:
@ Protocol independence through disjoint encryption

[Guttman & Thayer, 00]
—— their condition has to hold on any valid execution of the protocol

@ Sufficient conditions for composing security protocols
[Andova et al., 07]
— they have to assume typing hypothesis, they can not deal with
protocols with ciphertext forwarding

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 15 / 17

Outline of the talk

@ Conclusion

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 16 / 17

Conclusion

Two composition results
© one that is useful to compose sessions coming from the same protocol
— this can be obtained with dynamic tags

© one that can be used to compose protocols that satisfy disjoint
encryption
— this can be obtained with static tags

— to combine both results, use tag = (id,, A1, N1, ..., Ay, Np).

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 17 / 17

Conclusion

Two composition results
© one that is useful to compose sessions coming from the same protocol
— this can be obtained with dynamic tags

© one that can be used to compose protocols that satisfy disjoint
encryption
— this can be obtained with static tags

— to combine both results, use tag = (id,, A1, N1, ..., Ay, Np).

Future Work

@ obtain a more fine-grained characterization of a decidable class (for
an unbounded number of sessions and a class security properties)

@ other kind of security properties (e.g. equivalence-based properties)

@ other kind of composition (e.g. sequence)

S. Delaune (LSV) Safely composing security protocols March, 14, 2008 17 / 17

	Introduction
	Composition result I: ``from one session to many''
	Composition result II: ``from one protocol to many''
	Conclusion

